51
|
Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernández-Pérez J, Moroni L. Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front Chem 2021; 9:680836. [PMID: 34084767 PMCID: PMC8167061 DOI: 10.3389/fchem.2021.680836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a "bioactive" resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold's properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matthew Brandon Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Julia Fernández-Pérez
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| |
Collapse
|
52
|
Kim YT, Choi JS, Choi E, Shin H. Additive manufacturing of a 3D vascular chip based on cytocompatible hydrogel. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
53
|
Orsolits B, Kovács Z, Kriston-Vizi J, Merkely B, Földes G. New Modalities of 3D Pluripotent Stem Cell-Based Assays in Cardiovascular Toxicity. Front Pharmacol 2021; 12:603016. [PMID: 33854431 PMCID: PMC8039822 DOI: 10.3389/fphar.2021.603016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/04/2021] [Indexed: 12/04/2022] Open
Abstract
The substantial progress of the human induced pluripotent stem cell (hiPSC) technologies over the last decade has provided us with new opportunities for cardiovascular drug discovery, regenerative medicine, and disease modeling. The combination of hiPSC with 3D culture techniques offers numerous advantages for generating and studying physiological and pathophysiological cardiac models. Cells grown in 3D can overcome many limitations of 2D cell cultures and animal models. Furthermore, it enables the investigation in an architecturally appropriate, complex cellular environment in vitro. Yet, generation and study of cardiac organoids-which may contain versatile cardiovascular cell types differentiated from hiPSC-remain a challenge. The large-scale and high-throughput applications require accurate and standardised models with highly automated processes in culturing, imaging and data collection. Besides the compound spatial structure of organoids, their biological processes also possess different temporal dynamics which require other methods and technologies to detect them. In this review, we summarise the possibilities and challenges of acquiring relevant information from 3D cardiovascular models. We focus on the opportunities during different time-scale processes in dynamic pharmacological experiments and discuss the putative steps toward one-size-fits-all assays.
Collapse
Affiliation(s)
- Barbara Orsolits
- Heart and Vascular Center, Semmelweis University Budapest, Budapest, Hungary
| | - Zsófia Kovács
- Heart and Vascular Center, Semmelweis University Budapest, Budapest, Hungary
| | - János Kriston-Vizi
- Bioinformatics Image Core (BIONIC), MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University Budapest, Budapest, Hungary
| | - Gábor Földes
- Heart and Vascular Center, Semmelweis University Budapest, Budapest, Hungary
- National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
54
|
Agarwal T, Fortunato GM, Hann SY, Ayan B, Vajanthri KY, Presutti D, Cui H, Chan AHP, Costantini M, Onesto V, Di Natale C, Huang NF, Makvandi P, Shabani M, Maiti TK, Zhang LG, De Maria C. Recent advances in bioprinting technologies for engineering cardiac tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112057. [PMID: 33947551 DOI: 10.1016/j.msec.2021.112057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gabriele Maria Fortunato
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Kiran Yellappa Vajanthri
- School of Biomedical Engineering, Indian Institute of Technology Banaras Hindu University Varanasi, Uttar Pradesh 221005, India
| | - Dario Presutti
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, Naples 80125, Italy
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pooyan Makvandi
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Majid Shabani
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| | - Carmelo De Maria
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| |
Collapse
|
55
|
Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater 2021; 123:263-274. [PMID: 33454383 DOI: 10.1016/j.actbio.2021.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
The development of sufficient vascular networks is crucial for the successful fabrication of tissue constructs for regenerative medicine, as vascularization is essential to perform the metabolic functions of tissues, such as nutrient transportation and waste removal. In recent years, efforts to 3D print vascularized bone have gained substantial attention, as bone disorders and defects have a marked impact on the older generations of society. However, conventional and previous 3D printed bone studies have been plagued by the difficulty in obtaining the nanoscale geometrical precision necessary to recapitulate the distinct characteristics of natural bone. Additionally, the process of developing truly biomimetic vascularized bone tissue has been historically complex. In this study, a biomimetic nano-bone tissue construct with a perfusable, endothelialized vessel channel was developed using a combination of simple stereolithography (SLA) and fused deposition modeling (FDM) 3D printing systems. The perfusable vessel channel was created within the SLA printed bone scaffold using an FDM printed polyvinyl alcohol (PVA) sacrificial template. Within the fabricated constructs, bone tissue was formed through the osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs), and distinct capillaries sprouted through the angiogenesis of the endothelialized vessel channel after human umbilical vein endothelial cells (HUVECs) had been perfused throughout. Furthermore, the fabricated constructs were evaluated in physiologically relevant culture conditions to predict tissue development after implantation in the human body. The experimental results revealed that the custom-designed bioreactor with an hMSC-HUVEC co-culture system enhanced the formation of vascular networks and the osteogenic maturation of the constructs for up to 20 days of observation.
Collapse
|
56
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
57
|
Sedlakova V, McTiernan C, Cortes D, Suuronen EJ, Alarcon EI. 3D Bioprinted Cardiac Tissues and Devices for Tissue Maturation. Cells Tissues Organs 2021; 211:406-419. [PMID: 33677445 DOI: 10.1159/000512792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.
Collapse
Affiliation(s)
- Veronika Sedlakova
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Christopher McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - David Cortes
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada, .,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada,
| |
Collapse
|
58
|
Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng 2021; 5:011508. [PMID: 33728391 PMCID: PMC7954578 DOI: 10.1063/5.0034901] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
3D bioprinting technology is evolving in complexity to enable human-scale, high-resolution, and multi-cellular constructs to better mimic the native tissue microenvironment. The ultimate goal is to achieve necessary complexity in the bioprinting process to biomanufacture fully-functional tissues and organs to address organ shortage and lack of patient-specific disease models. In this Review, we presented an in-depth overview of complex 3D bioprinting approaches including evolution of complex bioprinting, from simple gel-casting approach to multi-material bioprinting to omnidirectional bioprinting approaches, and emerging bioprinting approaches, including 4D bioprinting and in situ bioprinting technologies.
Collapse
Affiliation(s)
- Shen Ji
- Otto H. York Chemical and Materials Engineering, New Jersey Institute of Technology, 161 Warren Street, 150 Tiernan Hall, Newark, New Jersey 07102, USA
| | - Murat Guvendiren
- Author to whom correspondence should be addressed:. Phone: 973-596-2932. Fax: 973-596-8436
| |
Collapse
|
59
|
Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Front Bioeng Biotechnol 2021; 9:636257. [PMID: 33748085 PMCID: PMC7968457 DOI: 10.3389/fbioe.2021.636257] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background 3D bioprinting cardiac patches for epicardial transplantation are a promising approach for myocardial regeneration. Challenges remain such as quantifying printability, determining the ideal moment to transplant, and promoting vascularisation within bioprinted patches. We aimed to evaluate 3D bioprinted cardiac patches for printability, durability in culture, cell viability, and endothelial cell structural self-organisation into networks. Methods We evaluated 3D-bioprinted double-layer patches using alginate/gelatine (AlgGel) hydrogels and three extrusion bioprinters (REGEMAT3D, INVIVO, BIO X). Bioink contained either neonatal mouse cardiac cell spheroids or free (not-in-spheroid) human coronary artery endothelial cells with fibroblasts, mixed with AlgGel. To test the effects on durability, some patches were bioprinted as a single layer only, cultured under minimal movement conditions or had added fibroblast-derived extracellular matrix hydrogel (AlloECM). Controls included acellular AlgGel and gelatin methacryloyl (GELMA) patches. Results Printability was similar across bioprinters. For AlgGel compared to GELMA: resolutions were similar (200-700 μm line diameters), printing accuracy was 45 and 25%, respectively (AlgGel was 1.7x more accurate; p < 0.05), and shape fidelity was 92% (AlgGel) and 96% (GELMA); p = 0.36. For durability, AlgGel patch median survival in culture was 14 days (IQR:10-27) overall which was not significantly affected by bioprinting system or cellular content in patches. We identified three factors which reduced durability in culture: (1) bioprinting one layer depth patches (instead of two layers); (2) movement disturbance to patches in media; and (3) the addition of AlloECM to AlgGel. Cells were viable after bioprinting followed by 28 days in culture, and all BIO X-bioprinted mouse cardiac cell spheroid patches presented contractile activity starting between day 7 and 13 after bioprinting. At day 28, endothelial cells in hydrogel displayed organisation into endothelial network-like structures. Conclusion AlgGel-based 3D bioprinted heart patches permit cardiomyocyte contractility and endothelial cell structural self-organisation. After bioprinting, a period of 2 weeks maturation in culture prior to transplantation may be optimal, allowing for a degree of tissue maturation but before many patches start to lose integrity. We quantify AlgGel printability and present novel factors which reduce AlgGel patch durability (layer number, movement, and the addition of AlloECM) and factors which had minimal effect on durability (bioprinting system and cellular patch content).
Collapse
Affiliation(s)
- Christopher David Roche
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Poonam Sharma
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.,Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Anthony Wayne Ashton
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Chris Jackson
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Meilang Xue
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
60
|
Xiang L, Cui W. Biomedical application of photo-crosslinked gelatin hydrogels. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00043-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field.
Graphical abstract
Collapse
|
61
|
Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater 2021; 6:460-471. [PMID: 32995673 PMCID: PMC7490764 DOI: 10.1016/j.bioactmat.2020.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Bioprinting is a rapidly developing technology for the precise design and manufacture of tissues in various biological systems or organs. Coaxial extrusion bioprinting, an emergent branch, has demonstrated a strong potential to enhance bioprinting's engineering versatility. Coaxial bioprinting assists in the fabrication of complex tissue constructs, by enabling concentric deposition of biomaterials. The fabricated tissue constructs started with simple, tubular vasculature but have been substantially developed to integrate complex cell composition and self-assembly, ECM patterning, controlled release, and multi-material gradient profiles. This review article begins with a brief overview of coaxial printing history, followed by an introduction of crucial engineering components. Afterward, we review the recent progress and untapped potential in each specific organ or biological system, and demonstrate how coaxial bioprinting facilitates the creation of tissue constructs. Ultimately, we conclude that this growing technology will contribute significantly to capabilities in the fields of in vitro modeling, pharmaceutical development, and clinical regenerative medicine.
Collapse
Affiliation(s)
- Andrew Kjar
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Bailey McFarland
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Keetch Mecham
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Nathan Harward
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
62
|
Leal BBJ, Wakabayashi N, Oyama K, Kamiya H, Braghirolli DI, Pranke P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front Cardiovasc Med 2021; 7:592361. [PMID: 33585576 PMCID: PMC7873993 DOI: 10.3389/fcvm.2020.592361] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the most common cause of death in the world. In severe cases, replacement or revascularization using vascular grafts are the treatment options. While several synthetic vascular grafts are clinically used with common approval for medium to large-caliber vessels, autologous vascular grafts are the only options clinically approved for small-caliber revascularizations. Autologous grafts have, however, some limitations in quantity and quality, and cause an invasiveness to patients when harvested. Therefore, the development of small-caliber synthetic vascular grafts (<5 mm) has been urged. Since small-caliber synthetic grafts made from the same materials as middle and large-caliber grafts have poor patency rates due to thrombus formation and intimal hyperplasia within the graft, newly innovative methodologies with vascular tissue engineering such as electrospinning, decellularization, lyophilization, and 3D printing, and novel polymers have been developed. This review article represents topics on the methodologies used in the development of scaffold-based vascular grafts and the polymers used in vitro and in vivo.
Collapse
Affiliation(s)
- Bruna B J Leal
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Naohiro Wakabayashi
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kyohei Oyama
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Kamiya
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Daikelly I Braghirolli
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Stem Cell Research Institute, Porto Alegre, Brazil
| |
Collapse
|
63
|
Lee H, Jang TS, Han G, Kim HW, Jung HD. Freeform 3D printing of vascularized tissues: Challenges and strategies. J Tissue Eng 2021; 12:20417314211057236. [PMID: 34868539 PMCID: PMC8638074 DOI: 10.1177/20417314211057236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022] Open
Abstract
In recent years, freeform three-dimensional (3D) printing has led to significant advances in the fabrication of artificial tissues with vascularized structures. This technique utilizes a supporting matrix that holds the extruded printing ink and ensures shape maintenance of the printed 3D constructs within the prescribed spatial precision. Since the printing nozzle can be translated omnidirectionally within the supporting matrix, freeform 3D printing is potentially applicable for the fabrication of complex 3D objects, incorporating curved, and irregular shaped vascular networks. To optimize freeform 3D printing quality and performance, the rheological properties of the printing ink and supporting matrix, and the material matching between them are of paramount importance. In this review, we shall compare conventional 3D printing and freeform 3D printing technologies for the fabrication of vascular constructs, and critically discuss their working principles and their advantages and disadvantages. We also provide the detailed material information of emerging printing inks and supporting matrices in recent freeform 3D printing studies. The accompanying challenges are further discussed, aiming to guide freeform 3D printing by the effective design and selection of the most appropriate materials/processes for the development of full-scale functional vascularized artificial tissues.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Tae-Sik Jang
- Department of Materials Science and
Engineering, Chosun University, Gwangju, Republic of Korea
| | - Ginam Han
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, Republic of
Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Chungcheongnam-do, Republic of Korea
- Cell & Matter Institute, Dankook
University, Cheonan, Chungcheongnam-do, Republic of Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do,
Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
64
|
Boys AJ, Barron SL, Tilev D, Owens RM. Building Scaffolds for Tubular Tissue Engineering. Front Bioeng Biotechnol 2020; 8:589960. [PMID: 33363127 PMCID: PMC7758256 DOI: 10.3389/fbioe.2020.589960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing. Production of tubular scaffolds for different tissue engineering applications possesses many commonalities, such as the necessity for producing an intact tubular opening and for formation of semi-permeable epithelia or endothelia. As such, the field has converged on a series of manufacturing techniques for producing these structures. In this review, we discuss some of the most common tissue engineered applications within the context of tubular tissues and the methods by which these structures can be produced. We provide an overview of the general structure and anatomy for these tissue systems along with a series of general design criteria for tubular tissue engineering. We categorize methods for manufacturing tubular scaffolds as follows: casting, electrospinning, rolling, 3D printing, and decellularization. We discuss state-of-the-art models within the context of vascular, intestinal, and tracheal tissue engineering. Finally, we conclude with a discussion of the future for these fields.
Collapse
Affiliation(s)
| | | | | | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
65
|
Wu Y, Wenger A, Golzar H, Tang XS. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Sci Rep 2020; 10:20648. [PMID: 33244046 PMCID: PMC7691334 DOI: 10.1038/s41598-020-77146-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 01/09/2023] Open
Abstract
3D bioprinting of living cellular constructs with heterogeneity in cell types and extra cellular matrices (ECMs) matching those of biological tissues remains challenging. Here, we demonstrate that, through bioink material design, microextrusion-based (ME) bioprinting techniques have the potential to address this challenge. A new bioink employing alginate (1%), cellulose nanocrystal (CNC) (3%), and gelatin methacryloyl (GelMA) (5%) (namely 135ACG hybrid ink) was formulated for the direct printing of cell-laden and acellular architectures. The 135ACG ink displayed excellent shear-thinning behavior and solid-like properties, leading to high printability without cell damage. After crosslinking, the ACG gel can also provide a stiff ECM ideal for stromal cell growth. By controlling the degree of substitution and polymer concentration, a GelMA (4%) bioink was designed to encapsulate hepatoma cells (hepG2), as GelMA gel possesses the desired low mechanical stiffness matching that of human liver tissue. Four different versions of to-scale liver lobule-mimetic constructs were fabricated via ME bioprinting, with precise positioning of two different cell types (NIH/3T3 and hepG2) embedded in matching ECMs (135ACG and GelMA, respectively). The four versions allowed us to exam effects of mechanical cues and intercellular interactions on cell behaviors. Fibroblasts thrived in stiff 135ACG matrix and aligned at the 135ACG/GelMA boundary due to durotaxis, while hepG2 formed spheroids exclusively in the soft GelMA matrix. Elevated albumin production was observed in the bicellular 3D co-culture of hepG2 and NIH/3T3, both with and without direct intercellular contact, indicating that improved hepatic cell function can be attributed to soluble chemical factors. Overall, our results showed that complex constructs with multiple cell types and varying ECMs can be bioprinted and potentially useful for both fundamental biomedical research and translational tissue engineering.
Collapse
Affiliation(s)
- Yun Wu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Andrew Wenger
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
66
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
67
|
Zhou X, Nowicki M, Sun H, Hann SY, Cui H, Esworthy T, Lee JD, Plesniak M, Zhang LG. 3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell Layers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45904-45915. [PMID: 33006880 DOI: 10.1021/acsami.0c14871] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blood vessel damage resulting from trauma or diseases presents a serious risk of morbidity and mortality. Although synthetic vascular grafts have been successfully commercialized for clinical use, they are currently only readily available for large-diameter vessels (>6 mm). Small-diameter vessel (<6 mm) replacements, however, still present significant clinical challenges worldwide. The primary objective of this study is to create novel, tunable, small-diameter blood vessels with biomimetic two distinct cell layers [vascular endothelial cell (VEC) and vascular smooth muscle cell (VSMC)] using an advanced coaxial 3D-bioplotter platform. Specifically, the VSMCs were laden in the vessel wall and VECs grew in the lumen to mimic the natural composition of the blood vessel. First, a novel bioink consisting of VSMCs laden in gelatin methacryloyl (GelMA)/polyethylene(glycol)diacrylate/alginate and lyase was designed. This specific design is favorable for nutrient exchange in an ambient environment and simultaneously improves laden cell proliferation in the matrix pore without the space restriction inherent with substance encapsulation. In the vessel wall, the laden VSMCs steadily grew as the alginate was gradually degraded by lyase leaving more space for cell proliferation in matrices. Through computational fluid dynamics simulation, the vessel demonstrated significantly perfusable and mechanical properties under various flow velocities, flow viscosities, and temperature conditions. Moreover, both VSMCs in the scaffold matrix and VECs in the lumen steadily proliferated over time creating a significant two-cell-layered structure. Cell proliferation was confirmed visually through staining the markers of alpha-smooth muscle actin and cluster of differentiation 31, commonly tied to angiogenesis phenomena, in the vessel matrices and lumen, respectively. Furthermore, the results were confirmed quantitatively through gene analysis which suggested good angiogenesis expression in the blood vessels. This study demonstrated that the printed blood vessels with two distinct cell layers of VECs and VSMCs could be potential candidates for clinical small-diameter blood vessel replacement applications.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Margaret Nowicki
- Department of Civil and Mechanical Engineering, The United States Military Academy, West Point, New York 10996, United States
| | - Hao Sun
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - James D Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Michael Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Biomedical Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Electrical and Computer Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Medicine, The George Washington University, Washington District of Columbia 20052, United States
| |
Collapse
|
68
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
69
|
Wang B, Liu XM, Liu ZN, Wang Y, Han X, Lian AB, Mu Y, Jin MH, Liu JY. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation. World J Stem Cells 2020; 12:462-470. [PMID: 32742563 PMCID: PMC7360986 DOI: 10.4252/wjsc.v12.i6.462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Hair follicles are easily accessible skin appendages that protect against cold and potential injuries. Hair follicles contain various pools of stem cells, such as epithelial, melanocyte, and mesenchymal stem cells (MSCs) that continuously self-renew, differentiate, regulate hair growth, and maintain skin homeostasis. Recently, MSCs derived from the dermal papilla or dermal sheath of the human hair follicle have received attention because of their accessibility and broad differentiation potential. In this review, we describe the applications of human hair follicle-derived MSCs (hHF-MSCs) in tissue engineering and regenerative medicine. We have described protocols for isolating hHF-MSCs from human hair follicles and their culture condition in detail. We also summarize strategies for maintaining hHF-MSCs in a highly proliferative but undifferentiated state after repeated in vitro passages, including supplementation of growth factors, 3D suspension culture technology, and 3D aggregates of MSCs. In addition, we report the potential of hHF-MSCs in obtaining induced smooth muscle cells and tissue-engineered blood vessels, regenerated hair follicles, induced red blood cells, and induced pluripotent stem cells. In summary, the abundance, convenient accessibility, and broad differentiation potential make hHF-MSCs an ideal seed cell source of regenerative medical and cell therapy.
Collapse
Affiliation(s)
- Bo Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Xiao-Mei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Zi-Nan Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Yuan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Xing Han
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Ao-Bo Lian
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Ming-Hua Jin
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Jin-Yu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
70
|
Wang Y, Wang Y, Mei D. Scalable Printing of Bionic Multiscale Channel Networks Through Digital Light Processing-Based Three-Dimensional Printing Process. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:115-125. [PMID: 36655197 PMCID: PMC9586228 DOI: 10.1089/3dp.2020.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Digital light processing (DLP)-based printing process has been used to print microfeature-sized constructs and architectures for biomedical applications; the key challenge is to achieve both large printing size and high accuracy at the same time. Here we reported a scalable DLP-based three-dimensional (3D) printing system with scalable resolution and building size, which was used for printing of multiscale hydrogel fractal bionic channels. Scalable printing was achieved by moving the convex lens of the printing system, and thus, each single micromirror of the digital micromirror device chip corresponded to the single-pixel size scaling from 6 to12 μm. Using this system, we were able to use poly (ethylene glycol) diacrylate to fabricate a variety of multiscale architectures, such as regular fractal Y-shaped channels, and more irregular and intricate geometries, such as biomimetic capillary vascular networks. Blue and red food dye solutions were able to freely fill all these channels in the scaffolds, from the trunk (>1500 μm in width) to small branch (∼30 μm in width) by capillarity. Cell experiments were carried out to certify the biocompatibility of printed multiscale biomimetic channel networks. This work reveals significant progress in printing multiscale constructs with both large printing size and high precision in scalable DLP-based 3D printing.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Department of Aerospace and Mechanical Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Department of Aerospace and Mechanical Engineering, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
71
|
Cui H, Liu C, Esworthy T, Huang Y, Yu ZX, Zhou X, San H, Lee SJ, Hann SY, Boehm M, Mohiuddin M, Fisher JP, Zhang LG. 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. SCIENCE ADVANCES 2020; 6:eabb5067. [PMID: 32637623 PMCID: PMC7314523 DOI: 10.1126/sciadv.abb5067] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 05/20/2023]
Abstract
There has been considerable progress in engineering cardiac scaffolds for the treatment of myocardial infarction (MI). However, it is still challenging to replicate the structural specificity and variability of cardiac tissues using traditional bioengineering approaches. In this study, a four-dimensional (4D) cardiac patch with physiological adaptability has been printed by beam-scanning stereolithography. By combining a unique 4D self-morphing capacity with expandable microstructure, the specific design has been shown to improve both the biomechanical properties of the patches themselves and the dynamic integration of the patch with the beating heart. Our results demonstrate improved vascularization and cardiomyocyte maturation in vitro under physiologically relevant mechanical stimulation, as well as increased cell engraftment and vascular supply in a murine chronic MI model. This work not only potentially provides an effective treatment method for MI but also contributes a cutting-edge methodology to enhance the structural design of complex tissues for organ regeneration.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chengyu Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Yimin Huang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Hong San
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Se-jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad Mohiuddin
- Cardiac Xenotransplantation Program, Department of Surgery, University of Maryland, Baltimore, MD 21201, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC 20052, USA
- Corresponding author.
| |
Collapse
|