51
|
Jin YC, Lee HG, Xu CX, Han JA, Choi SH, Song MK, Kim YJ, Lee KB, Kim SK, Kang HS, Cho BW, Shin TS, Choi YJ. Proteomic analysis of endogenous conjugated linoleic acid biosynthesis in lactating rats and mouse mammary gland epithelia cells (HC11). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:745-51. [DOI: 10.1016/j.bbapap.2009.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
52
|
Montezano AC, Burger D, Paravicini TM, Chignalia AZ, Yusuf H, Almasri M, He Y, Callera GE, He G, Krause KH, Lambeth D, Quinn MT, Touyz RM. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ Res 2010; 106:1363-73. [PMID: 20339118 DOI: 10.1161/circresaha.109.216036] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Although Nox5 (Nox2 homolog) has been identified in the vasculature, its regulation and functional significance remain unclear. OBJECTIVES We sought to test whether vasoactive agents regulate Nox5 through Ca(2+)/calmodulin-dependent processes and whether Ca(2+)-sensitive Nox5, associated with Rac-1, generates superoxide (O(2)(*-)) and activates growth and inflammatory responses via mitogen-activated protein kinases in human endothelial cells (ECs). METHODS AND RESULTS Cultured ECs, exposed to angiotensin II (Ang II) and endothelin (ET)-1 in the absence and presence of diltiazem (Ca(2+) channel blocker), calmidazolium (calmodulin inhibitor), and EHT1864 (Rac-1 inhibitor), were studied. Nox5 was downregulated with small interfering RNA. Ang II and ET-1 increased Nox5 expression (mRNA and protein). Effects were inhibited by actinomycin D and cycloheximide and blunted by diltiazem, calmidazolium and low extracellular Ca(2+) ([Ca(2+)](e)). Ang II and ET-1 activated NADPH oxidase, an effect blocked by low [Ca(2+)](e), but not by EHT1864. Nox5 knockdown abrogated agonist-stimulated O(2)(*-) production and inhibited phosphorylation of extracellular signal-regulated kinase (ERK)1/2, but not p38 MAPK (mitogen-activated protein kinase) or SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase). Nox5 small interfering RNA blunted Ang II-induced, but not ET-1-induced, upregulation of proliferating-cell nuclear antigen and vascular cell adhesion molecule-1, important in growth and inflammation. CONCLUSIONS Human ECs possess functionally active Nox5, regulated by Ang II and ET-1 through Ca(2+)/calmodulin-dependent, Rac-1-independent mechanisms. Nox5 activation by Ang II and ET-1 induces ROS generation and ERK1/2 phosphorylation. Nox5 is involved in ERK1/2-regulated growth and inflammatory signaling by Ang II but not by ET-1. We elucidate novel mechanisms whereby vasoactive peptides regulate Nox5 in human ECs and demonstrate differential Nox5-mediated functional responses by Ang II and ET-1. Such phenomena link Ca(2+)/calmodulin to Nox5 signaling, potentially important in the regulation of endothelial function by Ang II and ET-1.
Collapse
Affiliation(s)
- Augusto C Montezano
- Kidney Research Centre, University of Ottawa, 451 Smyth Rd, Ottawa, K1H 8M5, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Santos CXC, Tanaka LY, Wosniak J, Laurindo FRM. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 2009; 11:2409-27. [PMID: 19388824 DOI: 10.1089/ars.2009.2625] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular mechanisms governing redox homeostasis likely involve their integration with other stresses. Endoplasmic reticulum (ER) stress triggers complex adaptive or proapoptotic signaling defined as the unfolded protein response (UPR), involved in several pathophysiological processes. Since protein folding is highly redox-dependent, convergence between ER stress and oxidative stress has attracted interest. Evidence suggests that ROS production and oxidative stress are not only coincidental to ER stress, but are integral UPR components, being triggered by distinct types of ER stressors and contributing to support proapoptotic, as well as proadaptive UPR signaling. Thus, ROS generation can be upstream or downstream UPR targets and may display a UPR-specific plus a nonspecific component. Enzymatic mechanisms of ROS generation during UPR include: (a) Multiple thiol-disulfide exchanges involving ER oxidoreductases including flavooxidase Ero1 and protein disulfide isomerase (PDI); (b) Mitochondrial electron transport; (c) Nox4 NADPH oxidase complex, particularly Nox4. Understanding the roles of such mechanisms and how they interconnect with the UPR requires more investigation. Integration among such ROS sources may depend on Ca(2+) levels, ROS themselves, and PDI, which associates with NADPH oxidase and regulates its function. Oxidative stress may frequently integrate with a background of ER stress/UPR in several diseases; here we discuss a focus in the vascular system.
Collapse
Affiliation(s)
- Célio X C Santos
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, CEP 05403-000, São Paulo, Brazil
| | | | | | | |
Collapse
|
54
|
Tian F, Zhou X, Wikström J, Karlsson H, Sjöland H, Gan LM, Borén J, Akyürek LM. Protein disulfide isomerase increases in myocardial endothelial cells in mice exposed to chronic hypoxia: a stimulatory role in angiogenesis. Am J Physiol Heart Circ Physiol 2009; 297:H1078-86. [PMID: 19617410 DOI: 10.1152/ajpheart.00937.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that exposure to chronic hypoxia protects against myocardial infarction, but little is known about the cellular and molecular mechanisms involved. Here we observed that chronic hypoxia for 3 wk resulted in improved survival of mice (from 64% to 83%), reduced infarction size (from 45 +/- 4% to 32 +/- 4%, P < 0.05), increased cardiac ejection fraction (from 19 +/- 4% to 35 +/- 5%, P < 0.05), coronary flow velocity under adenosine-induced hyperemia (from 58 +/- 2 to 75 +/- 5 cm/s, P < 0.05), myocardial capillary density (from 3,772 +/- 162 to 4,760 +/- 197 capillaries/mm(2), P < 0.01), and arteriolar density (from 8.04 +/- 0.76 to 10.34 +/- 0.69 arterioles/mm(2), P < 0.05) 3 wk after myocardial infarction. With two-dimensional gel electrophoresis, we identified that protein disulfide isomerase (PDI) was highly upregulated in hypoxic myocardial capillary endothelial cells. The loss of PDI function in endothelial cells by small interfering RNA significantly increased the number of apoptotic cells (by 3.4-fold at hypoxia, P < 0.01) and reduced migration (by 52% at hypoxia, P < 0.001) and adhesion to collagen I (by 42% at hypoxia, P < 0.01). In addition, the specific inhibition of PDI by PDI small interfering RNA (by 46%, P < 0.01) and bacitracin (by 72%, P < 0.001) reduced the formation of tubular structures by endothelial cells. Our data indicate that chronic hypoxic exposure improves coronary blood flow and protects the myocardium against infarction. These beneficial effects may be partly explained by the increased endothelial expression of PDI, which protects cells against apoptosis and increases cellular migration, adhesion, and tubular formation. The increased PDI expression in endothelial cells may be a novel mechanism to protect the myocardium against myocardial ischemic diseases.
Collapse
Affiliation(s)
- Fei Tian
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, University of Gothenburg, SE-413 45 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW Molecular mechanisms contributing to the pathoetiology of hypertension are complex, involving many interacting systems such as signaling through G protein-coupled receptors, the renin-angiotensin system, vascular inflammation and remodeling, vascular senescence and aging and developmental programming, as highlighted in the current issue of the journal. Common to these systems is NADPH oxidase-derived reactive oxygen species (ROS). This editorial highlights current concepts relating to the production of ROS in hypertension and focuses on the Nox family NADPH oxidases, major sources of free radicals in the cardiovascular and renal systems. RECENT FINDINGS ROS play a major role as intracellular signaling molecules to regulate normal biological cellular responses. In pathological conditions, loss of redox homeostasis contributes to vascular oxidative damage. Recent evidence indicates that specific enzymes, the Nox family of NADPH oxidases, have the sole function of generating ROS in a highly regulated fashion in physiological conditions, and that in disease states, hyperactivation of Noxes contributes to oxidative stress and consequent cardiovascular and renal injury. The Nox family comprises seven members, Nox1-Nox7. Nox1, Nox2 (gp91phox-containing NADPH oxidase), Nox4 and Nox5 have been identified in the cardiovascular-renal systems and have been implicated in the pathophysiology of cardiovascular and renal disease. SUMMARY Noxes, which are differentially regulated in hypertension, are major sources of cardiovascular and renal oxidative stress. This has evoked considerable interest because of the possibilities that therapies targeted against specific Nox isoforms to decrease ROS generation or to increase nitric oxide availability or both may be useful in minimizing vascular injury and renal dysfunction, and thereby prevent or regress target organ damage associated with hypertension.
Collapse
|
56
|
Santos CXC, Stolf BS, Takemoto PVA, Amanso AM, Lopes LR, Souza EB, Goto H, Laurindo FRM. Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages. J Leukoc Biol 2009; 86:989-98. [PMID: 19564574 DOI: 10.1189/jlb.0608354] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PDI, a redox chaperone, is involved in host cell uptake of bacteria/viruses, phagosome formation, and vascular NADPH oxidase regulation. PDI involvement in phagocyte infection by parasites has been poorly explored. Here, we investigated the role of PDI in in vitro infection of J774 macrophages by amastigote and promastigote forms of the protozoan Leishmania chagasi and assessed whether PDI associates with the macrophage NADPH oxidase complex. Promastigote but not amastigote phagocytosis was inhibited significantly by macrophage incubation with thiol/PDI inhibitors DTNB, bacitracin, phenylarsine oxide, and neutralizing PDI antibody in a parasite redox-dependent way. Binding assays indicate that PDI preferentially mediates parasite internalization. Bref-A, an ER-Golgi-disrupting agent, prevented PDI concentration in an enriched macrophage membrane fraction and promoted a significant decrease in infection. Promastigote phagocytosis was increased further by macrophage overexpression of wild-type PDI and decreased upon transfection with an antisense PDI plasmid or PDI siRNA. At later stages of infection, PDI physically interacted with L. chagasi, as revealed by immunoprecipitation data. Promastigote uptake was inhibited consistently by macrophage preincubation with catalase. Additionally, loss- or gain-of-function experiments indicated that PMA-driven NADPH oxidase activation correlated directly with PDI expression levels. Close association between PDI and the p22phox NADPH oxidase subunit was shown by confocal colocalization and coimmunoprecipitation. These results provide evidence that PDI not only associates with phagocyte NADPH oxidase but also that PDI is crucial for efficient macrophage infection by L. chagasi.
Collapse
Affiliation(s)
- Célio X C Santos
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, CEP 05403-000; São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Fernandes DC, Manoel AHO, Wosniak J, Laurindo FR. Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure. Arch Biochem Biophys 2009; 484:197-204. [PMID: 19402212 DOI: 10.1016/j.abb.2009.01.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mechanisms regulating NADPH oxidase remain open and include the redox chaperone protein disulfide isomerase (PDI). Here, we further investigated PDI effects on vascular NADPH oxidase. VSMC transfected with wild-type PDI (wt-PDI) or PDI mutated in all four redox cysteines (mut-PDI) enhanced (2.5-fold) basal cellular ROS production and membrane NADPH oxidase activity, with 3-fold increase in Nox1, but not Nox4 mRNA. However, further ROS production, NADPH oxidase activity and Nox1 mRNA increase triggered by angiotensin-II (AngII) were totally lost with PDI overexpression, suggesting preemptive Nox1 activation in such cells. PDI overexpression increased Nox4 mRNA after AngII stimulus, although without parallel ROS increase. We also show that Nox inhibition by the nitric oxide donor GSNO is independent of PDI. PDI silencing decreased specifically Nox1 mRNA and protein, confirming that PDI may regulate Nox1 at transcriptional level in VSMC. Such data further strengthen the role of PDI as novel NADPH oxidase regulator.
Collapse
Affiliation(s)
- Denise C Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Eneas Carvalho Aguiar 44, Annex II, 9th Floor, CEP 05403-000 São Paulo, Brazil
| | | | | | | |
Collapse
|
58
|
Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 2009; 11:841-60. [PMID: 18828698 PMCID: PMC2850292 DOI: 10.1089/ars.2008.2231] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.
Collapse
|
59
|
Khanna S, Park HA, Sen CK, Golakoti T, Sengupta K, Venkateswarlu S, Roy S. Neuroprotective and antiinflammatory properties of a novel demethylated curcuminoid. Antioxid Redox Signal 2009; 11:449-68. [PMID: 18724833 PMCID: PMC2787730 DOI: 10.1089/ars.2008.2230] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 12/24/2022]
Abstract
A demethylated derivative of curcumin (DC; 67.8% bisdemethylcurcumin, 20.7% demethylmonodemethoxycurcumin, 5.86% bisdemethoxycurcumin, 2.58% demethylcurcumin) was prepared by using a 95% extract of curcumin (C(95); 72.2% curcumin, 18.8% monodemethoxycurcumin, 4.5% bisdemethoxycurcumin). DC increased glutathione and reduced reactive oxygen species (ROS) in HT4 neuronal cells. In a model of glutamate-induced death of HT4, DC was more effective than C(95) in neuroprotection. The protective effects of DC were retained even when DC was withdrawn from culture media after pretreatment. DC treatment, unlike an equal dose of C(95), completely spared glutamate-induced loss of cellular GSH. Both DC and C(95) prevented glutamate-induced elevation of cellular ROS but failed to attenuate glutamate-induced elevation of intracellular calcium. In human microvascular endothelial cells (HMECs) challenged with TNF-alpha, GeneChip analysis revealed that only a subcluster of 23 TNF-alpha-inducible genes were uniquely sensitive to C(95). In sharp contrast, 1,065 TNF-alpha-inducible genes were sensitive to DC but not to C(95), suggesting that DC was more effective in antagonizing the effects of TNF-alpha on HMECs. Functional analysis identified that the genes uniquely sensitive to DC belonged in four functional categories: cytokine-receptor interaction, focal adhesion, cell adhesion, and apoptosis. Real-time PCR as well as ELISA studies demonstrated that TNF-alpha-inducible CXCL10 and CXCL11 expression was sensitive to DC but not to C(95). Flow-cytometry studies recognized ICAM-1 and VCAM-1 as TNF-alpha-inducible adhesion molecules that were uniquely sensitive to DC. Taken together, DC exhibited promising neuroprotective and antiinflammatory properties that must be characterized in vivo.
Collapse
Affiliation(s)
- Savita Khanna
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Han-A Park
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Chandan K. Sen
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | | | | | | | - Sashwati Roy
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
60
|
Touyz RM, Schiffrin EL. Reactive oxygen species and hypertension: a complex association. Antioxid Redox Signal 2008; 10:1041-4. [PMID: 18315497 DOI: 10.1089/ars.2007.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Rhian M. Touyz
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Ernesto L. Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|