51
|
|
52
|
Does intraoperative low arterial partial pressure of oxygen increase the risk of surgical site infection following emergency exploratory laparotomy in horses? Vet J 2014; 200:175-80. [DOI: 10.1016/j.tvjl.2014.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 11/21/2022]
|
53
|
Schulz S, Angarano M, Fabritius M, Mülhaupt R, Dard M, Obrecht M, Tomakidi P, Steinberg T. Nonwoven-based gelatin/polycaprolactone membrane proves suitability in a preclinical assessment for treatment of soft tissue defects. Tissue Eng Part A 2014; 20:1935-47. [PMID: 24494668 DOI: 10.1089/ten.tea.2013.0594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Standard preclinical assessments in vitro often have limitations regarding their transferability to human beings, mainly evoked by their nonhuman and tissue-different/nontissue-specific source. Here, we aimed at employing tissue-authentic simple and complex interactive fibroblast-epithelial cell systems and their in vivo-relevant biomarkers for preclinical in vitro assessment of nonwoven-based gelatin/polycaprolactone membranes (NBMs) for treatment of soft tissue defects. NBMs were composed of electrospun gelatin and polycaprolactone nanofiber nonwovens. Scanning electron microscopy in conjunction with actin/focal contact integrin fluorescence revealed successful adhesion and proper morphogenesis of keratinocytes and fibroblasts, along with cells' derived extracellular matrix deposits. The "feel-good factor" of cells under study on the NBM was substantiated by forming a confluent connective tissue entity, which was concomitant with a stratified epithelial equivalent. Immunohistochemistry proved tissue authenticity over time by abundance of the biomarker vimentin in the connective tissue entity, and chronological increase of keratins KRT1/10 and involucrin expression in epithelial equivalents. Suitability of the novel NBM as wound dressing was evidenced by an almost completion of epithelial wound closure in a pilot mini-pig study, after a surgical intervention-caused gingival dehiscence. In summary, preclinical assessment by tissue-authentic cell systems and the animal pilot study revealed the NBM as an encouraging therapeutic medical device for prospective clinical applications.
Collapse
Affiliation(s)
- Simon Schulz
- 1 Department of Oral Biotechnology, University Medical Center Freiburg , Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Patients presenting in an immunocompromised state merit special consideration when being evaluated for fitness to undergo surgery. A variety of immunodeficient conditions and their respective therapies, including human immunodeficiency virus, cancer, and transplantation, exert numerous systemic effects that may lead to multiorgan dysfunction. Understanding the potential impact of these disease manifestations, and their proper evaluation, is essential in achieving optimal perioperative outcomes for these patients.
Collapse
Affiliation(s)
- Michael J Hannaman
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, B6/319 Clinical Science Center, 600 Highland Avenue, Madison, WI 53792-3272, USA.
| | | |
Collapse
|
55
|
Heu F, Forster C, Namer B, Dragu A, Lang W. Effect of low-level laser therapy on blood flow and oxygen- hemoglobin saturation of the foot skin in healthy subjects: a pilot study. Laser Ther 2013; 22:21-30. [PMID: 24155546 DOI: 10.5978/islsm.13-or-03] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/16/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND AIMS This study on healthy test subjects intends to show whether one-off Low-Level Laser Therapy (LLLT) has an instant effect on the perfusion or the oxygenation of the skin tissue. These possible instant effects may have an influence on the accelerated wound healing which is often observed after application of LLLT, in addition to the usual postulated effects of LLLT which occur with a time delay normally. STUDY DESIGN/MATERIALS AND METHODS The study was carried out double-blind and placebo-controlled in two batches of testing. The test subjects received one-off LLLT on a defined area of the arch of the foot. Simultaneously a placebo treatment was carried out on the corresponding contralateral area. In the first batch of tests, the blood flow was measured immediately before and after treatment using thermography and LDI. In the second batch of tests, the blood flow and the oxygen saturation were determined immediately before and after the treatment using an O2C device. RESULTS No evidence that the LLLT has a significant instant effect on the circulation or the oxygen saturation could be found. CONCLUSION No immediate effect of an LLLT on the perfusion or oxygenation situation is to be expected with physiologically normal starting conditions. An additional investigation should be carried out in which either the radiation dose is varied or the starting conditions are pathological (e.g. chronic wounds) in order to rule out immediate effects on circulation or oxygen saturation as the cause of the improved wound healing which is often observed.
Collapse
Affiliation(s)
- Franziska Heu
- Institute of Physiology and Experimental Pathophysiology, University of Erlangen-Nuremberg, Erlangen , Germany
| | | | | | | | | |
Collapse
|
56
|
Kendall AC, Whatmore JL, Winyard PG, Smerdon GR, Eggleton P. Hyperbaric oxygen treatment reduces neutrophil-endothelial adhesion in chronic wound conditions through S-nitrosation. Wound Repair Regen 2013; 21:860-8. [DOI: 10.1111/wrr.12108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 07/10/2013] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Paul G. Winyard
- Exeter University School of Medicine; Exeter Devon United Kingdom
| | - Gary R. Smerdon
- Diving Diseases Research Centre; Plymouth Devon United Kingdom
| | - Paul Eggleton
- Exeter University School of Medicine; Exeter Devon United Kingdom
- Department of Biochemistry; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
57
|
Aichele K, Bubel M, Deubel G, Pohlemann T, Oberringer M. Bromelain down-regulates myofibroblast differentiation in an in vitro wound healing assay. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:853-63. [PMID: 23771413 DOI: 10.1007/s00210-013-0890-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
Bromelain, a pineapple-derived enzyme mixture, is a widely used drug to improve tissue regeneration. Clinical and experimental data indicate a better outcome of soft tissue healing under the influence of bromelain. Proteolytic, anti-bacterial, anti-inflammatory, and anti-oedematogenic effects account for this improvement on the systemic level. It remains unknown, whether involved tissue cells are directly influenced by bromelain. In order to gain more insight into those mechanisms by which bromelain modulates tissue regeneration at the cellular level, we applied a well-established in vitro wound healing assay. Two main players of soft tissue healing--fibroblasts and microvascular endothelial cells--were used as mono- and co-cultures. Cell migration, proliferation, apoptosis, and the differentiation of fibroblasts to myofibroblasts as well as interleukin-6 were quantified in response to bromelain (36 × 10(-3) IU/ml) under normoxia and hypoxia. Bromelain attenuated endothelial cell and fibroblast proliferation in a moderate way. This proliferation decrease was not caused by apoptosis, rather, by driving cells into the resting state G0 of the cell cycle. Endothelial cell migration was not influenced by bromelain, whereas fibroblast migration was clearly slowed down, especially under hypoxia. Bromelain led to a significant decrease of myofibroblasts under both normoxic (from 19 to 12 %) and hypoxic conditions (from 22 to 15 %), coincident with higher levels of interleukin-6. Myofibroblast differentiation, a clear sign of fibrotic development, can be attenuated by the application of bromelain in vitro. Usage of bromelain as a therapeutic drug for chronic human wounds thus remains a very promising concept for the future.
Collapse
Affiliation(s)
- Kathrin Aichele
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | | | | | | | | |
Collapse
|
58
|
Schwarz F, Jennewein M, Bubel M, Holstein JH, Pohlemann T, Oberringer M. Soft tissue fibroblasts from well healing and chronic human wounds show different rates of myofibroblasts in vitro. Mol Biol Rep 2012; 40:1721-33. [DOI: 10.1007/s11033-012-2223-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 12/16/2022]
|
59
|
Moen I, Stuhr LEB. Hyperbaric oxygen therapy and cancer--a review. Target Oncol 2012; 7:233-42. [PMID: 23054400 PMCID: PMC3510426 DOI: 10.1007/s11523-012-0233-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/20/2012] [Indexed: 02/06/2023]
Abstract
Hypoxia is a critical hallmark of solid tumors and involves enhanced cell survival, angiogenesis, glycolytic metabolism, and metastasis. Hyperbaric oxygen (HBO) treatment has for centuries been used to improve or cure disorders involving hypoxia and ischemia, by enhancing the amount of dissolved oxygen in the plasma and thereby increasing O2 delivery to the tissue. Studies on HBO and cancer have up to recently focused on whether enhanced oxygen acts as a cancer promoter or not. As oxygen is believed to be required for all the major processes of wound healing, one feared that the effects of HBO would be applicable to cancer tissue as well and promote cancer growth. Furthermore, one also feared that exposing patients who had been treated for cancer, to HBO, would lead to recurrence. Nevertheless, two systematic reviews on HBO and cancer have concluded that the use of HBO in patients with malignancies is considered safe. To supplement the previous reviews, we have summarized the work performed on HBO and cancer in the period 2004–2012. Based on the present as well as previous reviews, there is no evidence indicating that HBO neither acts as a stimulator of tumor growth nor as an enhancer of recurrence. On the other hand, there is evidence that implies that HBO might have tumor-inhibitory effects in certain cancer subtypes, and we thus strongly believe that we need to expand our knowledge on the effect and the mechanisms behind tumor oxygenation.
Collapse
Affiliation(s)
- Ingrid Moen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | |
Collapse
|
60
|
Celeste CJ, Deschesne K, Riley CB, Theoret CL. Skin Temperature during Cutaneous Wound Healing in an Equine Model of Cutaneous Fibroproliferative Disorder: Kinetics and Anatomic-Site Differences. Vet Surg 2012; 42:147-53. [DOI: 10.1111/j.1532-950x.2012.00966.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christophe J. Celeste
- Comparative Tissue Healing Laboratory; Département de Biomédecine; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| | - Karine Deschesne
- Comparative Tissue Healing Laboratory; Département de Biomédecine; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| | - Christopher B. Riley
- School of Animal and Veterinary Sciences; University of Adelaide; Roseworthy Campus; Roseworthy; Australia
| | - Christine L. Theoret
- Comparative Tissue Healing Laboratory; Département de Biomédecine; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| |
Collapse
|
61
|
Britland S, Ross-Smith O, Jamil H, Smith AG, Vowden K, Vowden P. The lactate conundrum in wound healing: clinical and experimental findings indicate the requirement for a rapid point-of-care diagnostic. Biotechnol Prog 2012; 28:917-24. [PMID: 22581665 DOI: 10.1002/btpr.1561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 04/12/2012] [Indexed: 11/09/2022]
Abstract
The increasing prevalence of chronic wounds has significant financial implications for nations with advanced healthcare provision. Although the diseases that predispose to hard-to-heal wounds are recognized, their etiology is less well understood, partly because practitioners in wound management lack specialized diagnostic support. Prognostic indicators for healing may be inherent to wound biochemistry but remain invisible under routine clinical investigation; lactate is an example of this. In this study, lactate concentration in exudate obtained from 20 patients undergoing wound management in hospital was variable but in some cases approached or exceeded 20 mM. In vitro viability studies indicated that fibroblasts and endothelial cells tolerated low levels of lactate (1-10 mM), but cell viability was severely compromised by high lactate concentrations (=20 mM). Scratched monolayer experiments revealed that cell migration was affected earlier than viability in response to increasing lactate dose, and this was shown by immunocytochemistry to be associated with cytoskeletal disruption. A prototype enzyme-based colorimetric assay for lactate generating a color change that was rapid in the context of clinical practise, and capable of functioning within a gel vehicle, was developed with point-of-care dipstick applications in mind. A randomized single-blinded trial involving 30 volunteers and using a color chart to calibrate the assay demonstrated that lactate concentration could be reliably estimated with 5 mM precision; this suggesting that "physiological" and "pathological" lactate concentration could be distinguished. The present data suggest that a dipstick-type colorimetric assay could comprise a viable diagnostic tool for identifying patients at-risk from high-wound lactate.
Collapse
Affiliation(s)
- Stephen Britland
- Centre for Skin Sciences and School of Pharmacy, University of Bradford, Bradford BD7 1DP, UK.
| | | | | | | | | | | |
Collapse
|
62
|
Williams RL, Sroussi HY, Abercrombie JJ, Leung K, Marucha PT. Synthetic decapeptide reduces bacterial load and accelerates healing in the wounds of restraint-stressed mice. Brain Behav Immun 2012; 26:588-96. [PMID: 22329957 DOI: 10.1016/j.bbi.2012.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/09/2012] [Accepted: 01/16/2012] [Indexed: 01/08/2023] Open
Abstract
Wound healing is a complex process involving four transitional yet concurrent stages: coagulation, inflammation, cell proliferation/epithelialization and remodeling. These overlapping stages occur uneventfully in normal physiology. However, during psychological stress, the inflammatory response can become dysregulated and result in increased susceptibility to bacterial infection and delayed wound closure. In our restraint stress model, cutaneous wounds of stressed SKH-1 mice demonstrate significantly higher levels of bacterial load, and healing progresses at a rate 30% slower, than in non-stressed mice. The purpose of this study was to test the hypothesis that a synthetic antimicrobial decapeptide (KSLW) enhances bacterial clearance during stress-impaired healing in mice. Here, using a Pluronic block copolymer nanocarrier, we endeavored to identify an efficient drug delivery system for KSLW, which would enhance the stability, substantivity and function of the cationic peptide in delayed-healing wounds. In this study, intradermal treatment of excisional wounds of stressed mice with 2mg/ml KSLW loaded in Pluronic F68, resulted in a sustained antimicrobial effect through post-operative day 5, with a 2-log (p<0.01) reduction in bacterial load compared with other stressed mice. The demonstrated bacterial reduction in KSLW-treated stressed mice did not approach the levels observed among control mice. Furthermore, treatment of stressed mice with KSLW improved healing, resulting in significantly faster (p<0.05) wound closure from days 2 to 5 post-wounding, relative to untreated stressed mice and stressed mice treated with Pluronic alone. These findings suggest that Pluronic F68 is an efficient carrier for KSLW, which improves its stability and activity in impaired dermal wounds.
Collapse
Affiliation(s)
- Richard L Williams
- Dental and Trauma Research Detachment, US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA.
| | | | | | | | | |
Collapse
|
63
|
Kendall AC, Whatmore JL, Harries LW, Winyard PG, Smerdon GR, Eggleton P. Changes in inflammatory gene expression induced by hyperbaric oxygen treatment in human endothelial cells under chronic wound conditions. Exp Cell Res 2011; 318:207-16. [PMID: 22063471 DOI: 10.1016/j.yexcr.2011.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/07/2011] [Accepted: 10/23/2011] [Indexed: 12/15/2022]
Abstract
Hyperbaric oxygen (HBO) therapy involves the inhalation of 100% oxygen, whilst inside a chamber at greater than atmospheric pressure. It is an effective treatment for chronic diabetic wounds, although the molecular mechanisms involved remain unclear. We hypothesised that HBO could alter inflammatory gene expression in human endothelial cells via a reactive oxygen/nitrogen species-mediated pathway. Endothelial cells were exposed to a chronic wound model comprising hypoxia (2% O(2) at 1 atmosphere absolute (ATA); PO(2) ~2 kPa) in the presence of lipopolysaccharide and TNF-α for 24h, then treated with HBO for 90 min (97.5% O(2) at 2.4 ATA; PO(2) ~237 kPa). 5h post-HBO, 19 genes involved in adhesion, angiogenesis, inflammation and oxidative stress were downregulated. Notably, only angiogenin gene expression, which promotes both angiogenesis and nitric oxide production (reflected by increased eNOS protein expression in this study), was upregulated. This led to a decrease in endothelial IL-8 mRNA and protein, which could help alleviate inflammatory processes during chronic wound healing. This was no longer evident 22.5h post-HBO, demonstrating the importance of daily exposures in HBO treatment protocols. These studies indicate that elevated oxygen transiently regulates inflammatory gene expression in endothelial cells, which may enhance chronic wound healing.
Collapse
|
64
|
White R. Wound dressings and other topical treatment modalities in bioburden control. J Wound Care 2011; 20:431-9. [DOI: 10.12968/jowc.2011.20.9.431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
65
|
Liu S, Shah SJ, Wilmes LJ, Feiner J, Kodibagkar VD, Wendland MF, Mason RP, Hylton N, Hopf HW, Rollins MD. Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model. Magn Reson Med 2011; 66:1722-30. [PMID: 21688315 DOI: 10.1002/mrm.22968] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/24/2011] [Accepted: 03/23/2011] [Indexed: 11/10/2022]
Abstract
Measurement of individual organ tissue oxygen levels can provide information to help evaluate and optimize medical interventions in many areas including wound healing, resuscitation strategies, and cancer therapeutics. Echo planar (19) F MRI has previously focused on tumor oxygen measurement at low oxygen levels (pO(2)) <30 mmHg. It uses the linear relationship between spin-lattice relaxation rate (R(1)) of hexafluorobenzene (HFB) and pO(2). The feasibility of this technique for a wider range of pO(2) values and individual organ tissue pO(2) measurement was investigated in a rat model. Spin-lattice relaxation times (T(1) = 1/R(1)) of hexafluorobenzene were measured using (19) F saturation recovery echo planar imaging. Initial in vitro studies validated the linear relationship between R(1) and pO(2) from 0 to 760 mmHg oxygen partial pressure at 25, 37, and 41°C at 7 Tesla for hexafluorobenzene. In vivo experiments measured rat tissue oxygen (ptO2) levels of brain, kidney, liver, gut, muscle, and skin during inhalation of both 30 and 100% oxygen. All organ ptO(2) values significantly increased with hyperoxia (P < 0.001). This study demonstrates that (19) F MRI of hexafluorobenzene offers a feasible tool to measure regional ptO2 in vivo, and that hyperoxia significantly increases ptO2 of multiple organs in a rat model.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143-0464, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Shah JB. Correction of Hypoxia, a Critical Element for Wound Bed Preparation Guidelines: TIMEO2 Principle of Wound Bed Preparation. THE JOURNAL OF THE AMERICAN COLLEGE OF CERTIFIED WOUND SPECIALISTS 2011; 3:26-32. [PMID: 24527166 PMCID: PMC3601926 DOI: 10.1016/j.jcws.2011.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wound bed preparation is an organized approach to create an optimal environment for wound healing by the use of the most cost-effective therapeutic options. It has become an essential part of wound management and seeks to use the latest findings from molecular and cellular research to maximize the benefits of today's advanced wound care products. The international advisory panel on wound bed preparation met in 2002 to develop a systemic approach to wound management. These principles of this approach are referred to by the mnemonic TIME, which stands for the management of nonviable or deficient tissue (T), infection or inflammation (I), prolonged moisture imbalance (M), and nonadvancing or undermined epidermal edge (E). One critical element of pathophysiology, understanding of the hypoxic nature of the wound and correction of hypoxia as a critical element of wound bed preparation, is not covered. This article proposes to add correction of hypoxia to the TIME principle (TIMEO2 principle) based on the evidence. The evidence that will support the reason and the need for modification of the wound bed preparation protocol is discussed.
Collapse
Affiliation(s)
- Jayesh B. Shah
- South Texas Wound Associates, PA, San Antonio, TX, USA
- Southwest Center for Wound Care and Hyperbaric Medicine, Southwest General Hospital, San Antonio, TX, USA
- The Wound Healing Center at Northeast Baptist Hospital, San Antonio, TX, USA
| |
Collapse
|
67
|
Affiliation(s)
- Martyn Butcher
- University of Plymouth Honorary Tissue Viability Research Nurse, Northern Devon Healthcare Trust, UK
| |
Collapse
|
68
|
Larsson A, Uusijärvi J, Lind F, Gustavsson B, Saraste H. Hyperbaric oxygen in the treatment of postoperative infections in paediatric patients with neuromuscular spine deformity. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:2217-22. [PMID: 21523458 DOI: 10.1007/s00586-011-1797-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 04/03/2011] [Accepted: 04/08/2011] [Indexed: 11/30/2022]
Abstract
The aim of this study is to evaluate possible benefits of hyperbaric oxygen (HBO) therapy in the treatment of deep postoperative infections in six high risk paediatric patients with neuromuscular spine deformity. The study involved review of medical records including radiology, office visits, and telephone contacts for six patients, referred for postoperative HBO therapy in 2003-2005. Infection control and healing without removal of implants or major revision surgery with a minimum of 2-year follow-up after index surgery were considered to represent success. All infections were resolved. Median time for wound healing, normalisation of blood tests and antibiotic weaning were 3 months. Radiological bony fusion, intact implants without any signs of radiolucent zones were seen in all cases at a mean follow-up of 54 months (37-72). Side effects of HBO treatment were minor. HBO is a safe and potentially useful adjuvance in the treatment of early deep postoperative infections in complex situations with spinal implants in high risk paediatric patients.
Collapse
Affiliation(s)
- A Larsson
- Department of Physiology and Pharmacology, Section for Anaesthesia and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
69
|
Choe SW, Acharya AP, Keselowsky BG, Sorg BS. Intravital microscopy imaging of macrophage localization to immunogenic particles and co-localized tissue oxygen saturation. Acta Biomater 2010; 6:3491-8. [PMID: 20226885 DOI: 10.1016/j.actbio.2010.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/29/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Well-designed biomaterial polymer particle-based vaccines will optimally promote immune cell antigen-presenting behavior while minimizing adverse inflammatory responses to the particles and encapsulated drugs or adjuvants. It is important in the design of particle-based vaccines to consider possible harmful effects of immune response on tissue at the vaccination site. Intravital microscopy with rodent dorsal skin window chambers enables in vivo serial observations in the same animal, and such models which have been used to study angiogenesis and macrophage response to implanted biomaterials may also be useful for the development of particle-based vaccines. To our knowledge there have been no reports where intravital microscopy has documented real-time immune cell localization and potentially harmful co-localized tissue effects. In this proof-of-principle study we used fluorescence and spectral imaging intravital microscopy of mouse window chambers to measure macrophage localization and co-localized tissue microvessel hemoglobin saturation changes in response to an immunogenic stimulus from polymer particles loaded with lipopolysaccharide (LPS) serving as a model vaccine/adjuvant system. We observed greater and faster macrophage localization to stronger inflammatory stimuli from LPS-loaded particle doses, a trend of decreased microvessel oxygenation with increased macrophage accumulation and, in an extreme case, complete microvessel collapse accompanied by tissue necrosis. Our technique may be useful for optimizing design of particle-based vaccines and may give insight into the use of hemoglobin saturation as a biomarker of tissue inflammation for clinical investigations of particle-based vaccines.
Collapse
|
70
|
Schreml S, Szeimies R, Prantl L, Karrer S, Landthaler M, Babilas P. Oxygen in acute and chronic wound healing. Br J Dermatol 2010; 163:257-68. [DOI: 10.1111/j.1365-2133.2010.09804.x] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
71
|
Meenakshisundaram G, Pandian RP, Eteshola E, Lee SC, Kuppusamy P. A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 203:185-9. [PMID: 20006529 PMCID: PMC2822061 DOI: 10.1016/j.jmr.2009.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/02/2009] [Accepted: 11/20/2009] [Indexed: 05/21/2023]
Abstract
Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen [R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P.C. Hammel, P.T. Manoharan, P. Kuppusamy, Molecular packing and magnetic properties of lithium naphthalocyanine crystal: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen J. Mater. Chem. 19 (2009) 4138-4147]. However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation.
Collapse
Affiliation(s)
- Guruguhan Meenakshisundaram
- Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Ramasamy P. Pandian
- Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Edward Eteshola
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Stephen C. Lee
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Periannan Kuppusamy
- Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
72
|
|
73
|
Shimizu K, Hirose M, Mikami S, Takamura K, Goi T, Yamaguchi A, Morioka K, Ichikawa T, Shigemi K. Effect of anaesthesia maintained with sevoflurane and propofol on surgical site infection after elective open gastrointestinal surgery. J Hosp Infect 2010; 74:129-36. [PMID: 20061057 DOI: 10.1016/j.jhin.2009.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 10/02/2009] [Indexed: 11/28/2022]
Abstract
Perioperative increase in oxidative activity in surgical patients reportedly prevents postoperative surgical site infection (SSI). Several clinical studies have shown that oxidative activity under sevoflurane anaesthesia was higher than that under propofol anaesthesia. Therefore, we hypothesised that sevoflurane anaesthesia would discourage SSI compared with propofol anaesthesia. To examine the effect of anaesthesia maintained with sevoflurane and propofol on SSI, a total of 265 consecutive adult patients, with American Society of Anesthesiologists physical status 1-3, who underwent elective open gastrointestinal surgery under general anaesthesia, were surveyed for SSI between January 2007 and December 2008. Sevoflurane or propofol was selected to maintain anaesthesia in 95 and 170 patients, respectively. A propensity score was used for pairwise matching of these patients to avoid selection biases between the two methods of anaesthesia. Propensity matching yielded 84 pairs of patients. We compared standardised infection ratios (SIRs), i.e. the quotient of the number of SSI cases observed and the number of SSI cases expected, calculated using data from the National Nosocomial Infection Surveillance, between sevoflurane and propofol anaesthesia. After propensity matching, SIR after sevoflurane anaesthesia was 1.89 [95% confidence interval (CI): 1.46-2.32], which was significantly lower than after propofol anaesthesia (4.78; 95% CI: 4.30-5.27) (P=0.02). This study suggests that sevoflurane tends to suppress SSI after elective open gastrointestinal surgery compared with propofol.
Collapse
Affiliation(s)
- K Shimizu
- Department of Anaesthesiology and Reanimatology, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry. Biomed Microdevices 2009; 11:773-82. [PMID: 19291409 DOI: 10.1007/s10544-009-9292-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) is a promising probe for biological electron paramagnetic resonance (EPR) oximetry and is being developed for clinical use. However, clinical applicability of LiNc-BuO may be hindered by potential limitations associated with biocompatibility, biodegradation, and migration of individual crystals in tissue. To overcome these limitations, we have encapsulated LiNc-BuO crystals in polydimethyl siloxane (PDMS), an oxygen-permeable and bioinert polymer, to fabricate conveniently implantable and retrievable oxygen-sensing chips. Encapsulation was performed by a simple cast-molding process, giving appreciable control over size, shape, thickness and spin density of chips. The in vitro oxygen response of the chip was linear, reproducible, and not significantly different from that of unencapsulated crystals. Cast-molding of the structurally-flexible PDMS enabled the fabrication of chips with tailored spin densities, and ensured non-exposure of embedded LiNc-BuO, mitigating potential biocompatibility/toxicological concerns. Our results establish PDMS-encapsulated LiNc-BuO as a promising candidate for further biological evaluation and potential clinical application.
Collapse
|
75
|
Meenakshisundaram G, Eteshola E, Pandian RP, Bratasz A, Selvendiran K, Lee SC, Krishna MC, Swartz HM, Kuppusamy P. Oxygen sensitivity and biocompatibility of an implantable paramagnetic probe for repeated measurements of tissue oxygenation. Biomed Microdevices 2009; 11:817-26. [PMID: 19319683 PMCID: PMC2756533 DOI: 10.1007/s10544-009-9298-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of oxygen-sensing water-insoluble paramagnetic probes, such as lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), enables repeated measurements of pO(2) from the same location in tissue by electron paramagnetic resonance (EPR) spectroscopy. In order to facilitate direct in vivo application, and hence eventual clinical applicability, of LiNc-BuO, we encapsulated LiNc-BuO microcrystals in polydimethylsiloxane (PDMS), an oxygen-permeable and bioinert polymer, and developed an implantable chip. In vitro evaluation of the chip, performed under conditions of sterilization, high-energy irradiation, and exposure to cultured cells, revealed that it is biostable and biocompatible. Implantation of the chip in the gastrocnemius muscle tissue of mice showed that it is capable of repeated and real-time measurements of tissue oxygenation for an extended period. Functional evaluation using a murine tumor model established the suitability and applicability of the chip for monitoring tumor oxygenation. This study establishes PDMS-encapsulated LiNc-BuO as a promising choice of probe for clinical EPR oximetry.
Collapse
Affiliation(s)
- Guruguhan Meenakshisundaram
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Edward Eteshola
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Ramasamy P. Pandian
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Anna Bratasz
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Karuppaiyah Selvendiran
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Stephen C. Lee
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Murali C. Krishna
- Biophysics Spectroscopy Section, Radiation Biology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Harold M. Swartz
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Periannan Kuppusamy
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
76
|
Abstract
BACKGROUND Age-related impairments in wound healing are associated with decreased neovascularization, a process that is regulated by hypoxia-responsive cytokines, including stromal cell-derived factor (SDF)-1 alpha. Interleukin-1 beta is an important inflammatory cytokine involved in wound healing and is believed to regulate SDF-1 alpha expression independent of hypoxia signaling. Thus, the authors examined the relative importance of interleukin (IL)-1 beta and hypoxia-inducible factor (HIF)-1 alpha on SDF-1 alpha expression in aged wound healing. METHODS Young and aged mice (n = 4 per group) were examined for wound healing using a murine excisional wound model. Wounds were harvested at days 0, 1, 3, 5, and 7 for histologic analysis, immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot. An engineered wild-type and mutated SDF luciferase reporter construct were used to determine HIF transactivation. RESULTS Aged mice demonstrated significantly impaired wound healing, reduced granulation tissue, and increased epithelial gap compared with young controls. Real-time polymerase chain reaction demonstrated reduced SDF-1 alpha levels in aged wounds that correlated with reduced CD31+ neovessels. Western blots revealed decreased HIF-1 alpha protein in aged wounds. However, both IL-1 beta and macrophage infiltrate were unchanged between young and aged animals. Using the wild-type and mutated SDF luciferase reporter construct in which the hypoxia response element was deleted, only young fibroblasts were able to respond to IL-1 beta stimulation, and this response was abrogated by mutating the HIF-binding sites. This suggests that HIF binding is essential for SDF-1 transactivation in response to both inflammatory and hypoxic stimuli. CONCLUSIONS SDF-1 alpha deficiency observed during aged wound healing is attributable predominantly to decreased HIF-1 alpha levels rather than impaired IL-1 beta expression.
Collapse
|
77
|
Davis P, Wood L, Wood Z, Eaton A, Wilkins J. Clinical experience with a glucose oxidase-containing dressing on recalcitrant wounds. J Wound Care 2009; 18:114, 116-121. [DOI: 10.12968/jowc.2009.18.3.39812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P. Davis
- Universities of Canterbury, Warwick and Exeter, and Chief Scientist, Insense
| | | | | | - A. Eaton
- Archimed Wound Care Division, Insense, Bedford, UK
| | - J. Wilkins
- Archimed Wound Care Division, Insense, Bedford, UK
| |
Collapse
|
78
|
Abstract
The state of wound oxygenation is a key determinant of healing outcomes. From a diagnostic standpoint, measurements of wound oxygenation are commonly used to guide treatment planning such as amputation decision. In preventive applications, optimizing wound perfusion and providing supplemental O(2) in the perioperative period reduces the incidence of postoperative infections. Correction of wound pO(2) may, by itself, trigger some healing responses. Importantly, approaches to correct wound pO(2) favorably influence outcomes of other therapies such as responsiveness to growth factors and acceptance of grafts. Chronic ischemic wounds are essentially hypoxic. Primarily based on the tumor literature, hypoxia is generally viewed as being angiogenic. This is true with the condition that hypoxia be acute and mild to modest in magnitude. Extreme near-anoxic hypoxia, as commonly noted in problem wounds, is not compatible with tissue repair. Adequate wound tissue oxygenation is required but may not be sufficient to favorably influence healing outcomes. Success in wound care may be improved by a personalized health care approach. The key lies in our ability to specifically identify the key limitations of a given wound and in developing a multifaceted strategy to specifically address those limitations. In considering approaches to oxygenate the wound tissue it is important to recognize that both too little as well as too much may impede the healing process. Oxygen dosing based on the specific need of a wound therefore seems prudent. Therapeutic approaches targeting the oxygen sensing and redox signaling pathways are promising.
Collapse
Affiliation(s)
- Chandan K Sen
- The Comprehensive Wound Center, Department of Surgery and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
79
|
Nanney LB, Woodrell CD, Greives MR, Cardwell NL, Pollins AC, Bancroft TA, Chesser A, Michalak M, Rahman M, Siebert JW, Gold LI. Calreticulin enhances porcine wound repair by diverse biological effects. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:610-30. [PMID: 18753412 DOI: 10.2353/ajpath.2008.071027] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular functions of the endoplasmic reticulum chaperone protein calreticulin (CRT) are emerging. Here we show novel roles for exogenous CRT in both cutaneous wound healing and diverse processes associated with repair. Compared with platelet-derived growth factor-BB-treated controls, topical application of CRT to porcine excisional wounds enhanced the rate of wound re-epithelialization. In both normal and steroid-impaired pigs, CRT increased granulation tissue formation. Immunohistochemical analyses of the wounds 5 and 10 days after injury revealed marked up-regulation of transforming growth factor-beta3 (a key regulator of wound healing), a threefold increase in macrophage influx, and an increase in the cellular proliferation of basal keratinocytes of the new epidermis and of cells of the neodermis. In vitro studies confirmed that CRT induced a greater than twofold increase in the cellular proliferation of primary human keratinocytes, fibroblasts, and microvascular endothelial cells (with 100 pg/ml, 100 ng/ml, and 1.0 pg/ml, respectively). Moreover, using a scratch plate assay, CRT maximally induced the cellular migration of keratinocytes and fibroblasts (with 10 pg/ml and 1 ng/ml, respectively). In addition, CRT induced concentration-dependent migration of keratinocytes, fibroblasts macrophages, and monocytes in chamber assays. These in vitro bioactivities provide mechanistic support for the positive biological effects of CRT observed on both the epidermis and dermis of wounds in vivo, underscoring a significant role for CRT in the repair of cutaneous wounds.
Collapse
Affiliation(s)
- Lillian B Nanney
- Department of Plastic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Littlewood KE. The immunocompromised adult patient and surgery. Best Pract Res Clin Anaesthesiol 2008; 22:585-609. [DOI: 10.1016/j.bpa.2008.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
81
|
Dudas M, Wysocki A, Gelpi B, Tuan TL. Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res 2008; 63:502-12. [PMID: 18427295 DOI: 10.1203/pdr.0b013e31816a7453] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
When a sheep loses its tail, it cannot regenerate it in the manner of lizards. On the other hand, it is possible to clone mammals from somatic cells, showing that a complete developmental program is intact in a wounded sheep's tail the same way it is in a lizard. Thus, there is a requirement for more than only the presence of the entire genetic code in somatic cells for regenerative abilities. Thoughts like this have motivated us to assemble more than just a factographic synopsis on tissue regeneration. As a model, we review skin wound healing in chronological order, and when possible, we use that overview as a framework to point out possible mechanisms of how damaged tissues can restore their original structure. This article postulates the existence of tissue structural memory as a complex distributed homeostatic mechanism. We support such an idea by referring to an extremely fragmented literature base, trying to synthesize a broad picture of important principles of how tissues and organs may store information about their own structure for the purposes of regeneration. Selected developmental, surgical, and tissue engineering aspects are presented and discussed in the light of recent findings in the field. When a sheep loses its tail, it cannot regenerate it in the manner of lizards. On the other hand, it is possible to clone mammals from somatic cells, showing that a complete developmental program is intact in a wounded sheep's tail the same way it is in a lizard. Thus, there is a requirement for more than only the presence of the entire genetic code in somatic cells for regenerative abilities. Thoughts like this have motivated us to assemble more than just a factographic synopsis on tissue regeneration. As a model, we review skin wound healing in chronological order, and when possible, we use that overview as a framework to point out possible mechanisms of how damaged tissues can restore their original structure. This article postulates the existence of tissue structural memory as a complex distributed homeostatic mechanism. We support such an idea by referring to an extremely fragmented literature base, trying to synthesize a broad picture of important principles of how tissues and organs may store information about their own structure for the purposes of regeneration. Selected developmental, surgical, and tissue engineering aspects are presented and discussed in the light of recent findings in the field.
Collapse
Affiliation(s)
- Marek Dudas
- Developmental Biology Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|