51
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
52
|
Yin W, Yu X, Kang X, Zhao Y, Zhao P, Jin H, Fu X, Wan Y, Peng C, Huang Y. Remodeling Tumor-Associated Macrophages and Neovascularization Overcomes EGFR T790M -Associated Drug Resistance by PD-L1 Nanobody-Mediated Codelivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802372. [PMID: 30307695 DOI: 10.1002/smll.201802372] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Precision medicine has made a significant breakthrough in the past decade. The most representative success is the molecular targeting therapy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in non-small-cell lung cancer (NSCLC) with oncogenic drivers, approved by the US Food and Drug Administration (FDA) as first-line therapeutics for substituting chemotherapy. However, the rapidly developed TKI resistance invariably leads to unsustainable treatment. For example, gefitinib is the first choice for advanced NSCLC with EGFR mutation, but most patients would soon develop secondary EGFRT790M mutation and acquire gefitinib resistance. TKI resistance is a severe emergency issue to be solved in NSCLC, but there are a few investigations of nanomedicine reported to address this pressing problem. To overcome EGFRT790M -associated drug resistance, a novel delivery and therapeutic strategy is developed. A PD-L1 nanobody is identified, and first used as a targeting ligand for liposomal codelivery. It is found that simvastatin/gefitinib combination nanomedicine can remodel the tumor microenvironment (e.g., neovascularization regulation, M2-macrophage repolarization, and innate immunity), and display the effectiveness of reversing the gefitinib resistance and enhancing the EGFRT790M -mutated NSCLC treatment outcomes. The novel simvastatin-based nanomedicine provides a clinically translatable strategy for tackling the major problem in NSCLC treatment and demonstrates the promise of an old drug for new application.
Collapse
Affiliation(s)
- Weimin Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang, 330006, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejia Kang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuge Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang, 330006, China
| | - Pengfei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang, 330006, China
| | - Hongyue Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuhong Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang, 330006, China
| | - Yakun Wan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Chengyuan Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
53
|
Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol 2018; 834:188-196. [DOI: 10.1016/j.ejphar.2018.07.034] [Citation(s) in RCA: 594] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
|
54
|
Dai X, Zhang J, Guo G, Cai Y, Cui R, Yin C, Liu W, Vinothkumar R, Zhang T, Liang G, Zhang X. A mono-carbonyl analog of curcumin induces apoptosis in drug-resistant EGFR-mutant lung cancer through the generation of oxidative stress and mitochondrial dysfunction. Cancer Manag Res 2018; 10:3069-3082. [PMID: 30214301 PMCID: PMC6124478 DOI: 10.2147/cmar.s159660] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction Targeted therapies using epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR mutations, leading to the approval of gefitinib and erlotinib as standard first-line clinical treatment. Inevitably, a considerable proportion of patients develop resistance to EGFR-TKIs due to the acquisition of secondary mutations within EGFR. Therefore, alternative strategies to target NSCLC are desperately needed. Materials and methods In this study, we have evaluated the effect of a reactive oxygen species (ROS)-inducing agent WZ35, a mono-carbonyl analog of curcumin, to target an inherent biological property of cancer cells, increased oxidative stress. To study whether WZ35 can inhibit NSCLC tumorigenesis, we used gefitinib- and erlotinib-resistant cell line H1975. Results In this study, we show that WZ35 treatment dramatically decreases cell viability and induces apoptosis in H1975 cells through the generation of ROS. We also found that the antitumor activity of WZ35 involved ROS-mediated activation of the endoplasmic reticulum stress pathway and mitochondrial dysfunction. Furthermore, WZ35 significantly inhibited H1975 xenograft tumor growth through the inhibition of cell proliferation and induction of apoptosis. Discussion These findings show that WZ35 may be a promising candidate for the treatment of EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Xuanxuan Dai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Junru Zhang
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Guilong Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Yuepiao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Ri Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Changtian Yin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Weidong Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Rajamanickam Vinothkumar
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Tingting Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| |
Collapse
|
55
|
Fan XX, Pan HD, Li Y, Guo RJ, Leung ELH, Liu L. Novel therapeutic strategy for cancer and autoimmune conditions: Modulating cell metabolism and redox capacity. Pharmacol Ther 2018; 191:148-161. [PMID: 29953901 DOI: 10.1016/j.pharmthera.2018.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysregulation of cell metabolism and redox balance is implicated in the pathogenesis and progression of cancer and autoimmune diseases. Because the cell proliferation and apoptotic regulatory pathways are interconnected with metabolic and redox signalling pathways, the current mono-target treatment is ineffective, and multi-drug resistance remains common. Complex diseases are often implicated in a network-based context of pathology; therefore, a new holistic intervention approach is required to block multi-crosstalk in such complicated circumstances. The use of therapeutic agents isolated from herbs to holistically modulate metabolism and redox state has been shown to relieve carcinoma growth and the inflammatory response in autoimmune disorders. Multiple clinically applied or novel herbal chemicals with metabolic and redox modulatory capacity as well as low toxicity have recently been identified. Moreover, new metabolic targets and mechanisms of drug action have been discovered, leading to the exploration of new pathways for drug repositioning, clinical biomarker spectra, clinical treatment strategies and drug development. Taken together with multiple supporting examples, the modulation of cell metabolism and the redox capacity using herbal chemicals is emerging as a new, alternative strategy for the holistic treatment of cancer and autoimmune disorders. In the future, the development of new diagnostic tools based on the detection of metabolic and redox biomarkers, reformulation of optimized herbal compositions using artificial intelligence, and the combination of herbs with mono-targeting drugs will reveal new potential for clinical application.
Collapse
Affiliation(s)
- Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Rui-Jin Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China; Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China; Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China.
| |
Collapse
|
56
|
Li RZ, Fan XX, Duan FG, Jiang ZB, Pan HD, Luo LX, Zhou YL, Li Y, Yao YJ, Yao XJ, Leung ELH, Liu L. Proscillaridin A induces apoptosis and suppresses non-small-cell lung cancer tumor growth via calcium-induced DR4 upregulation. Cell Death Dis 2018; 9:696. [PMID: 29899551 PMCID: PMC5999972 DOI: 10.1038/s41419-018-0733-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant histological type of lung cancer and is characterized by the highest mortality and incidence rates among these types of malignancies. Cardiac glycosides, a class of natural products, have been identified as a potential type of chemotherapeutic agent. This study aims to investigate the anti-cancer effects and the mechanisms of action of Proscillaridin A (P.A) in NSCLC cells. In vitro sodium-potassium pump (Na+/K+ ATPase) enzyme assays indicated that P.A is a direct Na+/K+ ATPase inhibitor. P.A showed potent cytotoxic effects in NSCLC cells at nanomolar levels. Treatment mechanism studies indicated that P.A elevated Ca2+ levels, activated the AMPK pathway and downregulated phosphorylation of ACC and mTOR. Subsequently, P.A increased death receptor 4 (DR4) expression and downregulated NF-κB. Interestingly, P.A selectively suppressed EGFR activation in EGFR mutant cells but not in EGFR wild-type cells. In vivo, P.A significantly suppressed tumor growth in nude mice compared to vehicle-treated mice. Compared with the Afatinib treatment group, P.A displayed less pharmaceutical toxicity, as the body weight of mice treated with P.A did not decrease as much as those treated with Afatinib. Consistent changes in protein levels were obtained from western blotting analysis of tumors and cell lines. Immunohistochemistry analysis of the tumors from P.A-treated mice showed a significant suppression of EGFR phosphorylation (Tyr 1173) and reduction of the cell proliferation marker Ki-67. Taken together, our results suggest that P.A is a promising anti-cancer therapeutic candidate for NSCLC.
Collapse
Affiliation(s)
- Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Fu-Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Lian-Xiang Luo
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yan-Ling Zhou
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ying-Jia Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Respiratory Medicine Department, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
57
|
Weng MS, Chang JH, Hung WY, Yang YC, Chien MH. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:61. [PMID: 29548337 PMCID: PMC5857086 DOI: 10.1186/s13046-018-0728-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Background The epidermal growth factor receptor (EGFR) plays important roles in cell survival, growth, differentiation, and tumorigenesis. Dysregulation of the EGFR is a common mechanism in cancer progression especially in non-small cell lung cancer (NSCLC). Main body Suppression of the EGFR-mediated signaling pathway is used in cancer treatment. Furthermore, reactive oxygen species (ROS)-induced oxidative stress from mitochondrial dysfunction or NADPH oxidase (NOX) overactivation and ectopic expression of antioxidative enzymes were also indicated to be involved in EGFR-mediated tumor progression (proliferation, differentiation, migration, and invasion) and drug resistance (EGFR tyrosine kinase inhibitor (TKI)). The products of NOX, superoxide and hydrogen peroxide, are considered to be major types of ROS. ROS are not only toxic materials to cells but also signaling regulators of tumor progression. Oxidation of both the EGFR and downstream phosphatases by ROS enhances EGFR-mediated signaling and promotes tumor progression. This review primarily focuses on the recent literature with respect to the roles of the EGFR and ROS and correlations between ROS and the EGFR in tumor progression and EGFR TKI resistance. Short conclusion The evidence discussed in this article can serve as a basis for basic and clinical research to understand how to modulate ROS levels to control the development and drug resistance of cancers.
Collapse
Affiliation(s)
- Meng-Shih Weng
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jer-Hwa Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
58
|
Inhibition of KRAS-dependent lung cancer cell growth by deltarasin: blockage of autophagy increases its cytotoxicity. Cell Death Dis 2018; 9:216. [PMID: 29440631 PMCID: PMC5833846 DOI: 10.1038/s41419-017-0065-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022]
Abstract
Deltarasin is a recently identified small molecule that can inhibit KRAS–PDEδ interactions by binding to a hydrophobic pocket on PDEδ, resulting in the impairment of cell growth, KRAS activity, and RAS/RAF signaling in human pancreatic ductal adenocarcinoma cell lines. Since KRAS mutations are the most common oncogene mutations in lung adenocarcinomas, implicated in over 30% of all lung cancer cases, we examined the ability of deltarasin to inhibit KRAS-dependent lung cancer cell growth. Here, for the first time, we document that deltarasin produces both apoptosis and autophagy in KRAS-dependent lung cancer cells in vitro and inhibits lung tumor growth in vivo. Deltarasin induces apoptosis by inhibiting the interaction of with PDEδ and its downstream signaling pathways, while it induces autophagy through the AMPK-mTOR signaling pathway. Importantly, the autophagy inhibitor, 3-methyl adenine (3-MA) markedly enhances deltarasin-induced apoptosis via elevation of reactive oxygen species (ROS). In contrast, inhibition of ROS by N-acetylcysteine (NAC) significantly attenuated deltarasin-induced cell death. Collectively, these observations suggest that the anti-cancer cell activity of deltarasin can be enhanced by simultaneously blocking “tumor protective” autophagy, but inhibited if combined with an anti-oxidant.
Collapse
|
59
|
Fan XX, Leung ELH, Xie Y, Liu ZQ, Zheng YF, Yao XJ, Lu LL, Wu JL, He JX, Yuan ZW, Fu J, Wei CL, Huang J, Xiao DK, Luo LX, Jiang ZB, Zhou YL, Kam RKT, Liu L. Suppression of Lipogenesis via Reactive Oxygen Species-AMPK Signaling for Treating Malignant and Proliferative Diseases. Antioxid Redox Signal 2018; 28:339-357. [PMID: 28665143 DOI: 10.1089/ars.2017.7090] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS Systemic diseases often have common characteristics. The aim of this study was to investigate the feasibility of targeting common pathological metabolism to inhibit the progression of malignant and proliferative diseases. RESULTS Gefitinib-resistant (G-R) nonsmall-cell lung cancer (NSCLC) and rheumatoid arthritis (RA) were studied as conditions representative of malignant and proliferative diseases, respectively. Strong lipogenic activity and high expression of sterol regulatory element-binding protein 1 (SREBP1) were found in both G-R NSCLC cells and synovial fibroblasts from RA patients (RASFs). Berberine (BBR), an effective suppressor of SREBP1 and lipogenesis regulated through reactive oxygen species (ROS)/AMPK pathway, selectively inhibited the growth of G-R NSCLC cells and RASFs but not that of normal cells. It effectively caused mitochondrial dysfunction, activated ROS/AMPK pathway, and finally suppressed cellular lipogenesis and cell proliferation. Addition of ROS blocker, AMPK inhibitor, and palmitic acid significantly reduced the effect of BBR. In an in vivo study, treatment of BBR led to significant inhibition of mouse tumor xenograft growth and remarkably slowed down the development of adjuvant-induced arthritis in rats. Innovation and Conclusion: Targeting ROS/AMPK/lipogenesis signaling pathway selectively inhibited the growth of G-R NSCLC cells and the progress of RASFs in vitro and in vivo, which provides a new avenue for treating malignancies and proliferative diseases. Antioxid. Redox Signal. 28, 339-357.
Collapse
Affiliation(s)
- Xing-Xing Fan
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Elaine Lai-Han Leung
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Ying Xie
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Zhong Qiu Liu
- 2 International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Yan Fang Zheng
- 3 Fujian University of Traditional Chinese Medicine , College of Pharmacy, Minhoushangjie, Fuzhou, China
| | - Xiao Jun Yao
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Lin Lin Lu
- 2 International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Jian Lin Wu
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Jian-Xing He
- 4 State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease , The 1st Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Zhong-Wen Yuan
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - JunJiang Fu
- 5 Key Laboratory of Epigenetics and Oncology, Research Center for Precision Medicine, Southwest Medical University , Luzhou, China
| | - Chun-Li Wei
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Jun Huang
- 4 State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease , The 1st Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Da Kai Xiao
- 4 State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease , The 1st Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Lian Xiang Luo
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Ze Bo Jiang
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Yan-Ling Zhou
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| | - Richard Kin-Ting Kam
- 6 Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong (SAR), China
| | - Liang Liu
- 1 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology , Macau (SAR), China
| |
Collapse
|
60
|
Peng H, Chen B, Huang W, Tang Y, Jiang Y, Zhang W, Huang Y. Reprogramming Tumor-Associated Macrophages To Reverse EGFR T790M Resistance by Dual-Targeting Codelivery of Gefitinib/Vorinostat. NANO LETTERS 2017; 17:7684-7690. [PMID: 29160717 DOI: 10.1021/acs.nanolett.7b03756] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gefitinib is a first-line therapy in the EGFR-mutated nonsmall cell lung cancer (NSCLC). However, the development of drug resistance is almost unavoidable, thus leading to an unsustainable regimen. EGFRT790M mutation is the major cause responsible for the molecular-targeting therapy failure in NSCLC. Although the recently approved osimertinib is effective for the EGFRT790M-positive NSCLC, the osimertinib-resistant EGFR mutation is rapidly developed, too. In this study, we proposed a tumor-associated macrophage (TAM) reprogramming strategy for overcoming the EGFRT790M-associated drug resistance via a dual-targeting codelivery system of gefitinib/vorinostat that acted on both TAM with overexpression of mannose receptors and the HER-2 positive NSCLC cells. The trastuzumab-modified, mannosylated liposomal system was able to repolarize the protumor M2 phenotype to the antitumor M1 and cause the elevating ROS in the cancer cells, consequently modulating the intracellular redox balance via ROS/NOX3/MsrA axis. The suppressed MsrA facilitated the EGFRT790M degradation through 790M oxidation by ROS, thus resensitizing the EGFRT790M-positive cells to gefitinib. The dual-targeting codelivery and TAM-reprogramming strategies provided a potential method for rescuing the EGFRT790M-caused resistance to tyrosine kinase inhibitor treatment.
Collapse
Affiliation(s)
- Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Binfan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wei Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yubo Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yifan Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Wenyuan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
61
|
Miyata Y, Matsuo T, Sagara Y, Ohba K, Ohyama K, Sakai H. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis. Int J Mol Sci 2017; 18:ijms18102214. [PMID: 29065504 PMCID: PMC5666894 DOI: 10.3390/ijms18102214] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress refers to elevated reactive oxygen species (ROS) levels, and NADPH oxidases (NOXs), which are one of the most important sources of ROS. Oxidative stress plays important roles in the etiologies, pathological mechanisms, and treatment strategies of vascular diseases. Additionally, oxidative stress affects mechanisms of carcinogenesis, tumor growth, and prognosis in malignancies. Nearly all solid tumors show stimulation of neo-vascularity, termed angiogenesis, which is closely associated with malignant aggressiveness. Thus, cancers can be seen as a type of vascular disease. Oxidative stress-induced functions are regulated by complex endogenous mechanisms and exogenous factors, such as medication and diet. Although understanding these regulatory mechanisms is important for improving the prognosis of urothelial cancer, it is not sufficient, because there are controversial and conflicting opinions. Therefore, we believe that this knowledge is essential to discuss observations and treatment strategies in urothelial cancer. In this review, we describe the relationships between members of the NOX family and tumorigenesis, tumor growth, and pathological mechanisms in urological cancers including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, we introduce natural compounds and chemical agents that are associated with ROS-induced angiogenesis or apoptosis.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kaname Ohyama
- Department of Pharmaceutical Science, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
62
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Molecular targets and anticancer potential of sanguinarine-a benzophenanthridine alkaloid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:143-153. [PMID: 28899497 DOI: 10.1016/j.phymed.2017.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/06/2017] [Accepted: 08/06/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cancer is an enormous global health burden, and should be effectively addressed with better therapeutic strategies. Currently, over 60% of the clinically approved anticancer agents are either directly isolated from natural sources or are modified from natural lead molecules. Sanguinarine (SNG), a quaternary benzophenanthridine alkaloid has gained increasing attention in recent years as a potential anticancer agent. PURPOSE There is a large untapped source of phytochemical-based anticancer agents remaining to be explored. This review article aims to recapitulate different anticancer properties of SNG, and describes some of the molecular targets involved in exerting its effect. It also depicts the pharmacokinetic and toxicological properties of SNG, two parameters important in determining the druggability of a molecule. METHODS Numerous in vivo and in vitro published studies have signified the anticancer properties of SNG. In order to collate and decipher these properties, an extensive literature search was conducted in PubMed, ScienceDirect, and Scopus using keywords followed by the evaluation of the relevant articles where the relevant reports are integrated and analyzed. RESULTS Apart from inducing cell death, SNG inhibits pro-tumorigenic processes such as invasion, angiogenesis, and metastasis in different cancers. Moreover, SNG has been shown to synergistically enhance the sensitivity of several chemotherapeutic agents and is effective against a variety of multi-drug resistant cancers.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Anees Rahman
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
63
|
Achkar IW, Mraiche F, Mohammad RM, Uddin S. Anticancer potential of sanguinarine for various human malignancies. Future Med Chem 2017; 9:933-950. [PMID: 28636454 DOI: 10.4155/fmc-2017-0041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Sanguinarine (Sang) - a benzophenanthridine alkaloid extracted from Sanguinaria canadensis - exhibits antioxidant, anti-inflammatory, proapoptotic and growth inhibitory activities on tumor cells of various cancer types as established by in vivo and in vitro studies. Although the underlying mechanism of Sang antitumor activity is yet to be fully elucidated, Sang has displayed multiple biological effects, which remain to suggest its possible use in plant-derived treatments of human malignancies. This review covers the anticancer abilities of Sang including inhibition of aberrantly activated signal transduction pathways, induction of cell death and inhibition of cancer cell proliferation. It also highlights Sang-mediated inhibition of angiogenesis, inducing the expression of tumor suppressors, sensitization of cancer cells to standard chemotherapeutics to enhance their cytotoxic effects, while addressing the present need for further pharmacokinetic-based studies.
Collapse
Affiliation(s)
- Iman W Achkar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Ramzi M Mohammad
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
64
|
Hong SW, Park NS, Noh MH, Shim JA, Ahn BN, Kim YS, Kim D, Lee HK, Hur DY. Combination treatment with erlotinib and ampelopsin overcomes erlotinib resistance in NSCLC cells via the Nox2-ROS-Bim pathway. Lung Cancer 2017; 106:115-124. [DOI: 10.1016/j.lungcan.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/07/2017] [Accepted: 02/11/2017] [Indexed: 01/10/2023]
|
65
|
Li X, Fan XX, Jiang ZB, Loo WT, Yao XJ, Leung ELH, Chow LW, Liu L. Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway. Pharmacol Res 2016; 115:45-55. [PMID: 27864022 DOI: 10.1016/j.phrs.2016.11.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 01/25/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the dominant type of lung cancer. Molecular targeting has highly improved the treatment efficacy of lung cancer, but new challenges have emerged, such as gefitinib-resistance and cancer recurrence. Therefore, new chemotherapeutic agents and treatment strategies are urgently needed. Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao', which has been shown to exhibit powerful anti-cancer activity in certain types of cancer; however, its activity in gefitinib-resistant lung cancer has never been addressed. In this study, we used a high-throughput screening assay for epidermal growth factor receptor (EGFR) inhibitors and discovered that Shikonin is a potent inhibitor of EGFR. The cytotoxicity of Shikonin and its anti-cancer mechanism in NSCLC was deeply explored. Shikonin exhibited selective cytotoxicity among two NSCLC cell lines (H1975 and H1650) and one normal lung fibroblast cell line (CCD-19LU). Shikonin significantly increased the activity of caspases and poly (ADP-ribosyl) polymerase (PARP), which are indicators of apoptosis, and the intensity of ROS by greater than 10-fold. NAC, an inhibitor of ROS, completely blocked apoptosis, caspase and PARP activation induced by Shikonin. Shikonin remarkably suppressed the phosphorylation of EGFR and led to EGFR degradation. The enhancement of ROS generation in H1650 and H1975 gefitinib-resistant NSCLC cells leads to impairment of growth and induction of apoptosis, whereas modulation of EGFR degradation and its downstream signalling pathways by Shikonin contributes to its anti-tumour properties in H1975 gefitinib-resistant NSCLC cells (with T790M and L858R activating mutations). Shikonin-induced cell apoptosis is closely associated with ROS elevation in the cells. These findings indicate that Shikonin can be an effective small molecule treating gefitinib-resistant NSCLC.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Wings Ty Loo
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Louis Wc Chow
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
66
|
Wong VKW, Law BYK, Yao XJ, Chen X, Xu SW, Liu L, Leung ELH. Advanced research technology for discovery of new effective compounds from Chinese herbal medicine and their molecular targets. Pharmacol Res 2016; 111:546-555. [DOI: 10.1016/j.phrs.2016.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
|
67
|
Wu ZL, Fang YL, Tang YT, Xiao MW, Ye J, Li GX, Hu AX. Synthesis and antitumor evaluation of 5-(benzo[d][1,3]dioxol-5-ylmethyl)-4-(tert-butyl)-N-arylthiazol-2-amines. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00234j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strategy for designing target compounds as antitumor agents.
Collapse
Affiliation(s)
- Z. L. Wu
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Y. L. Fang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Y. T. Tang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - M. W. Xiao
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - J. Ye
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - G. X. Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - A. X. Hu
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|