51
|
Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2395138. [PMID: 28337445 PMCID: PMC5350344 DOI: 10.1155/2017/2395138] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT), Allogeneic Juvenile Chondrocyte Implantation (NuQu®), and Matrix-Induced Autologous Chondrocyte Implantation (MACI). Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml) and incubation time (1 and 12 h), combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen) of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation.
Collapse
|
52
|
Vedicherla S, Buckley CT. Cell-based therapies for intervertebral disc and cartilage regeneration- Current concepts, parallels, and perspectives. J Orthop Res 2017; 35:8-22. [PMID: 27104885 DOI: 10.1002/jor.23268] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
Lower back pain from degenerative disc disease represents a global health burden, and presents a prominent opportunity for regenerative therapeutics. While current regenerative therapies such as autologous disc chondrocyte transplantation (ADCT), allogeneic juvenile chondrocyte implantation (NuQu®), and immunoselected allogeneic adipose derived precursor cells (Mesoblast) show exciting clinical potential, limitations remain. The heterogeneity of preclinical approaches and the paucity of clinical guidance have limited translational outcomes in disc repair, lagging almost a decade behind cartilage repair. Advances in cartilage repair have evolved to single step approaches with improved orthopedic repair and regeneration. Elements from cartilage regeneration endeavors could be adopted and applied to harness translatable approaches and deliver a clinically and economically feasible regenerative surgery for back pain. In this article, we trace the developments behind the translational success of cartilage repair, examine elements to consider in achieving disc regeneration, and the need for surgical redesign. We further discuss clinical parameters, objectives, and coordination required to deliver improved regenerative surgery. Cell source, processing, and delivery modalities are key issues to be addressed in considering surgical redesign. Advances in biomanufacturing, tissue cryobanking, and point of care cell processing technology may enable intraoperative solutions for single step procedures. To maximize translational success a triad partnership between clinicians, industry, and researchers will be critical in providing instructive clinical guidelines for design as well as practical and economic considerations. This will allow a consensus in research ventures and add regenerative surgery into the algorithm in managing and treating a debilitating condition such as back pain. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:8-22, 2017.
Collapse
Affiliation(s)
- Srujana Vedicherla
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,School of Medicine, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
53
|
Whitehouse MR, Howells NR, Parry MC, Austin E, Kafienah W, Brady K, Goodship AE, Eldridge JD, Blom AW, Hollander AP. Repair of Torn Avascular Meniscal Cartilage Using Undifferentiated Autologous Mesenchymal Stem Cells: From In Vitro Optimization to a First-in-Human Study. Stem Cells Transl Med 2016; 6:1237-1248. [PMID: 28186682 PMCID: PMC5442845 DOI: 10.1002/sctm.16-0199] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 01/01/2023] Open
Abstract
Meniscal cartilage tears are common and predispose to osteoarthritis (OA). Most occur in the avascular portion of the meniscus where current repair techniques usually fail. We described previously the use of undifferentiated autologous mesenchymal stem cells (MSCs) seeded onto a collagen scaffold (MSC/collagen‐scaffold) to integrate meniscal tissues in vitro. Our objective was to translate this method into a cell therapy for patients with torn meniscus, with the long‐term goal of delaying or preventing the onset of OA. After in vitro optimization, we tested an ovine‐MSC/collagen‐scaffold in a sheep meniscal cartilage tear model with promising results after 13 weeks, although repair was not sustained over 6 months. We then conducted a single center, prospective, open‐label first‐in‐human safety study of patients with an avascular meniscal tear. Autologous MSCs were isolated from an iliac crest bone marrow biopsy, expanded and seeded into the collagen scaffold. The resulting human‐MSC/collagen‐scaffold implant was placed into the meniscal tear prior to repair with vertical mattress sutures and the patients were followed for 2 years. Five patients were treated and there was significant clinical improvement on repeated measures analysis. Three were asymptomatic at 24 months with no magnetic resonance imaging evidence of recurrent tear and clinical improvement in knee function scores. Two required subsequent meniscectomy due to retear or nonhealing of the meniscal tear at approximately 15 months after implantation. No other adverse events occurred. We conclude that undifferentiated MSCs could provide a safe way to augment avascular meniscal repair in some patients. Registration: EU Clinical Trials Register, 2010‐024162‐22. Stem Cells Translational Medicine2017;6:1237–1248
Collapse
Affiliation(s)
- Michael R Whitehouse
- Musculoskeletal Research Unit, School of Clinical Sciences.,Avon Orthopaedic Centre, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Nicholas R Howells
- Musculoskeletal Research Unit, School of Clinical Sciences.,Avon Orthopaedic Centre, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Michael C Parry
- Musculoskeletal Research Unit, School of Clinical Sciences.,Orthopaedic Oncology Unit, Royal Orthopaedic Hospital, Birmingham, United Kingdom
| | - Eric Austin
- CMT Laboratory, NHS Blood and Transplant, Speke, Liverpool, United Kingdom
| | - Wael Kafienah
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kyla Brady
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Allen E Goodship
- Institute of Orthopaedics, University College London, United Kingdom
| | - Jonathan D Eldridge
- Avon Orthopaedic Centre, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom.,Department of Orthopaedics, Bristol Royal Infirmary, University Hospitals Bristol, Bristol, United Kingdom
| | - Ashley W Blom
- Musculoskeletal Research Unit, School of Clinical Sciences.,Avon Orthopaedic Centre, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Anthony P Hollander
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Azellon Ltd, London, United Kingdom
| |
Collapse
|
54
|
Kondiah PJ, Choonara YE, Kondiah PPD, Marimuthu T, Kumar P, du Toit LC, Pillay V. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering. Molecules 2016; 21:E1580. [PMID: 27879635 PMCID: PMC6272998 DOI: 10.3390/molecules21111580] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
Collapse
Affiliation(s)
- Pariksha J Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
55
|
Chiu LLY, To WTH, Lee JM, Waldman SD. Scaffold-free cartilage tissue engineering with a small population of human nasoseptal chondrocytes. Laryngoscope 2016; 127:E91-E99. [PMID: 27861930 DOI: 10.1002/lary.26396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Cartilage tissue engineering is a promising approach to provide suitable materials for nasal reconstruction; however, it typically requires large numbers of cells. We have previously shown that a small number of chondrocytes cultivated within a continuous flow bioreactor can elicit substantial tissue growth, but translation to human chondrocytes is not trivial. Here, we aimed to demonstrate the application of the bioreactor to generate large-sized tissues from a small population of primary human nasoseptal chondrocytes. STUDY DESIGN Experimental study. METHODS Chondrocytes were cultured in the bioreactor using different medium compositions, with varying amounts of serum and with or without growth factors. Resulting engineered tissues were analyzed for physical properties, biochemical composition, tissue microstructure, and protein localization. RESULTS Bioreactor-cultivated constructs grown with serum and growth factors (basic fibroblast growth factor and transforming growth factor beta 2) had greater thickness, as well as DNA and glycosaminoglycan (GAG) contents, compared to low serum and no growth factor controls. These constructs also showed the most intense proteoglycan and collagen II staining. CONCLUSION The combination of bioreactor conditions, serum, and growth factors allowed the generation of large, thick scaffold-free human cartilaginous tissues that resembled the native nasoseptal cartilage. There also may be implications for patient selection in future clinical applications of these engineered tissues because their GAG content decreased with donor age. LEVEL OF EVIDENCE NA. Laryngoscope, 127:E91-E99, 2017.
Collapse
Affiliation(s)
- Loraine L Y Chiu
- Department of Chemical Engineering, Ryerson University, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Ontario, Canada
| | - William T H To
- Department of Otolaryngology-Head and Neck Surgery, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - John M Lee
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Ontario, Canada.,Department of Otolaryngology-Head and Neck Surgery, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Ryerson University, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Ontario, Canada
| |
Collapse
|
56
|
Mumme M, Steinitz A, Nuss KM, Klein K, Feliciano S, Kronen P, Jakob M, von Rechenberg B, Martin I, Barbero A, Pelttari K. Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects. Tissue Eng Part A 2016; 22:1286-1295. [DOI: 10.1089/ten.tea.2016.0159] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marcus Mumme
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
- Clinic for Traumatologic Surgery, University Hospital of Basel, Basel, Switzerland
| | - Amir Steinitz
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
- Clinic for Traumatologic Surgery, University Hospital of Basel, Basel, Switzerland
| | - Katja M. Nuss
- Musculoskeletal Research Unit (MSRU), Equine Department, University of Zurich, Zürich, Switzerland
| | - Karina Klein
- Musculoskeletal Research Unit (MSRU), Equine Department, University of Zurich, Zürich, Switzerland
| | - Sandra Feliciano
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Peter Kronen
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zürich, Switzerland
- Veterinary Anaesthesia Services–International (VAS), Winterthur, Switzerland
| | - Marcel Jakob
- Clinic for Traumatologic Surgery, University Hospital of Basel, Basel, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Equine Department, University of Zurich, Zürich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zürich, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
57
|
Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, Asnaghi AM, Baumhoer D, Bieri O, Kretzschmar M, Pagenstert G, Haug M, Schaefer DJ, Martin I, Jakob M. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet 2016; 388:1985-1994. [PMID: 27789021 DOI: 10.1016/s0140-6736(16)31658-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. METHODS In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm2) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. FINDINGS For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of defect filling and development of repair tissue approaching the composition of native cartilage. INTERPRETATION Hyaline-like cartilage tissues, engineered from autologous nasal chondrocytes, can be used clinically for repair of articular cartilage defects in the knee. Future studies are warranted to assess efficacy in large controlled trials and to investigate an extension of indications to early degenerative states or to other joints. FUNDING Deutsche Arthrose-Hilfe.
Collapse
Affiliation(s)
- Marcus Mumme
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sylvie Miot
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anke Wixmerten
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandra Feliciano
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Francine Wolf
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adelaide M Asnaghi
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniel Baumhoer
- Department of Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin Kretzschmar
- Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Geert Pagenstert
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin Haug
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Marcel Jakob
- Department of Surgery and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
58
|
Bardsley K, Kwarciak A, Freeman C, Brook I, Hatton P, Crawford A. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes. Biomaterials 2016; 112:313-323. [PMID: 27770634 DOI: 10.1016/j.biomaterials.2016.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The regeneration of large bone defects remains clinically challenging. The aim of our study was to use a rat model to use nasal chondrocytes to engineer a hypertrophic cartilage tissue which could be remodelled into bone in vivo by endochondral ossification. Primary adult rat nasal chondrocytes were isolated from the nasal septum, the cell numbers expanded in monolayer culture and the cells cultured in vitro on polyglycolic acid scaffolds in chondrogenic medium for culture periods of 5-10 weeks. Hypertrophic differentiation was assessed by determining the temporal expression of key marker genes and proteins involved in hypertrophic cartilage formation. The temporal changes in the genes measured reflected the temporal changes observed in the growth plate. Collagen II gene expression increased 6 fold by day 7 and was then significantly downregulated from day 14 onwards. Conversely, collagen X gene expression was detectable by day 14 and increased 100-fold by day 35. The temporal increase in collagen X expression was mirrored by increases in alkaline phosphatase gene expression which also was detectable by day 14 with a 30-fold increase in gene expression by day 35. Histological and immunohistochemical analysis of the engineered constructs showed increased chondrocyte cell volume (31-45 μm), deposition of collagen X in the extracellular matrix and expression of alkaline phosphatase activity. However, no cartilage mineralisation was observed in in vitro culture of up to 10 weeks. On subcutaneous implantation of the hypertrophic engineered constructs, the grafts became vascularised, cartilage mineralisation occurred and loss of the proteoglycan in the matrix was observed. Implantation of the hypertrophic engineered constructs into a rat cranial defect resulted in angiogenesis, mineralisation and remodelling of the cartilage tissue into bone. Micro-CT analysis indicated that defects which received the engineered hypertrophic constructs showed 38.48% in bone volume compared to 7.01% in the control defects. Development of tissue engineered hypertrophic cartilage to use as a bone graft substitute is an exciting development in regenerative medicine. This is a proof of principal study demonstrating the potential of nasal chondrocytes to engineer hypertrophic cartilage which will remodel into bone on in vivo transplantation. This approach to making engineered hypertrophic cartilage grafts could form the basis of a new potential future clinical treatment for maxillofacial reconstruction.
Collapse
Affiliation(s)
- Katie Bardsley
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK; Guy Hilton Research Centre, University of Keele, Staffordshire, ST4 7QB, UK
| | - Agnieska Kwarciak
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, Aviation House, 125 Kingsway, London, WC2B 6NH, UK
| | - Christine Freeman
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Ian Brook
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Paul Hatton
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Aileen Crawford
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK.
| |
Collapse
|
59
|
Watson D, Reuther MS, Wong VW, Sah RL, Masuda K, Briggs KK. Effect of hyaluronidase on tissue-engineered human septal cartilage. Laryngoscope 2016; 126:1984-9. [PMID: 27297023 DOI: 10.1002/lary.25720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Structural properties of tissue-engineered cartilage can be optimized by altering its collagen to sulfated glycosaminoglycan (sGAG) ratio with hyaluronidase. The objective was to determine if treatment of neocartilage constructs with hyaluronidase leads to increased collagen:sGAG ratios, as seen in native tissue, and improved tensile properties. STUDY DESIGN Prospective, basic science. METHODS Engineered human septal cartilage from 12 patients was treated with hyaluronidase prior to culture. Control and treated constructs were analyzed at 3, 6, or 9 weeks for their biochemical, biomechanical, and histological properties. RESULTS Levels of sGAG were significantly reduced in treated constructs when compared with control constructs at 3, 6, and 9 weeks. Treated constructs had higher collagen:sGAG ratios when compared with control constructs at 3, 6, and 9 weeks. Treated constructs had greater tensile strength, strain at failure, and increased stiffness as measured by the equilibrium and ramp tensile moduli when compared with the untreated control constructs. Continued time in culture improved tensile strength in both treated and control constructs. CONCLUSION Hyaluronidase treatment of engineered septal cartilage decreased total sGAG content without inhibiting expansive growth of the constructs. Decreased sGAG in treated constructs resulted in increased collagen to sGAG ratios and was associated with an increase in tensile strength and stiffness. With additional culture time, sGAG increased modestly in depleted constructs, and some initial gains in tensile properties were dampened. Alterations in the dosage of hyalurondiase during neocartilage fabrication can create constructs that have improved biomechanical properties for eventual surgical implantation. LEVEL OF EVIDENCE NA. Laryngoscope, 126:1984-1989, 2016.
Collapse
Affiliation(s)
- Deborah Watson
- Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla.,Head and Neck Surgery Section, VA San Diego Healthcare System, San Diego, California, U.S.A
| | - Marsha S Reuther
- Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla.,Head and Neck Surgery Section, VA San Diego Healthcare System, San Diego, California, U.S.A
| | - Van W Wong
- Department of Bioengineering, University of California, San Diego, La Jolla
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, La Jolla
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla
| | - Kristen K Briggs
- Department of Bioengineering, University of California, San Diego, La Jolla
| |
Collapse
|
60
|
Hicks DL, Sage AB, Shelton E, Schumacher BL, Sah RL, Watson D. Effect of bone morphogenetic proteins 2 and 7 on septal chondrocytes in alginate. Otolaryngol Head Neck Surg 2016; 136:373-9. [DOI: 10.1016/j.otohns.2006.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 10/30/2006] [Indexed: 11/24/2022]
Abstract
Objective To determine the effects of bone morphogenetic proteins (BMP)-2 and −7, and serum, on extracellular matrix production by human septal chondrocytes in alginate. Study Design Human nasal septal chondrocytes were expanded, suspended in alginate, and cultured in BMP-2 or 7, with and without serum. The optimal concentration of each growth factor was determined based on matrix production. Next, the synergistic effects of BMP-2 and −7 at optimal concentrations were determined on separate beads, based on matrix quantity and histology. Results Matrix content was highest with concentrations of BMP-2 and −7 of 100 ng/ml and 20 ng/ml, respectively, with serum. Adding both BMP-2 and −7, with serum, increased matrix content by factors of 5.1 versus serum-only cultures, 2.7 versus only BMP-2 with serum, and 2.4 versus only BMP-7 with serum. All comparisons were statistically significant. Conclusion BMP-2 and −7 significantly increase production of extracellular matrix by septal chondrocytes suspended in alginate. The presence of serum improves matrix production. Significance BMP-2 and −7 have great potential for use in cartilage tissue engineering.
Collapse
Affiliation(s)
- David L. Hicks
- Division of Head and Neck Surgery, University of California, San Diego and San Diego Veterans Affairs Healthcare System, San Diego, CA (Drs Hicks, and Watson)
| | - August B. Sage
- Department of Bioengineering, University of California, San Diego, San Diego, CA (Messrs Sage and Shelton, Ms Schumacher, and Dr Sah)
| | - Elliot Shelton
- Department of Bioengineering, University of California, San Diego, San Diego, CA (Messrs Sage and Shelton, Ms Schumacher, and Dr Sah)
| | - Barbara L. Schumacher
- Department of Bioengineering, University of California, San Diego, San Diego, CA (Messrs Sage and Shelton, Ms Schumacher, and Dr Sah)
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, San Diego, CA (Messrs Sage and Shelton, Ms Schumacher, and Dr Sah)
| | - Deborah Watson
- Division of Head and Neck Surgery, University of California, San Diego and San Diego Veterans Affairs Healthcare System, San Diego, CA (Drs Hicks, and Watson)
| |
Collapse
|
61
|
Cigan AD, Roach BL, Nims RJ, Tan AR, Albro MB, Stoker AM, Cook JL, Vunjak-Novakovic G, Hung CT, Ateshian GA. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. J Biomech 2016; 49:1909-1917. [PMID: 27198889 DOI: 10.1016/j.jbiomech.2016.04.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes.
Collapse
Affiliation(s)
- Alexander D Cigan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Brendan L Roach
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robert J Nims
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Andrea R Tan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Michael B Albro
- Department of Materials, Imperial College London, London, UK
| | | | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
62
|
Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Ann Biomed Eng 2016; 45:100-114. [DOI: 10.1007/s10439-016-1609-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/02/2016] [Indexed: 12/19/2022]
|
63
|
Nazempour A, Van Wie BJ. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine. Ann Biomed Eng 2016; 44:1325-54. [PMID: 26987846 DOI: 10.1007/s10439-016-1575-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.
Collapse
Affiliation(s)
- A Nazempour
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA
| | - B J Van Wie
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
64
|
Cartilage Regeneration in the Head and Neck Area: Combination of Ear or Nasal Chondrocytes and Mesenchymal Stem Cells Improves Cartilage Production. Plast Reconstr Surg 2016; 136:762e-774e. [PMID: 26267395 DOI: 10.1097/prs.0000000000001812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cartilage tissue engineering can offer promising solutions for restoring cartilage defects in the head and neck area and has the potential to overcome limitations of current treatments. However, to generate a construct of reasonable size, large numbers of chondrocytes are required, which limits its current applicability. Therefore, the authors evaluate the suitability of a combination of cells for cartilage regeneration: bone marrow-derived mesenchymal stem cells and ear or nasal chondrocytes. METHODS Human bone marrow-derived mesenchymal stem cells were encapsulated in alginate hydrogel as single-cell-type populations or in combination with bovine ear chondrocytes or nasal chondrocytes at an 80:20 ratio. Constructs were either cultured in vitro or implanted directly subcutaneously into mice. Cartilage formation was evaluated with biochemical and biomechanical analyses. The use of a xenogeneic coculture system enabled the analyses of the contribution of the individual cell types using species-specific gene-expression analyses. RESULTS In vivo, human bone marrow-derived mesenchymal stem cells/bovine ear chondrocytes or human bone marrow-derived mesenchymal stem cells/bovine nasal chondrocytes contained amounts of cartilage components similar to those of constructs containing chondrocytes only (i.e., bovine ear and nasal chondrocytes). In vitro, species-specific gene-expression analyses demonstrated that aggrecan was expressed by the chondrocytes only, which suggests a more trophic role for human bone marrow-derived mesenchymal stem cells. Furthermore, the additional effect of human bone marrow-derived mesenchymal stem cells was more pronounced in combination with bovine nasal chondrocytes. CONCLUSIONS By supplementing low numbers of bovine ear or nasal chondrocytes with human bone marrow-derived mesenchymal stem cells, the authors were able to engineer cartilage constructs with properties similar to those of constructs containing chondrocytes only. This makes the procedure more feasible for future applicability in the reconstruction of cartilage defects in the head and neck area because fewer chondrocytes are required.
Collapse
|
65
|
Martínez Ávila H, Schwarz S, Rotter N, Gatenholm P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bprint.2016.08.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
66
|
Elsaesser AF, Schwarz S, Joos H, Koerber L, Brenner RE, Rotter N. Characterization of a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features and their potential for in vivo cartilage regeneration strategies. Cell Biosci 2016; 6:11. [PMID: 26877866 PMCID: PMC4752797 DOI: 10.1186/s13578-016-0078-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Background Progenitor cells display interesting features for tissue repair and reconstruction. In the last years, such cells have been identified in different cartilage types. In this study, we isolated a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features by outgrowth from human nasal septum cartilage. These putative progenitor cells were comparatively characterized with mesenchymal stem cells (MSC) and human nasal septum chondrocytes with respect to their cellular characteristics as well as surface marker profile using flow cytometric analyses. Differentiation capacity was evaluated on protein and gene expression levels. Results The migrative subpopulation differentiated into osteogenic and chondrogenic lineages with distinct differences to chondrocytes and MSC. Cells of the migrative subpopulation showed an intermediate surface marker profile positioned between MSC and chondrocytes. Significant differences were found for CD9, CD29, CD44, CD90, CD105 and CD106. The cells possessed a high migratory ability in a Boyden chamber assay and responded to chemotactic stimulation. To evaluate their potential use in tissue engineering applications, a decellularized septal cartilage matrix was either seeded with cells from the migrative subpopulation or chondrocytes. Matrix production was demonstrated immunohistochemically and verified on gene expression level. Along with secretion of matrix metalloproteinases, cells of the migrative subpopulation migrated faster into the collagen matrix than chondrocytes, while synthesis of cartilage specific matrix was comparable. Conclusions Cells of the migrative subpopulation, due to their migratory characteristics, are a potential cell source for in vivo regeneration of nasal cartilage. The in vivo mobilization of nasal cartilage progenitor cells is envisioned to be the basis for in situ tissue engineering procedures, aiming at the use of unseeded biomaterials which are able to recruit local progenitor cells for cartilage regeneration.
Collapse
Affiliation(s)
- A F Elsaesser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - S Schwarz
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - H Joos
- Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | - L Koerber
- Department of Chemical and Biological Engineering, Institute of Bioprocess Engineering, University of Erlangen, Erlangen, Germany
| | - R E Brenner
- Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | - N Rotter
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| |
Collapse
|
67
|
Lehmann R, Gallert C, Roddelkopf T, Junginger S, Jonitz-Heincke A, Wree A, Thurow K. Manually and automatically produced pellet cultures of human primary chondrocytes: A comparative analysis. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ricarda Lehmann
- Center for Life Science Automation (celisca); University of Rostock; Rostock Germany
| | - Carolin Gallert
- Center for Life Science Automation (celisca); University of Rostock; Rostock Germany
| | - Thomas Roddelkopf
- Center for Life Science Automation (celisca); University of Rostock; Rostock Germany
| | | | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory; University Medicine Rostock; Rostock Germany
| | - Andreas Wree
- Institute of Anatomy; University Medicine Rostock; Rostock Germany
| | - Kerstin Thurow
- Center for Life Science Automation (celisca); University of Rostock; Rostock Germany
| |
Collapse
|
68
|
Shafiee A, Kabiri M, Langroudi L, Soleimani M, Ai J. Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. J Biomed Mater Res A 2015; 104:600-610. [PMID: 26507473 DOI: 10.1002/jbm.a.35603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Cell-based therapy is being considered as a promising approach to regenerate damaged cartilage. Though, autologous chondrocyte implantation is the most effective strategy currently in use, but is hampered by some drawbacks seeking comprehensive research to surmount existing limitations or introducing alternative cell sources. In this study, we aimed to evaluate and compare the in vitro characteristics and chondrogenic capacity of some easily available adult cell sources for use in cartilage repair which includes: bone marrow-derived mesenchymal stem cells (MSC), adipose tissue-derived MSC, articular chondrocyte progenitors, and nasal septum-derived progenitors. Human stem/progenitor cells were isolated and expanded. Cell's immunophenotype, biosafety, and cell cycle status were evaluated. Also, cells were seeded onto aligned electrospun poly (l-lactic acid)/poly (ε-caprolactone) nanofibrous scaffolds and their proliferation rate as well as chondrogenic potential were assessed. Cells were almost phenotypically alike as they showed similar cell surface marker expression pattern. The aligned nanofibrous hybrid scaffolds could support the proliferation and chondrogenic differentiation of all cell types. However, nasal cartilage progenitors showed a higher proliferation potential and a higher chondrogenic capacity. Though, mostly similar in the majority of the studied features, nasal septum progenitors demonstrated a higher chondrogenic potential that in combination with their higher proliferation rate and easier access to the source tissue, introduces it as a promising cell source for cartilage tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 600-610, 2016.
Collapse
Affiliation(s)
- Abbas Shafiee
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Stem Cell Biology and Tissue Engineering Department, Stem Cell Technology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Mahboubeh Kabiri
- Stem Cell Biology and Tissue Engineering Department, Stem Cell Technology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Lida Langroudi
- Stem Cell Biology and Tissue Engineering Department, Stem Cell Technology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Barandun M, Iselin LD, Santini F, Pansini M, Scotti C, Baumhoer D, Bieri O, Studler U, Wirz D, Haug M, Jakob M, Schaefer DJ, Martin I, Barbero A. Generation and characterization of osteochondral grafts with human nasal chondrocytes. J Orthop Res 2015; 33:1111-9. [PMID: 25994595 DOI: 10.1002/jor.22865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/08/2015] [Indexed: 02/04/2023]
Abstract
We investigated whether nasal chondrocytes (NC) can be used to generate composite constructs with properties necessary for the repair of osteochondral (OC) lesions, namely maturation, integration and capacity to recover from inflammatory burst. OC grafts were fabricated by combining engineered cartilage tissues (generated by culturing NC or articular chondrocytes - AC - onto Chondro-Gide® matrices) with devitalized spongiosa cylinders (Tutobone®). OC tissues were then exposed to IL-1β for three days and cultured for additional 2 weeks in the absence of IL-1β. Cartilage maturation extent was assessed (immune) histologically, biochemically and by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) while cartilage/bone integration was assessed using a peel-off mechanical test. The use of NC as compared to AC allowed for more efficient cartilage matrix accumulation and superior integration of the cartilage/bone layers. dGEMRIC and biochemical analyzes of the OC constructs showed a reduced glycosaminoglycan (GAG) contents upon IL-1β administration. Cartilaginous matrix contents and integration forces returned to baseline up on withdrawal of IL-1β. By having a cartilage layer well developed and strongly integrated to the subchondral layer, OC tissues generated with NC may successfully engraft in an inflammatory post-surgery joint environment.
Collapse
Affiliation(s)
- Marina Barandun
- Departments of Surgery and of Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Lukas Daniel Iselin
- Departments of Surgery and of Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Francesco Santini
- Department of Radiology, Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland
| | - Michele Pansini
- Department of Radiology, Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland
| | | | - Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of Pathology, Basel University Hospital, Basel, Switzerland
| | - Oliver Bieri
- Department of Radiology, Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland
| | - Ueli Studler
- Department of Radiology, Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland
| | - Dieter Wirz
- Laboratory for Biomechanics and Biocalorimetry, Biozentrum- Pharmazentrum, University of Basel, Basel, Switzerland.,Orthomerian, postCode, 4054, Basel, Switzerland
| | - Martin Haug
- Departments of Surgery and of Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Marcel Jakob
- Departments of Surgery and of Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Dirk Johannes Schaefer
- Departments of Surgery and of Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Departments of Surgery and of Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Andrea Barbero
- Departments of Surgery and of Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
70
|
Pelttari K, Pippenger B, Mumme M, Feliciano S, Scotti C, Mainil-Varlet P, Procino A, von Rechenberg B, Schwamborn T, Jakob M, Cillo C, Barbero A, Martin I. Adult human neural crest-derived cells for articular cartilage repair. Sci Transl Med 2015; 6:251ra119. [PMID: 25163479 DOI: 10.1126/scitranslmed.3009688] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In embryonic models and stem cell systems, mesenchymal cells derived from the neuroectoderm can be distinguished from mesoderm-derived cells by their Hox-negative profile--a phenotype associated with enhanced capacity of tissue regeneration. We investigated whether developmental origin and Hox negativity correlated with self-renewal and environmental plasticity also in differentiated cells from adults. Using hyaline cartilage as a model, we showed that adult human neuroectoderm-derived nasal chondrocytes (NCs) can be constitutively distinguished from mesoderm-derived articular chondrocytes (ACs) by lack of expression of specific HOX genes, including HOXC4 and HOXD8. In contrast to ACs, serially cloned NCs could be continuously reverted from differentiated to dedifferentiated states, conserving the ability to form cartilage tissue in vitro and in vivo. NCs could also be reprogrammed to stably express Hox genes typical of ACs upon implantation into goat articular cartilage defects, directly contributing to cartilage repair. Our findings identify previously unrecognized regenerative properties of HOX-negative differentiated neuroectoderm cells in adults, implying a role for NCs in the unmet clinical challenge of articular cartilage repair. An ongoing phase 1 clinical trial preliminarily indicated the safety and feasibility of autologous NC-based engineered tissues for the treatment of traumatic articular cartilage lesions.
Collapse
Affiliation(s)
- Karoliina Pelttari
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Benjamin Pippenger
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Marcus Mumme
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sandra Feliciano
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Celeste Scotti
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy
| | - Pierre Mainil-Varlet
- AGINKO Research AG, Route de l'ancienne Papeterie, P. O. Box 30, 1723 Marly, Switzerland
| | - Alfredo Procino
- Department of Medicine and Surgery, Federico II Medical School, Via S. Pansini 5, 80131 Napoli, Italy
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Equine Hospital, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | | | - Marcel Jakob
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Clemente Cillo
- Department of Medicine and Surgery, Federico II Medical School, Via S. Pansini 5, 80131 Napoli, Italy
| | - Andrea Barbero
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Ivan Martin
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| |
Collapse
|
71
|
Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing. Plast Reconstr Surg 2015; 135:451-458. [PMID: 25357157 DOI: 10.1097/prs.0000000000000856] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tissue engineering strategies hold promise for the restoration of damaged cartilage. However, the results of most studies report irregularly shaped beads of cartilage, which are not precise enough. Thus, a precise shape of cartilage graft must be taken into consideration. The goal of this study was to develop a simple method of creating a precisely predetermined nasal alar shape with the aid of three-dimensional printing. METHODS Lower lateral cartilage from cadavers was observed and scanned by computed tomography. Molds of the lower lateral cartilage were achieved by using three-dimensional printing. Human nasal cartilage was obtained and chondrocytes were harvested. Then, the mixture of cells and poly(glycolic acid)/poly-L-lactic acid was cultured in vitro and implanted into the subcutaneous tissue of nude mice. RESULTS After subcutaneous implantation, the length and width of the samples were measured, and the results were not statistically significantly different from the native lower lateral cartilage (p > 0.05). Their thickness was measured and the results were statistically different from the native lower lateral cartilage (p < 0.05). Histologic examination of the engineered constructs revealed that both the cell and tissue morphologic features of engineered cartilage were similar to those of native lower lateral cartilage. The biomechanical properties of the engineered cartilage exceeded those of native cartilage. CONCLUSIONS This study demonstrates that three-dimensional printing-aided tissue engineering can achieve precise three-dimensional shapes of human nasal alar cartilage. To our knowledge, this is the first reported creation of a precise nasal alar cartilage with a tissue-engineering strategy and three-dimensional printing technique.
Collapse
|
72
|
Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 2015; 84:107-22. [PMID: 25174307 DOI: 10.1016/j.addr.2014.08.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW The reconstruction of cartilaginous craniofacial defects is ideally performed with analogous grafting material, such as autologous tissue. However, the use of autologous cartilage is limited by its finite availability and potentially suboptimal geometry to repair specific defects. Tissue engineering of human cartilage may provide the adequate supply of grafting and implant material for the reconstruction of cartilaginous facial defects. An update of the various cartilage tissue engineering methodologies is provided in this review. RECENT FINDINGS The cartilage tissue engineering paradigm begins with the harvest of a small septal cartilage donor specimen. This is followed by the isolation and subsequent proliferation of chondrocytes and the seeding of these cells onto three-dimensional scaffolds. Neocartilage is created as pericellular substrate, is produced by the cells and deposited throughout the scaffold. Theoretically, the mature cartilage construct can be introduced back into the same patient for reconstruction of craniofacial defects. Initial steps of the cartilage tissue engineering protocol have been standardized; however, modifications of subsequent steps have shown the potential to profoundly impact tissue composition and strength, bringing the properties of cartilage constructs closer to those of native human septum. SUMMARY The ability to engineer virtually limitless quantities of autologous cartilage could have a profound impact on facial plastic and reconstructive surgery. The strategies used to refine human cartilage culture techniques have successfully produced neocartilage constructs with biochemical and biomechanical properties approaching those of native septal tissue. With the steady progress achieved in recent years, there is great capacity for the proximate realization of surgically implantable tissue-engineered cartilage constructs.
Collapse
|
74
|
Kim YS, Shin YS, Park DY, Choi JW, Park JK, Kim DH, Kim CH, Park SA. The Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty. Ann Biomed Eng 2015; 43:2153-62. [DOI: 10.1007/s10439-015-1261-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/17/2015] [Indexed: 01/01/2023]
|
75
|
Sharma A, Janus JR, Hamilton GS. Regenerative medicine and nasal surgery. Mayo Clin Proc 2015; 90:148-58. [PMID: 25572199 DOI: 10.1016/j.mayocp.2014.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/13/2023]
Abstract
Nasal surgery is a constellation of operations that are intended to restore form and function to the nose. The amount of augmentation required for a given case is a delicate interplay between patient aesthetic desires and corrective measures taken for optimal nasal airflow. Traditional surgical techniques make use of autologous donor tissue or implanted alloplastic materials to restore nasal deficits. Limited availability of donor tissue and associated harvest site morbidity have pushed surgeons and researchers to investigate methods to bioengineer nasal tissues. For this article, we conducted a review of the literature on regenerative medicine as it pertains to nasal surgery. PubMed was searched for articles dating from January 1, 1994, through August 1, 2014. Journal articles with a focus on regenerative medicine and nasal tissue engineering are included in this review. Our search found that the greatest advancements have been in the fields of mucosal and cartilage regeneration, with a growing body of literature to attest to its promise. With recent advances in bioscaffold fabrication, bioengineered cartilage quality, and mucosal regeneration, the transition from comparative animal models to more expansive human studies is imminent. Each of these advancements has exciting implications for treating patients with increased efficacy, safety, and satisfaction.
Collapse
Affiliation(s)
- Ayushman Sharma
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, Mayo Clinic, Rochester, MN
| | - Jeffrey R Janus
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, Mayo Clinic, Rochester, MN
| | - Grant S Hamilton
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|
76
|
Abstract
Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort.
Collapse
Affiliation(s)
- Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, 218, Hawthorn, Melbourne, VIC, 3122, Australia.
| |
Collapse
|
77
|
Yang SR, Peng S, Ko CY, Chu IM. The effects of different molecular weight chondroitin-4-sulfates in chondrocyte pellet culture. Cytotechnology 2014; 68:371-9. [PMID: 25283267 DOI: 10.1007/s10616-014-9788-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/18/2014] [Indexed: 12/21/2022] Open
Abstract
For this study, we cultured chondrocyte pellets in Dulbecco's modified Eagle's medium plus a 2 % fetal bovine serum medium, and treated them with 2- to 8-mer oligosaccharides of chondroitin sulfate A to examine the effects of these oligosaccharides on the differentiation and protection of chondrocytes. We found low-molecular-weight CSAs to increase the ratio of the gene expression levels of collagen II/collagen I of chondrocytes from the first day up to 14 days after culture compared with those under a CSA-free medium. Moreover, low-molecular-weight CSAs inhibited the expression of matrix metalloproteinases and peptidases, and stimulated an endogenous tissue inhibitor of metalloproteinases. The dp-8 (8-mer) CSA yielded the most effective response among promoting collagen type II protein secretions compared with other groups.
Collapse
Affiliation(s)
- Shu-Rui Yang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Sydney Peng
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Chao-Yin Ko
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
78
|
Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, Wolf F, Jundt G, Marsano A, Farhadi J, Heberer M, Jakob M, Schaefer DJ, Martin I. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 2014; 384:337-46. [PMID: 24726477 DOI: 10.1016/s0140-6736(14)60544-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Autologous native cartilage from the nasal septum, ear, or rib is the standard material for surgical reconstruction of the nasal alar lobule after two-layer excision of non-melanoma skin cancer. We assessed whether engineered autologous cartilage grafts allow safe and functional alar lobule restoration. METHODS In a first-in-human trial, we recruited five patients at the University Hospital Basel (Basel, Switzerland). To be eligible, patients had to be aged at least 18 years and have a two-layer defect (≥50% size of alar subunit) after excision of non-melanoma skin cancer on the alar lobule. Chondrocytes (isolated from a 6 mm cartilage biopsy sample from the nasal septum harvested under local anaesthesia during collection of tumour biopsy sample) were expanded, seeded, and cultured with autologous serum onto collagen type I and type III membranes in the course of 4 weeks. The resulting engineered cartilage grafts (25 mm × 25 mm × 2 mm) were shaped intra-operatively and implanted after tumour excision under paramedian forehead or nasolabial flaps, as in standard reconstruction with native cartilage. During flap refinement after 6 months, we took biopsy samples of repair tissues and histologically analysed them. The primary outcomes were safety and feasibility of the procedure, assessed 12 months after reconstruction. At least 1 year after implantation, when reconstruction is typically stabilised, we assessed patient satisfaction and functional outcomes (alar cutaneous sensibility, structural stability, and respiratory flow rate). FINDINGS Between Dec 13, 2010, and Feb 6, 2012, we enrolled two women and three men aged 76-88 years. All engineered grafts contained a mixed hyaline and fibrous cartilage matrix. 6 months after implantation, reconstructed tissues displayed fibromuscular fatty structures typical of the alar lobule. After 1 year, all patients were satisfied with the aesthetic and functional outcomes and no adverse events had been recorded. Cutaneous sensibility and structural stability of the reconstructed area were clinically satisfactory, with adequate respiratory function. INTERPRETATION Autologous nasal cartilage tissues can be engineered and clinically used for functional restoration of alar lobules. Engineered cartilage should now be assessed for other challenging facial reconstructions. FUNDING Foundation of the Department of Surgery, University Hospital Basel; and Krebsliga beider Basel.
Collapse
Affiliation(s)
- Ilario Fulco
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sylvie Miot
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin D Haug
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Andrea Barbero
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anke Wixmerten
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandra Feliciano
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Francine Wolf
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gernot Jundt
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anna Marsano
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jian Farhadi
- Department of Plastic Surgery, Guy's and St Thomas' Hospital, London, UK
| | - Michael Heberer
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marcel Jakob
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
79
|
Elsaesser AF, Bermueller C, Schwarz S, Koerber L, Breiter R, Rotter N. In Vitro Cytotoxicity and In Vivo Effects of a Decellularized Xenogeneic Collagen Scaffold in Nasal Cartilage Repair. Tissue Eng Part A 2014; 20:1668-78. [DOI: 10.1089/ten.tea.2013.0365] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Christian Bermueller
- Klinikum Frankfurt Hoechst, Department of Otorhinolaryngology, Head and Neck Surgery, Frankfurt, Germany
| | - Silke Schwarz
- Department of Otorhinolaryngology, University Medical Center Ulm, Ulm, Germany
| | - Ludwig Koerber
- Department of Chemical and Biological Engineering, Institute of Bioprocess Engineering, University of Erlangen, Erlangen, Germany
| | - Roman Breiter
- Department of Chemical and Biological Engineering, Institute of Bioprocess Engineering, University of Erlangen, Erlangen, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
80
|
Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:596-608. [PMID: 24749845 DOI: 10.1089/ten.teb.2013.0771] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regenerative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs) were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs; however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue engineering can become a front-line technology for successful articular cartilage regeneration are highlighted.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio
| | | | | | | |
Collapse
|
81
|
Collagen scaffolds with controlled insulin release and controlled pore structure for cartilage tissue engineering. BIOMED RESEARCH INTERNATIONAL 2014; 2014:623805. [PMID: 24719877 PMCID: PMC3955680 DOI: 10.1155/2014/623805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/20/2014] [Indexed: 12/17/2022]
Abstract
Controlled and local release of growth factors and nutrients from porous scaffolds is important for maintenance of cell survival, proliferation, and promotion of tissue regeneration. The purpose of the present research was to design a controlled release porous collagen-microbead hybrid scaffold with controlled pore structure capable of releasing insulin for application to cartilage tissue regeneration. Collagen-microbead hybrid scaffold was prepared by hybridization of insulin loaded PLGA microbeads with collagen using a freeze-drying technique. The pore structure of the hybrid scaffold was controlled by using preprepared ice particulates having a diameter range of 150–250 μm. Hybrid scaffold had a controlled pore structure with pore size equivalent to ice particulates and good interconnection. The microbeads showed an even spatial distribution throughout the pore walls. In vitro insulin release profile from the hybrid scaffold exhibited a zero order release kinetics up to a period of 4 weeks without initial burst release. Culture of bovine articular chondrocytes in the hybrid scaffold demonstrated high bioactivity of the released insulin. The hybrid scaffold facilitated cell seeding and spatial cell distribution and promoted cell proliferation.
Collapse
|
82
|
Chen CH, Shyu VBH, Chen JP, Lee MY. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication 2014; 6:015004. [DOI: 10.1088/1758-5082/6/1/015004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
83
|
Brady K, Dickinson SC, Guillot PV, Polak J, Blom AW, Kafienah W, Hollander AP. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis. Stem Cells Dev 2013; 23:541-54. [PMID: 24172175 DOI: 10.1089/scd.2013.0301] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cartilage injuries and osteoarthritis are leading causes of disability in developed countries. The regeneration of damaged articular cartilage using cell transplantation or tissue engineering holds much promise but requires the identification of an appropriate cell source with a high proliferative propensity and consistent chondrogenic capacity. Human fetal mesenchymal stem cells (MSCs) have been isolated from a range of perinatal tissues, including first-trimester bone marrow, and have demonstrated enhanced expansion and differentiation potential. However, their ability to form mature chondrocytes for use in cartilage tissue engineering has not been clearly established. Here, we compare the chondrogenic potential of human MSCs isolated from fetal and adult bone marrow and show distinct differences in their responsiveness to specific growth factors. Transforming growth factor beta 3 (TGFβ3) induced chondrogenesis in adult but not fetal MSCs. In contrast, bone morphogenetic protein 2 (BMP2) induced chondrogenesis in fetal but not adult MSCs. When fetal MSCs co-stimulated with BMP2 and TGFβ3 were used for cartilage tissue engineering, they generated tissue with type II collagen and proteoglycan content comparable to adult MSCs treated with TGFβ3 alone. Investigation of the TGFβ/BMP signaling pathway showed that TGFβ3 induced phosphorylation of SMAD3 in adult but not fetal MSCs. These findings demonstrate that the initiation of chondrogenesis is modulated by distinct signaling mechanisms in fetal and adult MSCs. This study establishes the feasibility of using fetal MSCs in cartilage repair applications and proposes their potential as an in vitro system for modeling chondrogenic differentiation and skeletal development studies.
Collapse
Affiliation(s)
- Kyla Brady
- 1 Faculty of Medical and Veterinary Sciences, School of Cellular and Molecular Medicine, University of Bristol , Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
84
|
Fernandes EM, Pires RA, Mano JF, Reis RL. Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.05.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
85
|
Bermueller C, Schwarz S, Elsaesser AF, Sewing J, Baur N, von Bomhard A, Scheithauer M, Notbohm H, Rotter N. Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 2013; 19:2201-14. [PMID: 23621795 DOI: 10.1089/ten.tea.2012.0650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autologous grafts are frequently needed for nasal septum reconstruction. Because they are only available in limited amounts, there is a need for new cartilage replacement strategies. Tissue engineering based on the use of autologous chondrocytes and resorbable matrices might be a suitable option. So far, an optimal material for nasal septum reconstruction has not been identified. The aim of our study was to provide the first evaluation of marine collagen for use in nasal cartilage repair. First, we studied the suitability of marine collagen as a cartilage replacement matrix in the context of in vitro three dimensional cultures by analyzing cell migration, cytotoxicity, and extracellular matrix formation using human and rat nasal septal chondrocytes. Second, we worked toward developing a suitable orthotopic animal model for nasal septum repair, while simultaneously evaluating the biocompatibility of marine collagen. Seeded and unseeded scaffolds were transplanted into nasal septum defects in an orthotopic rat model for 1, 4, and 12 weeks. Explanted scaffolds were histologically and immunohistochemically evaluated. Scaffolds did not induce any cytotoxic reactions in vitro. Chondrocytes were able to adhere to marine collagen and produce cartilaginous matrix proteins, such as collagen type II. Treating septal cartilage defects in vivo with seeded and unseeded scaffolds led to a significant reduction in the number of nasal septum perforations compared to no replacement. In summary, we demonstrated that marine collagen matrices provide excellent properties for cartilage tissue engineering. Marine collagen scaffolds are able to prevent septal perforations in an autologous, orthotopic rat model. This newly described experimental surgical procedure is a suitable way to evaluate new scaffold materials for their applicability in the context of nasal cartilage repair.
Collapse
Affiliation(s)
- Christian Bermueller
- Department of Otorhinolaryngology, Ulm University Medical Center, Frauensteige 12, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Masuda T, Takei N, Nakano T, Anada T, Suzuki O, Arai F. A microfabricated platform to form three-dimensional toroidal multicellular aggregate. Biomed Microdevices 2013; 14:1085-93. [PMID: 22996697 DOI: 10.1007/s10544-012-9713-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Techniques that allow cells to self-assemble into three-dimensional (3D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular in fields such as stem cell research, tissue engineering, and cancer biology. Appropriate simulation of the 3D environment in which tissues normally develop and function is crucial for the engineering of in vitro models that can be used for the formation of complex tissues. We have developed a unique multicellular aggregate formation platform that utilizes a maskless gray-scale photolithography. The cellular aggregate formed using this platform has a toroidal-like geometry and includes a micro lumen that facilitates the supply of oxygen and growth factors and the expulsion of waste products. As a result, this platform was capable of rapidly producing hundreds of multicellular aggregates at a time, and of regulating the diameter of aggregates with complex design. These toroidal multicellular aggregates can grow as long-term culture. In addition, the micro lumen can be used as a continuous channel and for the insertion of a vascular system or a nerve system into the assembled tissue. These platform characteristics highlight its potential to be used in a wide variety of applications, e.g. as a bioactuator, as a micro-machine component or in drug screening and tissue engineering.
Collapse
Affiliation(s)
- Taisuke Masuda
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Abstract
Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products.
Collapse
Affiliation(s)
- Joseph M. Mansour
- Skeletal Research Center, Department of Biology Case Western Reserve University Cleveland, OH, 44106
| | - Jean F. Welter
- Skeletal Research Center, Department of Biology Case Western Reserve University Cleveland, OH, 44106
| |
Collapse
|
89
|
Lopa S, Colombini A, Sansone V, Preis FWB, Moretti M. Influence on Chondrogenesis of Human Osteoarthritic Chondrocytes in Co-Culture with Donor-Matched Mesenchymal Stem Cells from Infrapatellar Fat Pad and Subcutaneous Adipose Tissue. Int J Immunopathol Pharmacol 2013; 26:23-31. [DOI: 10.1177/03946320130260s104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- S. Lopa
- Cell and Tissue Engineering Laboratory, Gruppo Ospedaliero San Donato Foundation, Milan, Italy
| | - A. Colombini
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - V. Sansone
- Orthopaedic Department, Università degli Studi di Milano, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | - M. Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| |
Collapse
|
90
|
Schwarz S, Elsaesser AF, Koerber L, Goldberg-Bockhorn E, Seitz AM, Bermueller C, Dürselen L, Ignatius A, Breiter R, Rotter N. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J Tissue Eng Regen Med 2012. [PMID: 23193064 DOI: 10.1002/term.1650] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region.
Collapse
Affiliation(s)
- Silke Schwarz
- Department of Otorhinolaryngology, Ulm University Medical Centre, Germany.
| | | | - Ludwig Koerber
- Institute of Bioprocess Engineering, University of Erlangen, Germany
| | | | - Andreas M Seitz
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm, University of Ulm, Germany
| | | | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm, University of Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm, University of Ulm, Germany
| | - Roman Breiter
- Institute of Bioprocess Engineering, University of Erlangen, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Ulm University Medical Centre, Germany
| |
Collapse
|
91
|
Bhattacharjee M, Miot S, Gorecka A, Singha K, Loparic M, Dickinson S, Das A, Bhavesh NS, Ray AR, Martin I, Ghosh S. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering. Acta Biomater 2012; 8:3313-25. [PMID: 22641105 DOI: 10.1016/j.actbio.2012.05.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 04/03/2012] [Accepted: 05/18/2012] [Indexed: 11/20/2022]
Abstract
A novel design of silk-based scaffold is developed using a custom-made winding machine, with fiber alignment resembling the anatomical criss-cross lamellar fibrous orientation features of the annulus fibrosus of the intervertebral disc. Crosslinking of silk fibroin fibers with chondroitin sulphate (CS) was introduced to impart superior biological functionality. The scaffolds, with or without CS, instructed alignment of expanded human chondrocytes and of the deposited extracellular matrix while supporting their chondrogenic redifferentiation. The presence of CS crosslinking could not induce statistically significant changes in the measured collagen or glycosaminoglycan content, but resulted in an increased construct stiffness. By offering the combined effect of cell/matrix alignment and chondrogenic support, the silk fibroin scaffolds developed with precise fiber orientation in lamellar form represent a suitable substrate for tissue engineering of the annulus fibrosus part of the intervertebral disc.
Collapse
|
92
|
Egli RJ, Wernike E, Grad S, Luginbühl R. Physiological cartilage tissue engineering effect of oxygen and biomechanics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 289:37-87. [PMID: 21749898 DOI: 10.1016/b978-0-12-386039-2.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of cartilaginous tissues has been studied for many years, and tissue-engineered constructs are sought to be used clinically for treating articular cartilage defects. Even though there is a plethora of studies and data available, no breakthroughs have been achieved yet that allow for implanting in vivo cultured articular cartilaginous tissues in patients. A review of contributions to cartilage tissue engineering over the past decades emphasizes that most of the studies were performed under environmental conditions neglecting the physiological situation. This is specifically pronounced in the use of bioreactor systems which neither allow for application of near physiomechanical stimulations nor for controlling a hypoxic environment as it is experienced in synovial joints. It is suspected that the negligence of these important parameters has slowed down progress and prevented major breakthroughs in the field. This review focuses on the main aspects of cartilage tissue engineering with emphasis on the relation and understanding of employing physiological conditions.
Collapse
|
93
|
Schon BS, Schrobback K, van der Ven M, Stroebel S, Hooper GJ, Woodfield TBF. Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs. Cell Tissue Res 2012; 347:629-642. [PMID: 22293974 DOI: 10.1007/s00441-011-1311-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Described here is a simple, high-throughput process to fabricate pellets with regular size and shape and the assembly of pre-cultured pellets in a controlled manner into specifically designed 3D plotted porous scaffolds. Culture of cartilage pellets is a well-established process for inducing re-differentiation in expanded chondrocytes. Commonly adopted pellet culture methods using conical tubes are inconvenient, time-consuming and space-intensive. We compared the conventional 15-mL tube pellet culture method with 96-well plate-based methods, examining two different well geometries (round- and v-bottom plates). The high-throughput production method was then used to demonstrate guided placement of pellets within a scaffold of defined pore size and geometry for the 3D assembly of tissue engineered cartilage constructs. While minor differences were observed in tissue quality and size, the chondrogenic re-differentiation capacity of human chondrocytes, as assessed by GAG/DNA, collagen type I and II immunohistochemistry and collagen type I, II and aggrecan mRNA expression, was maintained in the 96-well plate format and pellets of regular size and spheroidal shape were produced. This allowed for simple production of large numbers of reproducible tissue spheroids. Furthermore, the pellet-assembly method successfully allowed fluorescently labelled pellets to be individually visualised in 3D. During subsequent culture of 3D assembled tissue engineered constructs in vitro, pellets fused to form a coherent tissue, promoting chondrogenic differentiation and GAG accumulation.
Collapse
Affiliation(s)
- B S Schon
- Christchurch Regenerative Medicine and Tissue Engineering (CReATE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, PO Box 4345, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
94
|
Orth P, Zurakowski D, Wincheringer D, Madry H. Reliability, reproducibility, and validation of five major histological scoring systems for experimental articular cartilage repair in the rabbit model. Tissue Eng Part C Methods 2011; 18:329-39. [PMID: 22081995 DOI: 10.1089/ten.tec.2011.0462] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Histological evaluation of the repair tissue is a main pillar in the advancing field of experimental articular cartilage repair. Despite their widespread use, the major histological scoring systems for cartilage repair have seldom been validated. We tested the hypotheses (1) that elementary scores have a better reproducibility compared with more complex systems and (2) that the data from these different histological scores correlate with the DNA and proteoglycan contents of the repair tissue. A total of 1,165 observations of cartilage repair based on histological sections (n=233) from an experimental investigation on the repair of standardized osteochondral defects in vivo were made by three investigators with different levels of experience in cartilage research to determine the inter- and intra-observer reproducibility of elementary (Pineda and Wakitani score) and complex (O'Driscoll, Sellers, Fortier score) histological grading systems. DNA and proteoglycan contents of the repair tissues from simultaneously created defects were determined and correlated with histological (a) overall score values, (b) matrix staining, and (c) cellular characteristics of the five scores. Finally, applying the proteoglycan content as validating test, sensitivity, and specificity of the grading systems were assessed. All histological scores provided high intra- (Pearson r=0.92-0.99) and inter-observer reliability (intra-class correlation=0.94-0.99), low numerical intra- and inter-observer differences, and high internal correlations (Spearman's ρ=0.63-0.91). No disparity in reliability and reproducibility was detected between elementary and complex scores or between investigators with different levels of experience (all p>0.05). Individual histological overall score values did not correlate with proteoglycan contents but with DNA contents of the repair tissue (O'Driscoll, Wakitani, Sellers score). In all systems, proteoglycan contents did not correlate with matrix staining (all p>0.05), but histological cellular characteristics correlated with total cell numbers (p<0.001). These data indicate that both elementary and comprehensive histological scores are suited to quantify cartilage repair. Histological and biochemical evaluations may serve as complementary tools to assess articular cartilage repair in vivo.
Collapse
Affiliation(s)
- Patrick Orth
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
95
|
Acharya C, Adesida A, Zajac P, Mumme M, Riesle J, Martin I, Barbero A. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol 2011; 227:88-97. [PMID: 22025108 DOI: 10.1002/jcp.22706] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we aimed at investigating the interactions between primary chondrocytes and mesenchymal stem/stromal cells (MSC) accounting for improved chondrogenesis in coculture systems. Expanded MSC from human bone marrow (BM-MSC) or adipose tissue (AT-MSC) were cultured in pellets alone (monoculture) or with primary human chondrocytes from articular (AC) or nasal (NC) cartilage (coculture). In order to determine the reached cell number and phenotype, selected pellets were generated by combining: (i) human BM-MSC with bovine AC, (ii) BM-MSC from HLA-A2+ with AC from HLA-A2- donors, or (iii) human green fluorescent protein transduced BM-MSC with AC. Human BM-MSC and AC were also cultured separately in transwells. Resulting tissues and/or isolated cells were assessed immunohistologically, biochemically, cytofluorimetrically, and by RT-PCR. Coculture of NC or AC (25%) with BM-MSC or AT-MSC (75%) in pellets resulted in up to 1.6-fold higher glycosaminoglycan content than what would be expected based on the relative percentages of the different cell types. This effect was not observed in the transwell model. BM-MSC decreased in number (about fivefold) over time and, if cocultured with chondrocytes, increased type II collagen and decreased type X collagen expression. Instead, AC increased in number (4.2-fold) if cocultured with BM-MSC and maintained a differentiated phenotype. Chondro-induction in MSC-chondrocyte coculture is a robust process mediated by two concomitant effects: MSC-induced chondrocyte proliferation and chondrocyte-enhanced MSC chondrogenesis. The identified interactions between progenitor and mature cell populations may lead to the efficient use of freshly harvested chondrocytes for ex vivo cartilage engineering or in situ cartilage repair.
Collapse
|
96
|
Oseni A, Crowley C, Lowdell M, Birchall M, Butler PE, Seifalian AM. Advancing nasal reconstructive surgery: the application of tissue engineering technology. J Tissue Eng Regen Med 2011; 6:757-68. [PMID: 22095677 DOI: 10.1002/term.487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 04/20/2011] [Accepted: 07/12/2011] [Indexed: 12/17/2022]
Abstract
Cartilage tissue engineering is a rapidly progressing area of regenerative medicine with advances in cell biology and scaffold engineering constantly being investigated. Many groups are now capable of making neocartilage constructs with some level of morphological, biochemical, and histological likeness to native human cartilage tissues. The application of this useful technology in articular cartilage repair is well described in the literature; however, few studies have evaluated its application in head and neck reconstruction. Although there are many studies on auricular cartilage tissue engineering, there are few studies regarding cartilage tissue engineering for complex nasal reconstruction. This study therefore highlighted the challenges involved with nasal reconstruction, with special focus on nasal cartilage tissue, and examined how advancements made in cartilage tissue engineering research could be applied to improve the clinical outcomes of total nasal reconstructive surgery.
Collapse
Affiliation(s)
- Adelola Oseni
- Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Sciences, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
97
|
El Sayed K, Marzahn U, John T, Hoyer M, Zreiqat H, Witthuhn A, Kohl B, Haisch A, Schulze-Tanzil G. PGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J Tissue Eng Regen Med 2011; 7:61-72. [PMID: 22081560 DOI: 10.1002/term.496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/23/2011] [Accepted: 07/12/2011] [Indexed: 11/06/2022]
Abstract
The availability of autologous articular chondrocytes remains a limiting issue in matrix assisted autologous chondrocyte transplantation. Non-articular heterotopic chondrocytes could be an alternative autologous cell source. The aims of this study were to establish heterotopic chondrocyte cocultures to analyze cell-cell compatibilities and to characterize the chondrogenic potential of nasoseptal chondrocytes compared to articular chondrocytes. Primary porcine and human nasoseptal and articular chondrocytes were investigated for extracellular cartilage matrix (ECM) expression in a monolayer culture. 3D polyglycolic acid- (PGA) associated porcine heterotopic mono- and cocultures were assessed for cell vitality, types II, I, and total collagen-, and proteoglycan content. The type II collagen, lubricin, and Sox9 gene expressions were significantly higher in articular compared with nasoseptal monolayer chondrocytes, while type IX collagen expression was lower in articular chondrocytes. Only β1-integrin gene expression was significantly inferior in humans but not in porcine nasoseptal compared with articular chondrocytes, indicating species-dependent differences. Heterotopic chondrocytes in PGA cultures revealed high vitality with proteoglycan-rich hyaline-like ECM production. Similar amounts of type II collagen deposition and type II/I collagen ratios were found in heterotopic chondrocytes cultured on PGA compared to articular chondrocytes. Quantitative analyses revealed a time-dependent increase in total collagen and proteoglycan content, whereby the differences between heterotopic and articular chondrocyte cultures were not significant. Nasoseptal and auricular chondrocytes monocultured in PGA or cocultured with articular chondrocytes revealed a comparable high chondrogenic potential in a tissue engineering setting, which created the opportunity to test them in vivo for articular cartilage repair.
Collapse
Affiliation(s)
- K El Sayed
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Campus Benjamin Franklin, Garystraße 5, 14195, Berlin
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Scotti C, Osmokrovic A, Wolf F, Miot S, Peretti GM, Barbero A, Martin I. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng Part A 2011; 18:362-72. [PMID: 21902467 DOI: 10.1089/ten.tea.2011.0234] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies showed that human nasal chondrocytes (HNC) exhibit higher proliferation and chondrogenic capacity as compared to human articular chondrocytes (HAC). To consider HNC as a relevant alternative cell source for the repair of articular cartilage defects it is necessary to test how these cells react when exposed to environmental factors typical of an injured joint. We thus aimed this study at investigating the responses of HNC and HAC to exposure to interleukin (IL)-1β and low oxygen. For this purpose HAC and HNC harvested from the same donors (N=5) were expanded in vitro and then cultured in pellets or collagen-based scaffolds at standard (19%) or low oxygen (5%) conditions. Resulting tissues were analyzed after a short (3 days) exposure to IL-1β, mimicking the initially inflammatory implantation site, or following a recovery time (1 or 2 weeks for pellets and scaffolds, respectively). After IL-1β treatment, constructs generated by both HAC and HNC displayed a transient loss of GAG (up to 21.8% and 36.8%, respectively) and, consistently, an increased production of metalloproteases (MMP)-1 and -13. Collagen type II and the cryptic fragment of aggrecan (DIPEN), both evaluated immunohistochemically, displayed a trend consistent with GAG and MMPs production. HNC-based constructs exhibited a more efficient recovery upon IL-1β withdrawal, resulting in a higher accumulation of GAG (up to 2.6-fold) compared to the corresponding HAC-based tissues. On the other hand, HAC displayed a positive response to low oxygen culture, while HNC were only slightly affected by oxygen percentage. Collectively, under the conditions tested mimicking the postsurgery articular environment, HNC retained a tissue-forming capacity, similar or even better than HAC. These results represent a step forward in validating HNC as a cell source for cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Celeste Scotti
- Departments of Surgery and of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
99
|
Xu C, Zhang Z, Wu M, Zhu S, Gao J, Zhang J, Yuan Y, Zhang K, Yu Y, Han W. Recombinant human midkine stimulates proliferation and decreases dedifferentiation of auricular chondrocytes in vitro. Exp Biol Med (Maywood) 2011; 236:1254-62. [DOI: 10.1258/ebm.2011.011022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is widely used for the repair of cartilage defects. However, due to the lack of chondrocyte growth factor and dedifferentiation of the cultured primary chondrocytes, cell source has limited the clinical potential of ACI. Auricular cartilage is an attractive potential source of cells for cartilage tissue engineering. Here we demonstrated that recombinant human midkine (rhMK) significantly promoted proliferation of rat primary auricular chondrocytes cultured and passaged in monolayer, which was mediated by the activation of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Furthermore, rhMK attenuated the dedifferentiation of cultured chondrocytes by maintaining the expression of chondrocyte-specific matrix proteins during culture expansion and passage. Importantly, rhMK-expanded chondrocytes reserved their full chondrogenic potential and redifferentiated into elastic chondrocytes after being cultured in high density. The results suggest that rhMK may be used for the preparation of chondrocytes in cartilage tissue engineering.
Collapse
Affiliation(s)
- Chuanying Xu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology
| | - Zhonghui Zhang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| | - Mingyuan Wu
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| | - Shunying Zhu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology
| | - Jin Gao
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| | - Jing Zhang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| | - Yunsheng Yuan
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology
| | - Kejian Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
| |
Collapse
|
100
|
Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:281-99. [PMID: 21510824 DOI: 10.1089/ten.teb.2011.0077] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair.
Collapse
Affiliation(s)
- Kara L Spiller
- Biomaterials and Drug Delivery Laboratory, Drexel University, Philadelphia, Pensylvania, USA.
| | | | | |
Collapse
|