51
|
Kim JY, Park YJ, Kim KJ, Choi JJ, Kim WU, Cho CS. Osteoprotegerin causes apoptosis of endothelial progenitor cells by induction of oxidative stress. ACTA ACUST UNITED AC 2013; 65:2172-82. [PMID: 23666878 DOI: 10.1002/art.37997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 04/24/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Elevated serum osteoprotegerin (OPG) levels represent an independent risk factor for atherosclerotic disease, although the underlying mechanism is not clear. The aim of this study was to investigate the association of serum OPG levels and circulating endothelial progenitor cell (EPC) numbers, and to explore the effect of OPG on EPC apoptosis and its underlying mechanisms. METHODS Flow cytometry was used to enumerate EPCs in the peripheral blood of 91 patients with systemic lupus erythematosus (SLE). Cultured EPCs, isolated from peripheral blood, were challenged with OPG, and apoptosis was evaluated by TUNEL staining. Expression of apoptosis-related proteins was measured by real-time quantitative polymerase chain reaction (qPCR) and Western blotting. Reactive oxygen species (ROS) were detected by flow cytometry, and the expression of NADPH oxidase (NOX) and MAP kinases (MAPK) was measured by qPCR and Western blotting. RESULTS The serum OPG level was independently associated with reduced numbers of EPCs in patients with SLE. In vitro treatment with OPG significantly induced apoptosis of EPCs; this effect was mediated by syndecan 4. OPG-induced apoptosis was abolished by the ROS scavenger N-acetylcysteine and the NOX inhibitor diphenyleniodonium. OPG increased ROS production through activation of NOX-2 and NOX-4 and triggered phosphorylation of ERK-1/2 and p38 MAPK. Quenching of ROS by knockdown of NOX-2 or NOX-4 transcripts inhibited phosphorylation of ERK-1/2 and p38 MAPK. Moreover, inhibitors of ERK-1/2 and p38 MAPK decreased ROS production and subsequent EPC apoptosis, indicating a feed-forward loop between NOX and MAPK to amplify ROS production related to apoptosis. CONCLUSION Elevated OPG levels increase apoptosis of EPCs by induction of oxidative stress.
Collapse
Affiliation(s)
- Ji-Young Kim
- Catholic Research Institutes of Medical Sciences, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
52
|
Scott E, Loya K, Mountford J, Milligan G, Baker AH. MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies. Free Radic Biol Med 2013; 64:52-60. [PMID: 23665307 DOI: 10.1016/j.freeradbiomed.2013.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022]
Abstract
Human embryonic (hESC) and induced pluripotent (hiPSC) stem cells have broad therapeutic potential in the treatment of a range of diseases, including those of the vascular system. Both hESCs and hiPSCs have the capacity for indefinite self-renewal, in addition to their ability to differentiate into any adult cell type. These cells could provide a potentially unlimited source of cells for transplantation and, therefore, provide novel treatments, e.g. in the production of endothelial cells for vascular regeneration. MicroRNAs are short, noncoding RNAs that act posttranscriptionally to control gene expression and thereby exert influence over a wide range of cellular processes, including maintenance of pluripotency and differentiation. Expression patterns of these small RNAs are tissue specific, and changes in microRNA levels have often been associated with disease states in humans, including vascular pathologies. Here, we review the roles of microRNAs in endothelial cell function and vascular disease, as well as their role in the differentiation of pluripotent stem cells to the vascular endothelial lineage. Furthermore, we discuss the therapeutic potential of stem cells and how knowledge and manipulation of microRNAs in stem cells may enhance their capacity for vascular regeneration.
Collapse
Affiliation(s)
- Elizabeth Scott
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | |
Collapse
|
53
|
Ligi I, Simoncini S, Tellier E, Grandvuillemin I, Marcelli M, Bikfalvi A, Buffat C, Dignat-George F, Anfosso F, Simeoni U. Altered angiogenesis in low birth weight individuals: a role for anti-angiogenic circulating factors. J Matern Fetal Neonatal Med 2013; 27:233-8. [DOI: 10.3109/14767058.2013.807237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
54
|
Liu Y, Wei J, Chang M, Liu Z, Li D, Hu S, Hu L. Proteomic analysis of endothelial progenitor cells exposed to oxidative stress. Int J Mol Med 2013; 32:607-14. [PMID: 23778534 DOI: 10.3892/ijmm.2013.1419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/30/2013] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) repair vascular damage and participate in neovascularization. Accumulating evidence has demonstrated that EPCs have therapeutic potential in reactive oxygen species (ROS)-mediated vascular diseases. In this study, to investigate the effects of oxidative stress on EPCs, EPCs were treated with H2O2 at different final concentrations for 3 h. MTT assay, scratch-wound assay and Matrigel invasion assay revealed that cell proliferation, migration and tubule formation and function, respectively, were impaired under H2O2 stress in a concentration-dependent manner. To determine protein response to H2O2 stress, two-dimensional differential in-gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry were performed. The results revealed that triosephosphate isomerase and ADP-sugar pyrophosphatase were downregulated, while peroxiredoxin-2, thioredoxin-dependent peroxide reductase, mitochondrial (Prx‑3), peroxiredoxin-6, EGF-containing fibulin-like extracellular matrix protein 1, vimentin and Rab GDP dissociation inhibitor α were upregulated in the H2O2-treated EPCs. To further confirm the results from mass spectrometry, the expression pattern of Prx-3 in response to H2O2 stress was examined by western blot analysis. The data presented in this study provide novel insight into the defensive mechanisms of EPCs and the pathways of oxidative damage in an oxidative environment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | | | | | | | | | | | | |
Collapse
|
55
|
Mechanisms underlying protective effects of trimetazidine on endothelial progenitor cells biological functions against H2O2-induced injury: Involvement of antioxidation and Akt/eNOS signaling pathways. Eur J Pharmacol 2013; 707:87-94. [DOI: 10.1016/j.ejphar.2013.03.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
|
56
|
Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis 2013; 4:e537. [PMID: 23492768 PMCID: PMC3613828 DOI: 10.1038/cddis.2013.50] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | |
Collapse
|
57
|
Aleksinskaya MA, van Faassen EEH, Nelissen J, Janssen BJA, De Mey JGR, Hanemaaijer R, Rabelink T, van Zonneveld AJ. Identification of free nitric oxide radicals in rat bone marrow: implications for progenitor cell mobilization in hypertension. PLoS One 2013; 8:e57761. [PMID: 23554866 PMCID: PMC3595254 DOI: 10.1371/journal.pone.0057761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/24/2013] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide (NO) has been implicated in matrix metallopeptidase 9 (MMP9)-dependent mobilization of hematopoietic stem and progenitor cells from bone marrow (BM). However, direct measurement of NO in the BM remained elusive due to its low in situ concentration and short lifetime. Using NO spin trapping and electron paramagnetic resonance (EPR) spectroscopy we give the first experimental confirmation of free NO radicals in rodent BM. NO production was quantified and attributed to enzymatic activity of NO synthases (NOS). Although endothelial NOS (eNOS) accounts for most (66%) of basal NO, we identified a significant contribution (23%) from inducible NOS (iNOS). Basal NO levels closely correlate with MMP9 bioavailability in BM of both hypertensive and control rats. Our observations support the hypothesis that inadequate mobilization of BM-derived stem and progenitor cells in hypertension results from impaired NOS/NO/MMP9 signalling in BM, a condition that may be corrected with pharmacological intervention.
Collapse
Affiliation(s)
- Marina A Aleksinskaya
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Urao N, Ushio-Fukai M. Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 2013; 54:26-39. [PMID: 23085514 PMCID: PMC3637653 DOI: 10.1016/j.freeradbiomed.2012.10.532] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 01/19/2023]
Abstract
Bone marrow (BM)-derived stem and progenitor cell functions including self-renewal, differentiation, survival, migration, proliferation, and mobilization are regulated by unique cell-intrinsic and -extrinsic signals provided by their microenvironment, also termed the "niche." Reactive oxygen species (ROS), especially hydrogen peroxide (H(2)O(2)), play important roles in regulating stem and progenitor cell functions in various physiologic and pathologic responses. The low level of H(2)O(2) in quiescent hematopoietic stem cells (HSCs) contributes to maintaining their "stemness," whereas a higher level of H(2)O(2) within HSCs or their niche promotes differentiation, proliferation, migration, and survival of HSCs or stem/progenitor cells. Major sources of ROS are NADPH oxidase and mitochondria. In response to ischemic injury, ROS derived from NADPH oxidase are increased in the BM microenvironment, which is required for hypoxia and hypoxia-inducible factor-1α expression and expansion throughout the BM. This, in turn, promotes progenitor cell expansion and mobilization from BM, leading to reparative neovascularization and tissue repair. In pathophysiological states such as aging, atherosclerosis, heart failure, hypertension, and diabetes, excess amounts of ROS create an inflammatory and oxidative microenvironment, which induces cell damage and apoptosis of stem and progenitor cells. Understanding the molecular mechanisms of how ROS regulate the functions of stem and progenitor cells and their niche in physiological and pathological conditions will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
59
|
Lin CP, Lin FY, Huang PH, Chen YL, Chen WC, Chen HY, Huang YC, Liao WL, Huang HC, Liu PL, Chen YH. Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen species and inflammation. BIOMED RESEARCH INTERNATIONAL 2012; 2013:845037. [PMID: 23484163 PMCID: PMC3591199 DOI: 10.1155/2013/845037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
Endothelial progenitor cells (EPCs) move towards injured endothelium or inflamed tissues and incorporate into foci of neovascularisation, thereby improving blood flow and tissue repair. Patients with cardiovascular diseases have been shown to exhibit reduced EPC number and function. It has become increasingly apparent that these changes may be effected in response to enhanced oxidative stress, possibly as a result of systemic and localised inflammatory responses. The interplay between inflammation and oxidative stress affects the initiation, progression, and complications of cardiovascular diseases. Recent studies suggest that inflammation and oxidative stress modulate EPC bioactivity. Clinical medications with anti-inflammatory and antioxidant properties, such as statins, thiazolidinediones, angiotensin II receptor 1 blockers, and angiotensin-converting enzyme inhibitors, are currently administered to patients with cardiovascular diseases. These medications appear to exert beneficial effects on EPC biology. This review focuses on EPC biology and explores the links between oxidative stress, inflammation, and development of cardiovascular diseases.
Collapse
Affiliation(s)
- Chih-Pei Lin
- Department of Biotechnology and Laboratory Science in Medicine and Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine and Divisions of Biochemistry and Cardiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, Taipei Medical University and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Po-Hsun Huang
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine and Divisions of Biochemistry and Cardiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Chuen Huang
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Huey-Chun Huang
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
60
|
Lembo C, Lopez-Aguilera F, Diez ER, Renna N, Vazquez-Prieto M, Miatello RM. Apoptosis of endothelial progenitor cells in a metabolic syndrome experimental model. J Cardiovasc Dis Res 2012; 3:296-304. [PMID: 23233774 PMCID: PMC3516010 DOI: 10.4103/0975-3583.102709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim: This study tests the hypothesis postulating that metabolic syndrome induced by chronic administration of fructose to spontaneously hypertensive rats (FFHR) generates impairment in vascular repair by endothelial progenitor cells (EPC). Materials and Methods: To characterize the vascular adverse environment present in this experimental model we measured: NAD(P)H oxidase activity, eNOS activity, presence of apoptosis in the arterial wall, all these parameters were most affected in the FFHR group. Also, we found decreased level and proliferative capacity of EPC measured by flow cytometry and colonies forming units assay in cultured cells, respectively, in both groups treated with fructose; FFHR (SHR fructose fed rats) and FFR (WKY fructose fed rats) compared with their controls; SHR and WKY. Results: The fructose-fed groups FFR and SHR also showed an incremented number of apoptotic (annexinV+/7AADdim) EPC measured by flow cytometry that returns to almost normal values after eliminating fructose administration. Conclusion: Our findings suggest that increased apoptosis levels of EPC generated in this experimental model could bein part the underlying cause for the impaired vascular repair by in EPC.
Collapse
Affiliation(s)
- Carina Lembo
- Department of Pathology, School of Medicine, National University of Cuyo, Institute of Experimental Medicine and Biology of Cuyo (IMB ECU), CONICET, Mendoza, Argentina ; Perinatal Brain Development Section, Institute of Hystology and Embriology of Cuyo Dr. Marcos Burgos (HIEM), CONICET, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
61
|
Collaco JM, Romer LH, Stuart BD, Coulson JD, Everett AD, Lawson EE, Brenner JI, Brown AT, Nies MK, Sekar P, Nogee LM, McGrath-Morrow SA. Frontiers in pulmonary hypertension in infants and children with bronchopulmonary dysplasia. Pediatr Pulmonol 2012; 47:1042-53. [PMID: 22777709 PMCID: PMC3963167 DOI: 10.1002/ppul.22609] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/19/2012] [Indexed: 12/23/2022]
Abstract
Pulmonary hypertension (PH) is an increasingly recognized complication of premature birth and bronchopulmonary dysplasia (BPD), and is associated with increased morbidity and mortality. Extreme phenotypic variability exists among preterm infants of similar gestational ages, making it difficult to predict which infants are at increased risk for developing PH. Intrauterine growth retardation or drug exposures, postnatal therapy with prolonged positive pressure ventilation, cardiovascular shunts, poor postnatal lung and somatic growth, and genetic or epigenetic factors may all contribute to the development of PH in preterm infants with BPD. In addition to the variability of severity of PH, there is also qualitative variability seen in PH, such as the variable responses to vasoactive medications. To reduce the morbidity and mortality associated with PH, a multi-pronged approach is needed. First, improved screening for and increased recognition of PH may allow for earlier treatment and better clinical outcomes. Second, identification of both prenatal and postnatal risk factors for the development of PH may allow targeting of therapy and resources for those at highest risk. Third, understanding the pathophysiology of the preterm pulmonary vascular bed may help improve outcomes through recognizing pathways that are dysregulated in PH, identifying novel biomarkers, and testing novel treatments. Finally, the recognition of conditions and exposures that may exacerbate or lead to recurrent PH is needed to help with developing treatment guidelines and preventative strategies that can be used to reduce the burden of disease.
Collapse
Affiliation(s)
- Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2533, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kaewsuwan S, Song SY, Kim JH, Sung JH. Mimicking the functional niche of adipose-derived stem cells for regenerative medicine. Expert Opin Biol Ther 2012; 12:1575-88. [PMID: 22953993 DOI: 10.1517/14712598.2012.721763] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A stem cell (SC) niche is defined as the microenvironment in which the adult SC resides and includes surrounding cells, low oxygen content and growth factor gradients. Crosstalk between SCs and their niche provides signals that keep SCs quiescent, or modulates their activation. AREAS COVERED This review discusses the characterization of niche conditions in the adipose-derived stem cell (ASC) in vivo environment, and introduces key signalling pathways and autocrine/paracrine regulators of ASCs. EXPERT OPINION Control of in vivo niche factors (such as low oxygen content, generation of reactive oxygen species and activation of platelet-derived growth factor receptor signalling) should increase ASC yields synergistically and reduce production costs. Additionally, the preconditioning of ASCs with these niche factors prior to transplantation might enhance their regenerative potential. ASC niche is complex, and there are components of the niche that we may not yet understand. Therefore, future research needs to focus on identifying the key regulatory factors of the ASC niche in vivo, and developing a novel method to mimic these niche factors for in vitro manipulation.
Collapse
|
63
|
Wood JA, Colletti E, Mead LE, Ingram D, Porada CD, Zanjani ED, Yoder MC, Almeida-Porada G. Distinct contribution of human cord blood-derived endothelial colony forming cells to liver and gut in a fetal sheep model. Hepatology 2012; 56:1086-96. [PMID: 22488442 PMCID: PMC3396735 DOI: 10.1002/hep.25753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/23/2012] [Indexed: 12/22/2022]
Abstract
UNLABELLED Although the vasculogenic potential of circulating and cord blood (CB)-derived endothelial colony-forming cells (ECFC) has been demonstrated in vitro and in vivo, little is known about the inherent biologic ability of these cells to home to different organs and contribute to tissue-specific cell populations. Here we used a fetal sheep model of in utero transplantation to investigate and compare the intrinsic ability of human CB-derived ECFC to migrate to the liver and to the intestine, and to define ECFC's intrinsic ability to integrate and contribute to the cytoarchitecture of these same organs. ECFCs were transplanted by an intraperitoneal or intrahepatic route (IH) into fetal sheep at concentrations ranging from 1.1-2.6 × 10(6) cells/fetus. Recipients were evaluated at 85 days posttransplant for donor (human) cells using flow cytometry and confocal microscopy. We found that, regardless of the route of injection, and despite the IH delivery of ECFC, the overall liver engraftment was low, but a significant percentage of cells were located in the perivascular regions and retained the expression of hallmark endothelial makers. By contrast, ECFC migrated preferentially to the intestinal crypt region and contributed significantly to the myofibroblast population. Furthermore, ECFC expressing CD133 and CD117 lodged in areas where endogenous cells expressed those same phenotypes. CONCLUSION ECFC inherently constitute a potential source of cells for the treatment of intestinal diseases, but strategies to increase the numbers of ECFC persisting within the hepatic parenchyma are needed in order to enhance ECFC therapeutic potential for this organ.
Collapse
Affiliation(s)
- Joshua A. Wood
- Dept. of Animal Biotechnology, University of Nevada, Reno, USA
| | - Evan Colletti
- Dept. of Animal Biotechnology, University of Nevada, Reno, USA
| | - Laura E. Mead
- Dept. of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - David Ingram
- Dept. of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | | | | | - Mervin C. Yoder
- Dept. of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
,Corresponding Authors: Graça Almeida-Porada, M.D., Ph.D., Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083 USA. Phone: (336) 713-1630; FAX: (336) 713-7290 Mervin C. Yoder, M.D. Department of Pediatrics, Herman B Wells Center for Pediatric Research Indiana University School of Medicine, Indianapolis, Ind., USA Phone: (317) 274-4738; FAX: (317) 274-8679
| | - Graça Almeida-Porada
- Dept. of Animal Biotechnology, University of Nevada, Reno, USA
,Corresponding Authors: Graça Almeida-Porada, M.D., Ph.D., Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083 USA. Phone: (336) 713-1630; FAX: (336) 713-7290 Mervin C. Yoder, M.D. Department of Pediatrics, Herman B Wells Center for Pediatric Research Indiana University School of Medicine, Indianapolis, Ind., USA Phone: (317) 274-4738; FAX: (317) 274-8679
| |
Collapse
|
64
|
Kroepfl JM, Pekovits K, Stelzer I, Fuchs R, Zelzer S, Hofmann P, Sedlmayr P, Dohr G, Wallner-Liebmann S, Domej W, Mueller W. Exercise increases the frequency of circulating hematopoietic progenitor cells, but reduces hematopoietic colony-forming capacity. Stem Cells Dev 2012; 21:2915-25. [PMID: 22616638 DOI: 10.1089/scd.2012.0017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circulating hematopoietic progenitor cells (CPCs) may be triggered by physical exercise and/or normobaric hypoxia from the bone marrow. The aim of the study was to investigate the influence of physical exercise and normobaric hypoxia on CPC number and functionality in the peripheral blood as well as the involvement of oxidative stress parameters as possibly active agents. Ten healthy male subjects (25.3±4.4 years) underwent a standardized cycle incremental exercise test protocol (40 W+20 W/min) under either normoxic (FiO2 ∼0.21) or hypoxic conditions (FiO2<0.15, equals 3,500 m, 3 h xposure) within a time span of at least 1 week. Blood was drawn from the cubital vein before and 10, 30, 60, and 120 min after exercise. The number of CPCs in the peripheral blood was analyzed by flow cytometry (CD34/CD45-positive cells). The functionality of cells present was addressed by secondary colony-forming unit-granulocyte macrophage (CFU-GM) assays. To determine a possible correlation between the mobilization of CPCs and reactive oxygen species, parameters for oxidative stress such as malondialdehyde (MDA) and myeloperoxidase (MPO) were obtained. Data showed a significant increase of CPC release under normoxic as well as hypoxic conditions after 10 min of recovery (P<0.01). Most interestingly, although CD34+/CD45dim cells increased in number, the proliferative capacity of CPCs decreased significantly 10 min after cessation of exercise (P<0.05). A positive correlation between CPCs and MDA/MPO levels turned out to be significant for both normoxic and hypoxic conditions (P<0.05/P<0.01). Hypoxia did not provoke an additional effect. Although the CPC frequency increased, the functionality of CPCs decreased significantly after exercise, possibly due to the influence of increased oxidative stress levels.
Collapse
Affiliation(s)
- Julia Maria Kroepfl
- Human Performance Research Graz (HPRGraz), Karl-Franzens-University and Medical University of Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Blood vessel formation plays a key role in both physiologic and pathologic tissue growth and healing. Thus, a thorough understanding of the mechanisms underlying neovascularization will translate into innovative clinical treatment strategies for a wide variety of disease processes. Vascular precursor/progenitor cell populations have been isolated from several different tissue types and have a rich potential for use in vascular regenerative strategies. Furthermore, levels of circulating endothelial progenitor cells (EPC) have been shown to correlate with outcomes in cardiovascular and vascular diseases. Treatment with EPC has been shown to improve functional outcomes following cardiac and peripheral vascular ischemia. Recent studies have also demonstrated a role for EPC in pediatric disease processes such as retinopathy of prematurity and bronchopulmonary dysplasia. In addition, many of the drugs utilized to treat vascular disease impact EPC mobilization and function. Importantly, the type of vascular injury appears to dictate the mechanism of neovascularization, highlighting the importance of carefully selected vascular regenerative strategies.
Collapse
|
66
|
Shirakura K, Masuda H, Kwon SM, Obi S, Ito R, Shizuno T, Kurihara Y, Mine T, Asahara T. Impaired function of bone marrow-derived endothelial progenitor cells in murine liver fibrosis. Biosci Trends 2011; 5:77-82. [PMID: 21572251 DOI: 10.5582/bst.2011.v5.2.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Liver fibrosis (LF) caused by chronic liver damage has been considered as an irreversible disease. As alternative therapy for liver transplantation, there are high expectations for regenerative medicine of the liver. Bone marrow (BM)- or peripheral blood-derived stem cells, including endothelial progenitor cells (EPCs), have recently been used to treat liver cirrhosis. We investigated the biology of BM-derived EPC in a mouse model of LF. C57BL/6J mice were subcutaneously injected with carbon tetrachloride (CCl(4)) every 3 days for 90 days. Sacrificed 2 days after final injection, whole blood (WB) was collected for isolation of mononuclear cells (MNCs) and biochemical examination. Assessments of EPC in the peripheral blood and BM were performed by flow cytometry and EPC colony-forming assay, respectively, using purified MNCs and BM c-KIT(+), Sca-1(+), and Lin(-) (KSL) cells. Liver tissues underwent histological analysis with hematoxylin/eosin/Azan staining, and spleens were excised and weighed. CCl(4)-treated mice exhibited histologically bridging fibrosis, pseudolobular formation, and splenomegaly, indicating successful induction of LF. The frequency of definitive EPC-colony-forming-units (CFU) as well as total EPC-CFU at the equivalent cell number of 500 BM-KSL cells decreased significantly (p < 0.0001) in LF mice compared with control mice; no significant changes in primitive EPC-CFU occurred in LF mice. The frequency of WB-MNCs of definitive EPC-CFU decreased significantly (p < 0.01) in LF mice compared with control mice. Together, these findings indicated the existence of impaired EPC function and differentiation in BM-derived EPCs in LF mice and might be related to clinical LF.
Collapse
Affiliation(s)
- Katsuya Shirakura
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Jia F, Wu C, Chen Z, Lu G. AMP-activated protein kinase inhibits homocysteine-induced dysfunction and apoptosis in endothelial progenitor cells. Cardiovasc Drugs Ther 2011; 25:21-9. [PMID: 21258964 DOI: 10.1007/s10557-010-6277-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Homocysteine (Hcy) has been shown to induce oxidative stress and apoptosis of endothelial progenitor cells (EPCs). AMP-activated protein kinase (AMPK) has been reported to have protective effects on endothelial function. However, effects of AMPK activation on Hcy-induced EPCs injury remain to be determined. In this study, we examined the effect of AMPK phosphorylation on Hcy-induced NO bioavailability impairment and NADPH oxidase 4 (Nox4) derived reactive oxygen species (ROS) accumulation in EPCs. MATERIALS AND METHODS EPCs were pre-treated with various concentrations of 5-amino-4-imidazolecarboxamide riboside-l-beta-D-ribofuranoside (AICAR), a pharmacological agonist of AMPK, and then incubated with Hcy for 24 h. Furthermore, we challenged EPCs with Hcy in the presence or absence of atorvastatin and AMPK-DN which expressed a dominant-negative mutant of AMPK. Migration, proliferation and apoptosis were assayed to evaluate EPCs function. NO production, expression of endothelial nitric oxide synthase (eNOS), intracellular ROS levels and Nox4 activation were determined to explore the potential mechanisms of Hcy-induced EPCs dysfunction. RESULTS We observed that AICAR attenuated the inhibition effects of Hcy on EPCs migration and proliferation. The apoptosis rates of EPCs were down-regulated by AICAR compared with the group treated with Hcy only [(0.25 mmol/L AICAR: 10.48 ± 1.6%; 0.5 mmol/L AICAR: 8.70 ± 1.0%; 1 mmol/L AICAR: 5.83 ± 1.3%) vs. (500 μmol/L Hcy only: 12.60 ± 1.9%)]. We also found that NO production and eNOS expression were up-regulated by AICAR compared with the group treated with Hcy only, while ROS accumulation and Nox4 activation were inhibited. Furthermore, atorvastatin suppressed Hcy-induced dysfunction of EPCs, increased NO production and eNOS expression, and down-regulated ROS accumulation and Nox4 activation. And these effects of atorvastatin could be blunted by AMPK-DN. CONCLUSION AMPK activation inhibits eNOS down-regulation and Nox4-derived ROS accumulation induced by Hcy in EPCs, and may contribute to the protective effects of atorvastatin on endothelial function.
Collapse
Affiliation(s)
- Fang Jia
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | | | | | | |
Collapse
|
68
|
Circulating CD133(+)VEGFR2 (+) and CD34 (+)VEGFR2 (+) cells and arterial function in patients with beta-thalassaemia major. Ann Hematol 2011; 91:345-52. [PMID: 21808992 PMCID: PMC3274669 DOI: 10.1007/s00277-011-1302-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/18/2011] [Indexed: 10/27/2022]
Abstract
Arterial dysfunction has been documented in patients with beta-thalassaemia major. This study aimed to determine the quantity and proliferative capacity of circulating CD133(+)VEGFR2(+) and CD34(+)VEGFR2(+) cells in patients with beta-thalassaemia major and those after haematopoietic stem cell transplantation (HSCT), and their relationships with arterial function. Brachial arterial flow-mediated dilation (FMD), carotid arterial stiffness, the quantity of these circulating cells and their number of colony-forming units (CFUs) were determined in 17 transfusion-dependent thalassaemia patients, 14 patients after HSCT and 11 controls. Compared with controls, both patient groups had significantly lower FMD and greater arterial stiffness. Despite having increased CD133(+)VEGFR2(+) and CD34(+)VEGFR2(+) cells, transfusion-dependent patients had significantly reduced CFUs compared with controls (p = 0.002). There was a trend of increasing CFUs across the three groups with decreasing iron load (p = 0.011). The CFUs correlated with brachial FMD (p = 0.029) and arterial stiffness (p = 0.02), but not with serum ferritin level. Multiple linear regression showed that CFU was a significant determinant of FMD (p = 0.043) and arterial stiffness (p = 0.02) after adjustment of age, sex, body mass index, blood pressure and serum ferritin level. In conclusion, arterial dysfunction found in patients with beta-thalassaemia major before and after HSCT may be related to impaired proliferation of CD133(+)VEGFR2(+) and CD34(+)VEGFR2(+) cells.
Collapse
|
69
|
Curatola AM, Xu J, Hendricks-Munoz KD. Cyclic GMP protects endothelial progenitors from oxidative stress. Angiogenesis 2011; 14:267-79. [PMID: 21499920 DOI: 10.1007/s10456-011-9211-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/30/2011] [Indexed: 12/24/2022]
Abstract
Endothelial progenitor cells (EPCs) play a critical role in the repair of damaged blood vessels and/or in the growth of new ones in ischemic tissues. Elevated levels of oxygen radicals, which accumulate in the ischemic tissue, could compromise the angiogenic potential of EPCs. To determine if oxidative stress alters the angiogenic response of EPCs and to identify possible cellular targets that protect EPCs from the damaging effects of oxidative stress, we have investigated vascular development in embryonic bodies (EBs) under hyperoxic conditions. Murine EBs at differentiaton day 2 were cultured for 3 days under normoxic (21% O(2)) or hyperoxic (60% O(2)) conditions. Hyperoxic EBs showed a moderate reduction in Pecam-1, Vegfr-2, eNOS and Tie2 mRNA levels compared to normoxic EBs. However, immunostaining of hyperoxic EBs with antibodies against PECAM-1 after 1 week recovery at room air revealed a defective vasculature completely deficient in branches, while normoxic EBs developed a normal vascular plexus. Oxygen-induced defective vascular development correlated with a dramatic decrease in soluble guanylyl cyclase, phosphodiesterase (Pde) 4B and Pde4C mRNAs. Oxidative stress did not affect the expression of adenylyl cyclase 6 and Pde5. The abnormal vascular development caused by hyperoxia was reverted by pharmacological treatments that increased cGMP levels, such as 8-bromo-cGMP or 4-{[3',4'-(methylenedioxy)benzyl]amino}-6-methoxyquinazoline, a specific inhibitor of PDE5. These results indicated that oxidative stress inhibits vascular development from EPCs through its effects on levels of cyclic nucleotides and suggested that therapies that target cyclic nucleotide turnover may be useful in protecting vascular repair under oxidative conditions.
Collapse
Affiliation(s)
- Anna Maria Curatola
- Division of Neonatology, Department of Pediatrics, New York University School of Medicine, NY 10016, USA.
| | | | | |
Collapse
|
70
|
Abstract
Oxidative stress and associated reactive oxygen species can modify lipids, proteins, carbohydrates, and nucleic acids, and induce the mitochondrial permeability transition, providing a signal leading to the induction of autophagy, apoptosis, and necrosis. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and downstream apoptosis or survival. Accumulation of HMGB1 at sites of oxidative DNA damage can lead to repair of the DNA. As a redox-sensitive protein, HMGB1 contains three cysteines (Cys23, 45, and 106). In the setting of oxidative stress, it can form a Cys23-Cys45 disulfide bond; a role for oxidative homo- or heterodimerization through the Cys106 has been suggested for some of its biologic activities. HMGB1 causes activation of nicotinamide adenine dinucleotide phosphate oxidase and increased reactive oxygen species production in neutrophils. Reduced and oxidized HMGB1 have different roles in extracellular signaling and regulation of immune responses, mediated by signaling through the receptor for advanced glycation end products and/or Toll-like receptors. Antioxidants such as ethyl pyruvate, quercetin, green tea, N-acetylcysteine, and curcumin are protective in the setting of experimental infection/sepsis and injury including ischemia-reperfusion, partly through attenuating HMGB1 release and systemic accumulation.
Collapse
Affiliation(s)
- Daolin Tang
- The DAMP Laboratory, Department of Surgery, G.27 Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
71
|
Miller-Kasprzak E, Bogdański P, Pupek-Musialik D, Jagodziński PP. Insulin resistance and oxidative stress influence colony-forming unit-endothelial cells capacity in obese patients. Obesity (Silver Spring) 2011; 19:736-42. [PMID: 20706205 DOI: 10.1038/oby.2010.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aim of this study was to investigate the relationship between a sub-population of endothelial progenitor cells (EPC), namely colony-forming unit-endothelial cells (CFU-EC), their colony-forming capacity and variable clinical parameters, including insulin resistance and oxidative stress, in obese individuals. Thirty-eight obese adults (aged 42.5 ± 12.7), with BMI 32.3 ± 4.0 and 13 normal-weight controls (aged 48.2 ± 12.9; BMI 23.2 ± 2.3) were studied. CFU-EC colony-forming capacity was impaired in the group of obese individuals compared to the normal-weight controls (P = 0.001). The inverse correlation between homeostasis model assessment-insulin resistance (HOMA(IR)) index and CFU-EC number (r = -0.558, P < 0.0001) as well as positive total antioxidant status of plasma (TAS)/CFU-EC relation were noticed during the study. Additionally, correlations between the concentration of triglycerides (TG), high-density lipoproteins (HDLs), and body composition parameters in the obese participants were established. Our results demonstrate that insulin resistance and oxidative stress have a significant impact on the CFU-EC colony formation in obesity. Moreover, in multivariate regression analysis, in both studied groups, the HOMA(IR) index and HDL concentration were independent predictors of the number of CFU-EC. Endothelium dysfunction, which can be present in obesity, may in part be caused by EPC function impairment in this condition.
Collapse
Affiliation(s)
- Ewa Miller-Kasprzak
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | |
Collapse
|
72
|
Kim JH, Park SH, Park SG, Choi JS, Xia Y, Sung JH. The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells. Stem Cells Dev 2011; 20:1753-61. [PMID: 21265612 DOI: 10.1089/scd.2010.0469] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adipose-derived stem cells (ASCs) offer a potential alternative for tissue repair and regeneration. We have recently shown that hypoxia stimulates ASCs and enhances the regenerative potential of ASCs, which is beneficial for ASC therapy. In the present study, we further investigated a key mediator and a signal pathway involved in the stimulation of ASC during hypoxia. Culturing ASC in a hypoxic incubator (2% oxygen tension) increased the proliferation and migration, and this was mediated by Akt and ERK pathways. To determine the generation of reactive oxygen species (ROS), 2',7'-dichlorofluorescin diacetate intensity was detected by fluorescence-activated cell sorting. Hypoxia significantly increased the dichlorofluorescin diacetate intensity, which was greatly reduced by N-acetyl-cysteine and diphenyleneiodonium treatment. Likewise, the hypoxia-induced proliferation and migration of ASCs were reversed by N-acetyl-cysteine and diphenyleneiodonium treatment, suggesting the involvement of ROS generation in ASC stimulation. Further, we examined the activation of receptor tyrosine kinases and observed that hypoxia stimulated the phosphorylation of platelet-derived growth factor receptor-β. In summary, the ROS produced by ASCs in response to hypoxia was mostly likely due to NADPH oxidase activity. The increased cellular ROS was accompanied by the phosphorylation of platelet-derived growth factor receptor-β as well as by the activation of ERK and Akt signal pathways. Our results suggest a pivotal role for ROS generation in the stimulation of ASCs by hypoxia.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
73
|
Acosta JC, Haas DM, Saha CK, Dimeglio LA, Ingram DA, Haneline LS. Gestational diabetes mellitus alters maternal and neonatal circulating endothelial progenitor cell subsets. Am J Obstet Gynecol 2011; 204:254.e8-254.e15. [PMID: 21167470 DOI: 10.1016/j.ajog.2010.10.913] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/27/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose of this study was to examine whether women with gestational diabetes mellitus (GDM) and their offspring have reduced endothelial progenitor cell subsets and vascular reactivity. STUDY DESIGN Women with GDM, healthy control subjects, and their infants participated. Maternal blood and cord blood were assessed for colony-forming unit-endothelial cells and endothelial progenitor cell subsets with the use of polychromatic flow cytometry. Cord blood endothelial colony-forming cells were enumerated. Vascular reactivity was tested by laser Doppler imaging. RESULTS Women with GDM had fewer CD34, CD133, CD45, and CD31 cells (circulating progenitor cells [CPCs]) at 24-32 weeks' gestation and 1-2 days after delivery, compared with control subjects. No differences were detected in colony-forming unit-endothelial cells or colony-forming unit-endothelial cells. In control subjects, CPCs were higher in the third trimester, compared with the postpartum period. Cord blood from GDM pregnancies had reduced CPCs. Vascular reactivity was not different between GDM and control subjects. CONCLUSION The normal physiologic increase in CPCs during pregnancy is impaired in women with GDM, which may contribute to endothelial dysfunction and GDM-associated morbidities.
Collapse
Affiliation(s)
- Juan C Acosta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
74
|
Sonnenschein K, Horváth T, Mueller M, Markowski A, Siegmund T, Jacob C, Drexler H, Landmesser U. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome. ACTA ACUST UNITED AC 2011; 18:406-14. [PMID: 21450652 DOI: 10.1177/1741826710389373] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. METHODS AND RESULTS Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p < 0.05) and improved endothelium-dependent vasodilation. Nitric oxide production of EPCs was substantially increased after exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. CONCLUSIONS The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with metabolic syndrome.
Collapse
Affiliation(s)
- Kristina Sonnenschein
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Marin C, Ramirez R, Delgado-Lista J, Yubero-Serrano EM, Perez-Martinez P, Carracedo J, Garcia-Rios A, Rodriguez F, Gutierrez-Mariscal FM, Gomez P, Perez-Jimenez F, Lopez-Miranda J. Mediterranean diet reduces endothelial damage and improves the regenerative capacity of endothelium. Am J Clin Nutr 2011; 93:267-74. [PMID: 21123460 DOI: 10.3945/ajcn.110.006866] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is a fundamental step in the atherosclerotic disease process. Activation or injury of the endothelium leads to a variety of inflammatory disorders, including the release of microparticles. Endothelial progenitor cells may contribute to the maintenance of the endothelium by replacing injured mature endothelial cells. OBJECTIVE We studied the influence of dietary fat on the release of endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) in elderly subjects. DESIGN Twenty healthy, elderly subjects (10 men and 10 women) consumed 3 diets following a randomized crossover design, each for 4 wk: a saturated fatty acid diet; a low-fat, high-carbohydrate diet; and a Mediterranean diet (MedDiet) enriched in monounsaturated fatty acids. We investigated total microparticles, EMPs from activated endothelial cells (activated EMPs), EMPs from apoptotic endothelial cells (apoptotic EMPs), EPCs, oxidative stress variables, and ischemic reactive hyperemia (IRH). RESULTS The MedDiet led to lower total microparticle, activated EMP, and apoptotic EMP concentrations and higher EPC numbers than did the other diets (P < 0.001). We detected lower superoxide dismutase activity (P < 0.001), a higher plasma β-carotene concentration (P < 0.001), and lower urinary isoprostane and plasma nitrotyrosine concentrations after consumption of the MedDiet than after consumption of the other 2 diets (P < 0.05). Furthermore, the occurrence of IRH was higher after consumption of the MedDiet than after consumption of the other 2 diets (P < 0.05). CONCLUSION Consumption of the MedDiet induces a reduction in endothelial damage and dysfunction, which is associated with an improvement in the regenerative capacity of the endothelium, in comparison with 2 other diets.
Collapse
Affiliation(s)
- Carmen Marin
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofía University Hospital, University of Cordoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Endothelial progenitor cells: Their potential role in pregnancy and preeclampsia. Pregnancy Hypertens 2011; 1:48-58. [DOI: 10.1016/j.preghy.2010.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
77
|
Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest 2010; 120:4207-19. [PMID: 21060152 DOI: 10.1172/jci36858] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/08/2010] [Indexed: 12/15/2022] Open
Abstract
Amputation as a result of impaired wound healing is a serious complication of diabetes. Inadequate angiogenesis contributes to poor wound healing in diabetic patients. Endothelial progenitor cells (EPCs) normally augment angiogenesis and wound repair but are functionally impaired in diabetics. Here we report that decreased expression of manganese superoxide dismutase (MnSOD) in EPCs contributes to impaired would healing in a mouse model of type 2 diabetes. A decreased frequency of circulating EPCs was detected in type 2 diabetic (db/db) mice, and when isolated, these cells exhibited decreased expression and activity of MnSOD. Wound healing and angiogenesis were markedly delayed in diabetic mice compared with normal controls. For cell therapy, topical transplantation of EPCs onto excisional wounds in diabetic mice demonstrated that diabetic EPCs were less effective than normal EPCs at accelerating wound closure. Transplantation of diabetic EPCs after MnSOD gene therapy restored their ability to mediate angiogenesis and wound repair. Conversely, siRNA-mediated knockdown of MnSOD in normal EPCs reduced their activity in diabetic wound healing assays. Increasing the number of transplanted diabetic EPCs also improved the rate of wound closure. Our findings demonstrate that cell therapy using diabetic EPCs after ex vivo MnSOD gene transfer accelerates their ability to heal wounds in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Eric J Marrotte
- 1Department of Surgery, Vascular Medicine Institute, McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
78
|
DiMeglio LA, Tosh A, Saha C, Estes M, Mund J, Mead LE, Lien I, Ingram DA, Haneline LS. Endothelial abnormalities in adolescents with type 1 diabetes: a biomarker for vascular sequelae? J Pediatr 2010; 157:540-6. [PMID: 20542287 PMCID: PMC4140170 DOI: 10.1016/j.jpeds.2010.04.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/22/2010] [Accepted: 04/26/2010] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To evaluate whether counts of circulating colony forming unit-endothelial cells (CFU-ECs), cells co-expressing CD34, CD133, and CD31 (CD34+CD133+CD31+), and CD34+CD45- cells are altered in adolescents with type 1 diabetes and if the changes in counts correlate with endothelial dysfunction. STUDY DESIGN Adolescents with diabetes (ages 18 to 22 years) and race- and sex-matched control subjects were studied. We assessed circulating CFU-ECs, using colony assays, and CD34+CD133+CD31+ and CD34+CD45- cells, using poly-chromatic flow cytometry. CFU-ECs and CD34+CD133+CD31+ are hematopoietic-derived progenitors that inversely correlate with cardiovascular risk in adults. CD34+CD45- cells are enriched for endothelial cells with robust vasculogenic potential. Vascular reactivity was tested by laser Doppler iontophoresis. RESULTS Subjects with diabetes had lower CD34+CD133+CD31+ cells, a trend toward reduced CFU-ECs, and increased CD34+CD45- cells compared with control subjects. Endothelium-dependent vasodilation was impaired in subjects with diabetes, which correlated with reductions in circulating CD34+CD133+CD31+ cells. CONCLUSIONS Long-term sequelae of type 1 diabetes include vasculopathies. Endothelial progenitor cells promote vascular health by facilitating endothelial integrity and function. Lower CD34+CD133+CD31+ cells may be a harbinger of future macrovascular disease risk. Higher circulating CD34+CD45- cells may reflect ongoing endothelial damage. These cells are potential biomarkers to guide therapeutic interventions to enhance endothelial function and to prevent progression to overt vascular disease.
Collapse
Affiliation(s)
- Linda A. DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Aneesh Tosh
- Divisions of Adolescent Medicine and Pediatric Endocrinology, University of Missouri School of Medicine, Columbia, MO
| | - Chandan Saha
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Myka Estes
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Julie Mund
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Laura E. Mead
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | | | - David A. Ingram
- Herman B. Wells Center for Pediatric Research, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Laura S. Haneline
- Herman B. Wells Center for Pediatric Research, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
79
|
Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms. Clin Sci (Lond) 2010; 119:225-38. [PMID: 20545627 DOI: 10.1042/cs20100082] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients suffering from both diabetes and PAD (peripheral arterial disease) are at risk of developing critical limb ischaemia and ulceration, and potentially requiring limb amputation. In addition, diabetes complicates surgical treatment of PAD and impairs arteriogenesis. Arteriogenesis is defined as the remodelling of pre-existing arterioles into conductance vessels to restore the perfusion distal to the occluded artery. Several strategies to promote arteriogenesis in the peripheral circulation have been devised, but the mechanisms through which diabetes impairs arteriogenesis are poorly understood. The present review provides an overview of the current literature on the deteriorating effects of diabetes on the key players in the arteriogenesis process. Diabetes affects arteriogenesis at a number of levels. First, it elevates vasomotor tone and attenuates sensing of shear stress and the response to vasodilatory stimuli, reducing the recruitment and dilatation of collateral arteries. Secondly, diabetes impairs the downstream signalling of monocytes, without decreasing monocyte attraction. In addition, EPC (endothelial progenitor cell) function is attenuated in diabetes. There is ample evidence that growth factor signalling is impaired in diabetic arteriogenesis. Although these defects could be restored in animal experiments, clinical results have been disappointing. Furthermore, the diabetes-induced impairment of eNOS (endothelial NO synthase) strongly affects outward remodelling, as NO signalling plays a key role in several remodelling processes. Finally, in the structural phase of arteriogenesis, diabetes impairs matrix turnover, smooth muscle cell proliferation and fibroblast migration. The review concludes with suggestions for new and more sophisticated therapeutic approaches for the diabetic population.
Collapse
|
80
|
Luppi P, Powers RW, Verma V, Edmunds L, Plymire D, Hubel CA. Maternal circulating CD34+VEGFR-2+ and CD133+VEGFR-2+ progenitor cells increase during normal pregnancy but are reduced in women with preeclampsia. Reprod Sci 2010; 17:643-52. [PMID: 20360595 DOI: 10.1177/1933719110366164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) may contribute to vascular endothelial cell homeostasis, and low levels of these cells are predictive of cardiovascular disease. We hypothesized that circulating EPCs increase in number during uncomplicated pregnancy but are reduced in women with preeclampsia. Peripheral blood was obtained from pregnant women and from nulligravidas in cross-sectional design. Cells expressing CD34 or CD133, in combination with vascular endothelial growth factor receptor-2 (VEGFR-2), were enumerated by flow cytometry. Both CD34(+)VEGFR-2(+) (doubly positive) and CD133(+)VEGFR-2( +) cells were significantly increased during the second and third trimesters of uncomplicated pregnancy compared to the first trimester. First trimester and nulligravida groups did not differ. Endothelial progenitor cells, quantified by flow cytometry or by circulating angiogenic cell (CAC) culture assay, were significantly reduced in women with preeclampsia compared to third trimester controls. Circulating EPCs appear to increase during normal pregnancy, and comparatively reduced numbers of these cells exist during preeclampsia.
Collapse
Affiliation(s)
- Patrizia Luppi
- Department of Pediatrics, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
81
|
Mueller CFH, Afzal S, Becher UM, Wassmann S, Nickenig G, Wassmann K. Role of the multidrug resistance protein-1 (MRP1) for endothelial progenitor cell function and survival. J Mol Cell Cardiol 2010; 49:482-9. [PMID: 20206183 DOI: 10.1016/j.yjmcc.2010.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
The multidrug resistance related protein-1 (MRP1) is a member of the ATP binding cassette (ABC) of cell surface transport proteins expressed in multiple cell lines and tissues including endothelial cells and haematopoietic stem cells. MRP1 blockade has been shown to prevent endothelial cell apoptosis and improve endothelial function. Besides mature endothelial cells vascular homing of endothelial progenitor cells (EPC) contributes to endothelial regeneration after vascular damage. Thus, we hypothesized that MRP1 influences number and function of EPCs and mechanisms of vascular repair. To test this, we investigated the effects of MRP1 inhibition in vitro and in vivo. MRP1 is abundantly expressed in cultured human early outgrowth EPCs. Pharmacological inhibition of MRP1 by MK571 increased intracellular glutathione levels and reduced intracellular reactive oxygen species levels. This stabilization of the intracellular redox homeostasis via inhibition of MRP1 prevented angiotensin II-induced apoptosis and increased the number of early outgrowth EPCs and colony forming units in vitro. To extend the observed cytoprotective effect of MRP1 blockade in EPCs to an in vivo situation, MRP1(-/-) knockout mice were investigated. MRP1(-/-) knockout mice showed significantly increased numbers of EPCs circulating in the peripheral blood and residing in the bone marrow. Consistently, colony forming unit formation was enhanced and rate of apoptosis reduced in early outgrowth EPCs derived from MRP1(-/-) knockout mice. In addition, MRP1(-/-) knockout mice showed improved reendothelialization after carotid artery injury, and transfusion of MNCs derived from MRP1(-/-) knockout mice into wild-type mice accelerated reendothelialization compared to transfusion of wild-type cells. These findings indicate that the enhanced function and survival of EPCs in MRP1(-/-) knockout mice resulted in improved reendothelialization. In conclusion, MRP1 negatively influences EPC function and survival via perturbation of the intracellular redox homeostasis which finally leads to increased cellular apoptosis. These results reveal novel mechanistic insights and may identify MRP1 as therapeutic target to improve reendothelialization after vascular damage.
Collapse
Affiliation(s)
- Cornelius F H Mueller
- Medizinische Klinik und Poliklinik II, Innere Medizin, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
82
|
Kirton JP, Xu Q. Endothelial precursors in vascular repair. Microvasc Res 2010; 79:193-9. [PMID: 20184904 DOI: 10.1016/j.mvr.2010.02.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 02/15/2010] [Indexed: 11/24/2022]
Abstract
The endothelium is an essential component of the cardiovascular system, playing a vital role in blood vessel formation, vascular homeostasis, permeability and the regulation of inflammation. The integrity of the endothelial monolayer is also critical in the prevention of atherogenesis and as such, restoration of the monolayer is essential following damage or cell death. Over the past decade, data has suggested that progenitor cells from different origins within the body are released into the circulation and contribute to re-endothelialisation. These cells, termed endothelial progenitor cells (EPCs), also gave rise to the theory of new vessel formation within adults (vasculogenesis) without proliferation and migration of mature endothelial cells (angiogenesis). As such, intense research has been carried out identifying how these cells may be mobilised and contribute to vascular repair, either encouraging vasculogenesis into regions of ischemia or the re-endothelialisation of vessels with a dysfunctional endothelium. However, classification and isolation procedures have been a major problem in this area of research and beneficial use for therapeutic application has been controversial. In the present review we focus on the role of EPCs in vascular repair. We also provide an update on EPC classification and discuss autologous stem cell-derived endothelial cell (EC) as a functional source for therapy.
Collapse
Affiliation(s)
- John Paul Kirton
- Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, UK
| | | |
Collapse
|
83
|
Bhatwadekar AD, Shaw LC, Grant MB. Promise of endothelial progenitor cell for treatment of diabetic retinopathy. Expert Rev Endocrinol Metab 2010; 5:29-37. [PMID: 23678364 PMCID: PMC3652409 DOI: 10.1586/eem.09.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Progressive obliteration of the retinal microvessels is a characteristic of diabetic retinopathy. The resultant retinal ischemia leads to sight-threatening neovascularization and macular edema. Bone marrow-derived endothelial progenitor cells play a critical role in vascular maintenance and repair and forms the basis of cellular therapy for revascularization of ischemic myocardium and ischemic limbs. Emerging studies show potential of these cells in revascularization of ischemic retina and this review summarizes this possibility. We also report current pharmacological options to correct diabetes-associated defects in endothelial progenitor cells for their therapeutic transfer.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Dept of Pharmacology and Therapeutics, University of Florida, 1600 SW Archer Road Gainesville, FL 32610-0267, USA Tel.: + 1 352 392 9006 Fax: + 1 352 392 9696
| | - Lynn C Shaw
- Dept of Pharmacology and Therapeutics, University of Florida, 1600 SW Archer Road Gainesville, FL 32610-0267, USA Tel.: + 1 352 392 8020 Fax: + 1 352 392 9696
| | - Maria B Grant
- Author for correspondence Department of Pharmacology and Therapeutics, University of Florida, 1600 SW Archer Road Gainesville, FL 32610-0267, USA Tel: + 1 352 846 0978 Fax: + 1 352 392 9696
| |
Collapse
|
84
|
Significance of HLA class I antibody-induced antioxidant gene expression for endothelial cell protection against complement attack. Biochem Biophys Res Commun 2009; 391:1210-5. [PMID: 20006579 DOI: 10.1016/j.bbrc.2009.12.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 12/22/2022]
Abstract
It has been observed that a graft organ continues to survive and function normally even in the presence of anti-graft antibodies. However, the mechanisms behind acquirement of this condition remain unknown. Here we report that the anti-HLA ligation on endothelial cells induces PI3K/AKT activation followed by antioxidant gene induction through Nrf2-mediated antioxidant-responsive element (ARE) activation. Activation of PI3K/AKT in endothelial cells by a low concentration of anti-HLA ligation enhances protection from complement attack. A real-time quantitative PCR and flow-cytometry experiment showed that ferritin H and HO-1 mRNAs were induced in a PI3K/AKT-dependent manner, while CD55 and CD59 expression were not enhanced by anti-HLA ligation. Anti-HLA ligation on endothelial cells activates ferritin H ARE and induces Nrf2 binding on its enhancer element. Finally, overexpression of Nrf2 in endothelial cells attenuates complement-mediated cytotoxicity. These experiments suggest that induction of PI3K/AKT-dependent cytoprotective genes by Nrf2 is an important mechanism to prevent complement attack. Thus, a protocol to activate this pathway would be a potential strategy for avoidance of graft rejection in transplantation.
Collapse
|
85
|
Lekli I, Gurusamy N, Ray D, Tosaki A, Das DK. Redox regulation of stem cell mobilizationThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:989-95. [DOI: 10.1139/y09-102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A growing body of evidence supports the role of redox signaling in the mechanisms of hematopoietic stem cell mobilization and homing. Cytokines and adhesion molecules control stem cell mobilization through a redox-regulated process. The FoxO–SirT network appears to be intimately involved in redox-regulated stem cell homeostasis, whereas the process of stem cell differentiation is regulated by redox effector factor-1 (Ref-1) protein. Lack of oxygen (hypoxia), specifically controlled hypoxia, can stimulate the growth of the stem cells in their niche, and hypoxia-inducible factor (HIF)-1α appears to play a significant role in their maintenance and homing mechanism.
Collapse
Affiliation(s)
- Istvan Lekli
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Narasimman Gurusamy
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Diptarka Ray
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Arpad Tosaki
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Dipak K. Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
86
|
Sipos PI, Crocker IP, Hubel CA, Baker PN. Endothelial progenitor cells: their potential in the placental vasculature and related complications. Placenta 2009; 31:1-10. [PMID: 19917514 DOI: 10.1016/j.placenta.2009.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/23/2009] [Accepted: 10/12/2009] [Indexed: 02/04/2023]
Abstract
Endothelial progenitor cells (EPCs) have received significant attention in recent times. A role for EPCs has been suggested in a range of pathologies and some recent studies of EPCs in pregnancy have been published. This review provides a guide to the confusing field of EPCs. Attention is paid to their phenotyping, as although elementary this remains a highly debated topic. The current understanding of different subtypes and physiological role of EPCs in the placenta, fetus and adult are also considered. An overview is given as to role of EPC's in the pathophysiology of different disease states and the possible therapeutic and diagnostic applications expected from EPC-related research in obstetrics.
Collapse
Affiliation(s)
- P I Sipos
- Maternal and Fetal Health Research Group, The University of Manchester, Research Floor, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | | | | | | |
Collapse
|
87
|
Ushio-Fukai M, Urao N. Novel role of NADPH oxidase in angiogenesis and stem/progenitor cell function. Antioxid Redox Signal 2009; 11:2517-33. [PMID: 19309262 PMCID: PMC2821135 DOI: 10.1089/ars.2009.2582] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neovascularization is involved in normal development and wound repair as well as ischemic heart disease and peripheral artery disease. Both angiogenesis and vasculogenesis [de novo new vessel formation through mobilization of stem/progenitor cells from bone marrow (BM) and their homing to the ischemic sites] contribute to the formation of new blood vessels after tissue ischemia. Angiogenesis is dependent on cell proliferation, migration, and capillary tube formation in endothelial cells (ECs). Stem/progenitor cells have been used for cell-based therapy to promote revascularization after peripheral or myocardial ischemia. Excess amounts of reactive oxygen species (ROS) are involved in senescence and apoptosis of ECs and stem/progenitor cells, causing defective neovascularization. ROS at low levels function as signaling molecules to mediate cell proliferation, migration, differentiation, and gene expression. NADPH oxidase is one of the major sources of ROS in ECs and stem/progenitor cells, and is activated by various growth factors, cytokines, hypoxia, and ischemia. ROS derived from NADPH oxidase play an important role in redox signaling linked to angiogenesis ECs, as well as stem/progenitor cell mobilization, homing, and differentiation, thereby promoting neovascularization. Understanding these mechanisms may provide insight into NADPH oxidase and its mediators as potential therapeutic targets for ischemic heart and limb disease.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
88
|
Baker CD, Ryan SL, Ingram DA, Seedorf GJ, Abman SH, Balasubramaniam V. Endothelial colony-forming cells from preterm infants are increased and more susceptible to hyperoxia. Am J Respir Crit Care Med 2009; 180:454-61. [PMID: 19483112 PMCID: PMC2742761 DOI: 10.1164/rccm.200901-0115oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Preterm birth and hyperoxic exposure increase the risk for bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by impaired vascular and alveolar growth. Endothelial progenitor cells, such as self-renewing highly proliferative endothelial colony-forming cells (ECFCs), may participate in vascular repair. The effect of hyperoxia on ECFC growth is unknown. OBJECTIVES We hypothesize that umbilical cord blood (CB) from premature infants contains more ECFCs with greater growth potential than term CB. However, preterm ECFCs may be more susceptible to hyperoxia. METHODS ECFC colonies were quantified by established methods and characterized by immunohistochemistry and flow cytometry. Growth kinetics were assessed in room air and hyperoxia (FI(O(2)) = 0.4). MEASUREMENTS AND MAIN RESULTS Preterm CB (28-35 wk gestation) yielded significantly more ECFC colonies than term CB. Importantly, we found that CD45(-)/CD34(+)/CD133(+)/VEGFR-2(+) cell number did not correlate with ECFC colony count. Preterm ECFCs demonstrated increased growth compared with term ECFCs. Hyperoxia impaired growth of preterm but not term ECFCs. Treatment with superoxide dismutase and catalase enhanced preterm ECFC growth during hyperoxia. CONCLUSIONS Preterm ECFCs appear in increased numbers and proliferate more rapidly but have an increased susceptibility to hyperoxia compared with term ECFCs. Antioxidants protect preterm ECFCs from hyperoxia.
Collapse
Affiliation(s)
- Christopher D Baker
- Pediatric Heart Lung Center, University of Colorado, Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Csiszar A, Lehoux S, Ungvari Z. Hemodynamic forces, vascular oxidative stress, and regulation of BMP-2/4 expression. Antioxid Redox Signal 2009; 11:1683-97. [PMID: 19320562 PMCID: PMC2842584 DOI: 10.1089/ars.2008.2401] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Changes in the hemodynamic environment (e.g., hypertension, disturbed-flow conditions) are known to promote atherogenesis by inducing proinflammatory phenotypic alterations in endothelial and smooth muscle cells; however, the mechanisms underlying mechanosensitive induction of inflammatory gene expression are not completely understood. Bone morphogenetic protein-2 and -4 (BMP-2/4) are TGF-beta superfamily cytokines that are expressed by both endothelial and smooth muscle cells and regulate a number of cellular processes involved in atherogenesis, including vascular calcification and endothelial activation. This review considers how hemodynamic forces regulate BMP-2/4 expression and explores the role of mechanosensitive generation of reactive oxygen species by NAD(P)H oxidases in the control of BMP signaling.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | |
Collapse
|
90
|
Abstract
The field of stem and progenitor cell biology is expanding. Much of the enthusiasm is based on the potential of using stem and progenitor cells as a cellular therapy for the treatment of human disease. Although the concept of using human embryonic stem cells for therapeutic indications is intriguing, significant challenges face investigators pursuing research in this area. Therefore, renewed scientific energy is focusing on the molecular pathways that differentiate a pluripotent embryonic stem cell from more-committed tissue-specific cells. Molecular mechanisms that govern tissue-specific stem and progenitor cell function are also topics of intense investigation, given that altered function of these cells may promote a variety of human pathologies including aging, vascular disease, and cancer. Considerable progress has been made, but a clear identification of the molecular signatures of stem and progenitor cells remains elusive. A growing body of literature demonstrates that distinct functional characteristics of stem and progenitor cells are under redox regulation. In this Forum Issue, evidence for redox regulation of tissue-specific stem and progenitor cells involved in hematopoiesis and vasculogenesis/angiogenesis is presented.
Collapse
Affiliation(s)
- Laura S. Haneline
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|