51
|
Santini L, Rojas D, Donati G. Evolving through day and night: origin and diversification of activity pattern in modern primates. Behav Ecol 2015. [DOI: 10.1093/beheco/arv012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
52
|
Rabosky DL, Goldberg EE. Model Inadequacy and Mistaken Inferences of Trait-Dependent Speciation. Syst Biol 2015; 64:340-55. [DOI: 10.1093/sysbio/syu131] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Daniel L. Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; and 2Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Emma E. Goldberg
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; and 2Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
53
|
Futuyma DJ. Can Modern Evolutionary Theory Explain Macroevolution? INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-15045-1_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
|
55
|
Ng J, Smith SD. How traits shape trees: new approaches for detecting character state-dependent lineage diversification. J Evol Biol 2014; 27:2035-45. [PMID: 25066512 DOI: 10.1111/jeb.12460] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/30/2022]
Abstract
Biologists have long sought to understand the processes underlying disparities in clade size across the tree of life and the extent to which such clade size differences can be attributed to the evolution of particular traits. The association of certain character states with species-rich clades suggests that trait evolution can lead to increased diversification, but such a pattern could also arise due other processes, such as directional trait evolution. Recent advances in phylogenetic comparative methods have provided new statistical approaches for distinguishing between these intertwined and potentially confounded macroevolutionary processes. Here, we review the historical development of methods for detecting state-dependent diversification and explore what new methods have revealed about classic examples of traits that affect diversification, including evolutionary dead ends, key innovations and geographic traits. Applications of these methods thus far collectively suggest that trait diversity commonly arises through the complex interplay between transition, speciation and extinction rates and that long hypothesized evolutionary dead ends and key innovations are instead often cases of directional trends in trait evolution.
Collapse
Affiliation(s)
- J Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
56
|
Rios RS, Salgado-Luarte C, Gianoli E. Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees. PLoS One 2014; 9:e99871. [PMID: 24914958 PMCID: PMC4051759 DOI: 10.1371/journal.pone.0099871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/20/2014] [Indexed: 11/18/2022] Open
Abstract
The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [Amax], dark respiration rate [Rd], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that Rd evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for Rd, while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. Rd followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for Amax. Rd may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.
Collapse
Affiliation(s)
- Rodrigo S. Rios
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | | | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
- * E-mail:
| |
Collapse
|
57
|
Rolland J, Jiguet F, Jønsson KA, Condamine FL, Morlon H. Settling down of seasonal migrants promotes bird diversification. Proc Biol Sci 2014; 281:20140473. [PMID: 24759866 PMCID: PMC4043101 DOI: 10.1098/rspb.2014.0473] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/25/2014] [Indexed: 12/19/2022] Open
Abstract
How seasonal migration originated and impacted diversification in birds remains largely unknown. Although migratory behaviour is likely to affect bird diversification, previous studies have not detected any effect. Here, we infer ancestral migratory behaviour and the effect of seasonal migration on speciation and extinction dynamics using a complete bird tree of life. Our analyses infer that sedentary behaviour is ancestral, and that migratory behaviour evolved independently multiple times during the evolutionary history of birds. Speciation of a sedentary species into two sedentary daughter species is more frequent than speciation of a migratory species into two migratory daughter species. However, migratory species often diversify by generating a sedentary daughter species in addition to the ancestral migratory one. This leads to an overall higher migratory speciation rate. Migratory species also experience lower extinction rates. Hence, although migratory species represent a minority (18.5%) of all extant birds, they have a higher net diversification rate than sedentary species. These results suggest that the evolution of seasonal migration in birds has facilitated diversification through the divergence of migratory subpopulations that become sedentary, and illustrate asymmetrical diversification as a mechanism by which diversification rates are decoupled from species richness.
Collapse
Affiliation(s)
- Jonathan Rolland
- Centre de Mathématiques Appliquées (Ecole Polytechnique), CNRS, UMR 7641 Route de Saclay, 91128 Palaiseau, France
- Muséum National d'Histoire Naturelle, UMR 7204 MNHN-CNRS-UPMC, Centre d'Ecologie et des Sciences de la Conservation, CP51, 55 rue Buffon, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris
| | - Frédéric Jiguet
- Muséum National d'Histoire Naturelle, UMR 7204 MNHN-CNRS-UPMC, Centre d'Ecologie et des Sciences de la Conservation, CP51, 55 rue Buffon, 75005 Paris, France
| | - Knud Andreas Jønsson
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Fabien L. Condamine
- Centre de Mathématiques Appliquées (Ecole Polytechnique), CNRS, UMR 7641 Route de Saclay, 91128 Palaiseau, France
| | - Hélène Morlon
- Centre de Mathématiques Appliquées (Ecole Polytechnique), CNRS, UMR 7641 Route de Saclay, 91128 Palaiseau, France
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris
| |
Collapse
|
58
|
Käfer J, de Boer HJ, Mousset S, Kool A, Dufay M, Marais GAB. Dioecy is associated with higher diversification rates in flowering plants. J Evol Biol 2014; 27:1478-90. [PMID: 24797166 DOI: 10.1111/jeb.12385] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/23/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Abstract
In angiosperms, dioecious clades tend to have fewer species than their nondioecious sister clades. This departure from the expected equal species richness in the standard sister clade test has been interpreted as implying that dioecious clades diversify less and has initiated a series of studies suggesting that dioecy might be an 'evolutionary dead end'. However, two of us recently showed that the 'equal species richness' null hypothesis is not valid in the case of derived char acters, such as dioecy, and proposed a new test for sister clade comparisons; preliminary results, using a data set available in the litterature, indicated that dioecious clades migth diversify more than expected. However, it is crucial for this new test to distinguish between ancestral and derived cases of dioecy, a criterion that was not taken into account in the available data set. Here, we present a new data set that was obtained by searching the phylogenetic literature on more than 600 completely dioecious angiosperm genera and identifying 115 sister clade pairs for which dioecy is likely to be derived (including > 50% of the dioecious species). Applying the new sister clade test to this new dataset, we confirm the preliminary result that dioecy is associated with an increased diversification rate, a result that does not support the idea that dioecy is an evolutionary dead end in angiosperms. The traits usually associated with dioecy, that is, an arborescent growth form, abiotic pollination, fleshy fruits or a tropical distribution, do not influence the diversification rate. Rather than a low diversification rate, the observed species richness patterns of dioecious clades seem to be better explained by a low transition rate to dioecy and frequent losses.
Collapse
Affiliation(s)
- J Käfer
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
59
|
Käfer J, Mousset S. Standard sister clade comparison fails when testing derived character States. Syst Biol 2014; 63:601-9. [PMID: 24671619 DOI: 10.1093/sysbio/syu024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Comparing species richness in sister clades that differ in a character state is one of the ways to study factors influencing diversification. While most of its applications have focussed on traits that increase diversification, some have been used to study the association of a trait with lower species richness, e.g., the occurrence of dioecy in flowering plants. We show here, using simulations and an analytical model, that the null expectation of equal species richness that is generally used in sister clade comparisons is wrong in the case of a derived trait occurring independently from speciation: one should expect fewer species in the clade with the derived character state when there is no difference in diversification rates. This is due to the waiting time for the derived state to appear, which causes it to occur more often on longer branches. This has the important implication that the probability for a clade to possess the derived state depends on the tree geometry, and thus on species richness: species-poorer clades are more likely to possess the derived state. We develop a statistical test for sister clade comparisons to study the effect of a derived character state. Applying it to a data set of dioecious clades, we find that we cannot confirm earlier work that concluded that dioecy decreases diversification; on the contrary, it seems to be associated to higher species richness than expected. [angiosperms; dioecy; diversification; sister clades; species richness.].
Collapse
Affiliation(s)
- Jos Käfer
- Université de Lyon; Université Lyon 1; CNRS; UMR 5558; Laboratoire de Biométrie et Biologie Evolutive; F-69622, Villeurbanne, France
| | - Sylvain Mousset
- Université de Lyon; Université Lyon 1; CNRS; UMR 5558; Laboratoire de Biométrie et Biologie Evolutive; F-69622, Villeurbanne, France
| |
Collapse
|
60
|
Seven-locus molecular phylogeny of Myctophiformes (Teleostei; Scopelomorpha) highlights the utility of the order for studies of deep-sea evolution. Mol Phylogenet Evol 2014; 76:270-92. [PMID: 24583290 DOI: 10.1016/j.ympev.2014.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/06/2014] [Accepted: 02/16/2014] [Indexed: 11/18/2022]
Abstract
Fishes of the order Myctophiformes (Teleostei; Scopelomorpha) comprise over half of all deep-sea biomass, and are a critical component of marine ecosystems worldwide. Members of the family Myctophidae, within Myctophiformes, form the majority of species diversity within the order (∼250 species, 33 genera, 2 subfamilies), and are further known for their diverse bioluminescent traits, comprised of distinct cranial, postcranial, and caudal luminous systems that is perhaps the most elaborate among all vertebrates. These features make myctophids particularly compelling from both economic and scientific perspectives, yet no studies have sampled these fishes at a density appropriate for addressing any questions requiring a phylogenetic hypothesis as input. This study therefore presents a seven-locus molecular phylogeny of the order, sampling over 50% of all nominal myctophid species. This taxon sampling triples the representation of the next most comprehensive analysis, and reveals several new and well-supported hypotheses of relationships, in addition to supporting traditional hypotheses based on combined morphological data. This analysis shows that the slendertailed myctophids Gonichthys, Centrobranchus, Loweina, and Tarletonbeania are rendered non-monophyletic by a polyphyletic Myctophum; the enigmatic, monotypic genus Notolychnus valdiviae is nested within tribe Lampanyctini; the genus Diaphus is divided into at least two clades, with the suborbital (So) group recovered as monophyletic with strong support; and the genera Lampanyctus and Nannobrachium are recovered as non-monophyletic. These molecular results highlight the potential of myctophids as a premier model system for the application of modern comparative methods to studies of deep-sea evolution.
Collapse
|
61
|
Morlon H. Phylogenetic approaches for studying diversification. Ecol Lett 2014; 17:508-25. [PMID: 24533923 DOI: 10.1111/ele.12251] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/03/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022]
Abstract
Estimating rates of speciation and extinction, and understanding how and why they vary over evolutionary time, geographical space and species groups, is a key to understanding how ecological and evolutionary processes generate biological diversity. Such inferences will increasingly benefit from phylogenetic approaches given the ever-accelerating rates of genetic sequencing. In the last few years, models designed to understand diversification from phylogenetic data have advanced significantly. Here, I review these approaches and what they have revealed about diversification in the natural world. I focus on key distinctions between different models, and I clarify the conclusions that can be drawn from each model. I identify promising areas for future research. A major challenge ahead is to develop models that more explicitly take into account ecology, in particular the interaction of species with each other and with their environment. This will not only improve our understanding of diversification; it will also present a new perspective to the use of phylogenies in community ecology, the science of interaction networks and conservation biology, and might shift the current focus in ecology on equilibrium biodiversity theories to non-equilibrium theories recognising the crucial role of history.
Collapse
Affiliation(s)
- Hélène Morlon
- Center for Applied Mathematics, Ecole Polytechnique, Palaiseau, Essonne, France
| |
Collapse
|
62
|
Zhan SH, Glick L, Tsigenopoulos CS, Otto SP, Mayrose I. Comparative analysis reveals that polyploidy does not decelerate diversification in fish. J Evol Biol 2014; 27:391-403. [DOI: 10.1111/jeb.12308] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- S. H. Zhan
- University of British Columbia; Vancouver BC Canada
| | - L. Glick
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv Israel
| | - C. S. Tsigenopoulos
- Institute of Marine Biology and Genetics; Hellenic Centre for Marine Research; Crete Greece
| | - S. P. Otto
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| | - I. Mayrose
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
63
|
Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol 2014; 29:23-32. [DOI: 10.1016/j.tree.2013.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022]
|
64
|
Pyron RA, Burbrink FT. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends Ecol Evol 2013; 28:729-36. [PMID: 24120478 DOI: 10.1016/j.tree.2013.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/03/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Phylogenies are used to estimate rates of speciation and extinction, reconstruct historical diversification scenarios, and link these to ecological and evolutionary factors, such as climate or organismal traits. Recent models can now estimate the effects of binary, multistate, continuous, and biogeographic characters on diversification rates. Others test for diversity dependence (DD) in speciation and extinction, which has become recognized as an important process in numerous clades. A third class incorporates flexible time-dependent functions, enabling reconstruction of major periods of both expanding and contracting diversity. Although there are some potential problems (particularly for estimating extinction), these methods hold promise for answering many classic questions in ecology and evolution, such as the origin of adaptive radiations, and the latitudinal gradient in species richness.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA.
| | | |
Collapse
|
65
|
Kamilar JM, Beaudrot L. Understanding primate communities: Recent developments and future directions. Evol Anthropol 2013; 22:174-85. [DOI: 10.1002/evan.21361] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
66
|
Hunt G. Testing the link between phenotypic evolution and speciation: an integrated palaeontological and phylogenetic analysis. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12085] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gene Hunt
- Department of Paleobiology; National Museum of Natural History, Smithsonian Institution; MRC 121, PO Box 37012; Washington; DC; 20013-7012; USA
| |
Collapse
|
67
|
Pennell MW, Harmon LJ. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Ann N Y Acad Sci 2013; 1289:90-105. [DOI: 10.1111/nyas.12157] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Luke J. Harmon
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies; University of Idaho; Moscow; Idaho
| |
Collapse
|
68
|
Wright SI, Kalisz S, Slotte T. Evolutionary consequences of self-fertilization in plants. Proc Biol Sci 2013; 280:20130133. [PMID: 23595268 PMCID: PMC3652455 DOI: 10.1098/rspb.2013.0133] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/22/2013] [Indexed: 01/17/2023] Open
Abstract
The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further.
Collapse
Affiliation(s)
- Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Susan Kalisz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tanja Slotte
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
69
|
Stadler T. Recovering speciation and extinction dynamics based on phylogenies. J Evol Biol 2013; 26:1203-19. [PMID: 23662978 DOI: 10.1111/jeb.12139] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 01/17/2013] [Accepted: 01/24/2013] [Indexed: 11/29/2022]
Abstract
Phylogenetic trees of only extant species contain information about the underlying speciation and extinction pattern. In this review, I provide an overview over the different methodologies that recover the speciation and extinction dynamics from phylogenetic trees. Broadly, the methods can be divided into two classes: (i) methods using the phylogenetic tree shapes (i.e. trees without branch length information) allowing us to test for speciation rate variation and (ii) methods using the phylogenetic trees with branch length information allowing us to quantify speciation and extinction rates. I end the article with an overview on limitations, open questions and challenges of the reviewed methodology.
Collapse
Affiliation(s)
- T Stadler
- Institut für Integrative Biologie, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
70
|
Simpson C. Species selection and the macroevolution of coral coloniality and photosymbiosis. Evolution 2013; 67:1607-21. [PMID: 23730756 DOI: 10.1111/evo.12083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 02/02/2013] [Indexed: 11/29/2022]
Abstract
Differences in the relative diversification rates of species with variant traits are known as species selection. Species selection can produce a macroevolutionary change in the frequencies of traits by changing the relative number of species possessing each trait over time. But species selection is not the only process that can change the frequencies of traits, phyletic microevolution of traits within species and phylogenetic trait evolution among species, the tempo and mode of microevolution can also change trait frequencies. Species selection, phylogenetic, and phyletic processes can all contribute to large-scale trends, reinforcing or canceling each other out. Even more complex interactions among macroevolutionary processes are possible when multiple covarying traits are involved. Here I present a multilevel macroevolutionary framework that is useful for understanding how macroevolutionary processes interact. It is useful for empirical studies using fossils, molecular phylogenies, or both. I illustrate the framework with the macroevolution of coloniality and photosymbiosis in scleractinian corals using a time-calibrated molecular phylogeny. I find that standing phylogenetic variation in coloniality and photosymbiosis deflects the direction of macroevolution from the vector of species selection. Variation in these traits constrains species selection and results in a 200 million year macroevolutionary equilibrium.
Collapse
Affiliation(s)
- Carl Simpson
- Museum für Naturkunde, Leibniz Institute at the Humboldt University Berlin, Invalidenstrasse 43, Berlin, Germany.
| |
Collapse
|
71
|
Stadler T, Bonhoeffer S. Uncovering epidemiological dynamics in heterogeneous host populations using phylogenetic methods. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120198. [PMID: 23382421 DOI: 10.1098/rstb.2012.0198] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Host population structure has a major influence on epidemiological dynamics. However, in particular for sexually transmitted diseases, quantitative data on population contact structure are hard to obtain. Here, we introduce a new method that quantifies host population structure based on phylogenetic trees, which are obtained from pathogen genetic sequence data. Our method is based on a maximum-likelihood framework and uses a multi-type branching process, under which each host is assigned to a type (subpopulation). In a simulation study, we show that our method produces accurate parameter estimates for phylogenetic trees in which each tip is assigned to a type, as well for phylogenetic trees in which the type of the tip is unknown. We apply the method to a Latvian HIV-1 dataset, quantifying the impact of the intravenous drug user epidemic on the heterosexual epidemic (known tip states), and identifying superspreader dynamics within the men-having-sex-with-men epidemic (unknown tip states).
Collapse
Affiliation(s)
- Tanja Stadler
- Institut für Integrative Biologie, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland.
| | | |
Collapse
|
72
|
|
73
|
Abstract
Classic questions about trait evolution-including the directionality of character change and its interactions with lineage diversification-intersect in the study of plant breeding systems. Transitions from self-incompatibility to self-compatibility are frequent, and they may proceed within a species ("anagenetic" mode of breeding system change) or in conjunction with speciation events ("cladogenetic" mode of change). We apply a recently developed phylogenetic model to the nightshade family Solanaceae, quantifying the relative contributions of these two modes of evolution along with the tempo of breeding system change, speciation, and extinction. We find that self-incompatibility, a genetic mechanism that prevents self-fertilization, is lost largely by the cladogenetic mode. Self-compatible species are thus more likely to arise from the isolation of a newly self-compatible population than from species-wide fixation of self-compatible mutants. Shared polymorphism at the locus that governs self-incompatibility shows it to be ancestral and not regained within this family. We demonstrate that failing to account for cladogenetic character change misleads phylogenetic tests of evolutionary irreversibility, both for breeding system in Solanaceae and on simulated trees.
Collapse
Affiliation(s)
- Emma E Goldberg
- Department of Biological Sciences, University of Illinois at Chicago, 840 West Taylor Street MC067, Chicago, Illinois 60607, USA.
| | | |
Collapse
|