51
|
Single-Nucleotide Polymorphisms in XPO5 are Associated with Noise-Induced Hearing Loss in a Chinese Population. Biochem Res Int 2020; 2020:9589310. [PMID: 32148964 PMCID: PMC7048908 DOI: 10.1155/2020/9589310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
Objectives The purpose of this study was to investigate the correlation between single-nucleotide polymorphism (SNP) in 3′UTR of XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on Methods We conducted a case-control study involving 1040 cases and 1060 controls. The effects of SNPs on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on Results We genotyped four SNPs (rs2257082, rs11077, rs7755135, and rs1106841) in the XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5. Conclusion. The genetic polymorphism, rs11077, within XPO5 is associated with the risk of noise-induced hearing loss in a Chinese population.XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on
Collapse
|
52
|
Li H, Kilgallen AB, Münzel T, Wolf E, Lecour S, Schulz R, Daiber A, Van Laake LW. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. Br J Pharmacol 2020; 177:5393-5412. [PMID: 31833063 PMCID: PMC7680009 DOI: 10.1111/bph.14949] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Risk factors in the environment such as air pollution and mental stress contribute to the development of chronic non-communicable disease. Air pollution was identified as the leading health risk factor in the physical environment, followed by water pollution, soil pollution/heavy metals/chemicals and occupational exposures, however neglecting the non-chemical environmental health risk factors (e.g. mental stress and noise). Epidemiological data suggest that environmental risk factors are associated with higher risk for cardiovascular, metabolic and mental diseases, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, depression and anxiety disorders. We provide an overview on the impact of the external exposome comprising risk factors/exposures on cardiovascular health with a focus on dysregulation of stress hormones, mitochondrial function, redox balance and inflammation with special emphasis on the circadian clock. Finally, we assess the impact of circadian clock dysregulation on cardiovascular health and the potential of environment-specific preventive strategies or "chrono" therapy for cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Aoife B Kilgallen
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany.,Structural Chronobiology, Institute of Molecular Biology, Mainz, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Linda W Van Laake
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
53
|
Farooqi ZUR, Sabir M, Latif J, Aslam Z, Ahmad HR, Ahmad I, Imran M, Ilić P. Assessment of noise pollution and its effects on human health in industrial hub of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2819-2828. [PMID: 31836979 DOI: 10.1007/s11356-019-07105-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Faisalabad is one of the major industrial cities of Pakistan, which may cause noise pollution to the local residents due to the development of robust industrial and transport systems. This study aimed at (i) mapping the noise pollution levels at various locations of Faisalabad city; (ii) comparing noise pollution levels in the morning, the afternoon, and the evening for each source; and (iii) assessing nonauditory effects of noise on human health. Two industries and 43 famous/busy locations of Faisalabad Sadar were selected to study noise pollution by using the sound level meter for the period of 24 h. A questionnaire-based survey was carried out near the sampling points to get a public perception about the health impacts of noise pollution. The measured equivalent sound pressure levels (SPLeq) were higher than the permissible limits at all the sampling locations during morning, afternoon, and evening hours. The maximum sound pressure level (SPLmax) was 102 dB inside the production unit in the afternoon at Mian Muhammad Siddiq Textile Loom industry. The average SPL was found at State Bank road (102 dB), Children's Hospital (101 dB), Jhang Bazar (100 dB) in the afternoon and at Punjab Medical College in the evening (97 dB). Based on the survey, 94% of respondents reported headache, 76% sleeplessness, 74% hypertension, 74% physiological stress, 64% elevated blood pressure levels, and 60% dizziness due to noise. Noise pollution is higher than the standard limits and causes auditory as well as nonauditory effects on humans. The vehicles and industrial machinery should be maintained, and sound proofing and protection equipment should be provided to the workforce in order to protect them from extreme noise levels.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Junaid Latif
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
- North West A&F University, Shaanxi Sheng, 712100, China
| | - Zubair Aslam
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University, Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University, Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Predrag Ilić
- Institute for Protection and Ecology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
54
|
Xie Y, Lin T, Yang M, Zhang Z, Deng N, Tang M, Xiao Y, Guo H, Deng Q. Co-exposure to polycyclic aromatic hydrocarbons and metals, four common polymorphisms in microRNA genes, and their gene-environment interactions: Influences on oxidative damage levels in Chinese coke oven workers. ENVIRONMENT INTERNATIONAL 2019; 132:105055. [PMID: 31382182 DOI: 10.1016/j.envint.2019.105055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Human are often simultaneously exposed to polycyclic aromatic hydrocarbons (PAHs) and metals, yet relatively little is known regarding their co-exposure effects on oxidative damage. Genetic factors and the gene-environment interactions can also determine the severity of oxidative damage. Four polymorphisms in microRNA (miRNA) genes (rs11614913, rs2292832, rs2910164, and rs3746444) have been well-studied to be associated with oxidative damage-related diseases. OBJECTIVE To investigate the influences of PAH-metal co-exposure, four polymorphisms, and their interactions on oxidative damage levels. METHODS We conducted a cross-sectional study in 1385 coke oven workers. We quantified exposure levels of PAHs and metals by urinary monohydroxy-PAHs, plasma benzo[a]pyrene-7,8-diol-9,10-epoxide-albumin adducts, and urinary metals, respectively, and measured oxidative damage levels by 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine. We also genotyped four polymorphisms. RESULTS In multiple-pollutant models, 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were associated with multiple PAH exposure biomarkers, as well as with multiple metals (ptrend < 0.05). Metabolites of phenanthrene and pyrene interacted synergistically with lead and zinc to influence 8-iso-prostaglandin-F2α (βinteraction > 7.75%, false discovery rate-adjusted pinteraction ≤ 2.25 × 10-5). Significantly higher 8-hydroxydeoxyguanosine was observed in carriers of rs11614913 CC variant homozygote than TC carriers (p = 0.037). Associations of the number of rs11614913 C allele with increased 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were significant (βstd > 0, ptrend < 0.05) and more pronounced in workers with lower metals [p for modifying effect (pME) < 0.040]. Positive associations of some PAHs and metals with 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were weaker in carriers of rs11614913 CC genotype or C allele (pME < 0.05). CONCLUSION PAH-metal co-exposure, rs11614913, and their interactions may affect oxidative damage levels in Chinese population in a complex manner that are worthy of further investigation.
Collapse
Affiliation(s)
- Yunling Xie
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaorui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Na Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqi Tang
- School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huan Guo
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifei Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
55
|
Daiber A, Kröller-Schön S, Frenis K, Oelze M, Kalinovic S, Vujacic-Mirski K, Kuntic M, Bayo Jimenez MT, Helmstädter J, Steven S, Korac B, Münzel T. Environmental noise induces the release of stress hormones and inflammatory signaling molecules leading to oxidative stress and vascular dysfunction-Signatures of the internal exposome. Biofactors 2019; 45:495-506. [PMID: 30937979 DOI: 10.1002/biof.1506] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
Environmental noise is a well-recognized health risk and part of the external exposome-the World Health Organization estimates that 1 million healthy life years are lost annually in Western Europe alone due to noise-related complications, including increased incidence of hypertension, heart failure, myocardial infarction, and stroke. Previous data suggest that noise works through two paired pathways in a proposed reaction model for noise exposure. As a nonspecific stressor, chronic low-level noise exposure can cause a disruption of sleep and communication leading to annoyance and subsequent sympathetic and endocrine stress responses leading to increased blood pressure, heart rate, stress hormone levels, and in particular more oxidative stress, being responsible for vascular dysfunction and representing changes of the internal exposome. Chronic stress generates cardiovascular risk factors on its own such as increased blood pressure, blood viscosity, blood glucose, and activation of blood coagulation. To this end, persistent chronic noise exposure increases cardiometabolic diseases, including arterial hypertension, coronary artery disease, arrhythmia, heart failure, diabetes mellitus type 2, and stroke. The present review discusses the mechanisms of the nonauditory noise-induced cardiovascular and metabolic consequences, focusing on mental stress signaling pathways, activation of the hypothalamic-pituitary-adrenocortical axis and sympathetic nervous system, the association of these activations with inflammation, and the subsequent onset of oxidative stress and vascular dysfunction. © 2019 BioFactors, 45 (4):495-506, 2019.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, Center for Cardiology, Mainz, Germany
- Partner Site Rhine-Main, German Center for Cardiovascular Research, Mainz, Germany
| | | | - Katie Frenis
- Department of Cardiology 1, Center for Cardiology, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology 1, Center for Cardiology, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology 1, Center for Cardiology, Mainz, Germany
| | | | - Marin Kuntic
- Department of Cardiology 1, Center for Cardiology, Mainz, Germany
| | | | | | - Sebastian Steven
- Department of Cardiology 1, Center for Cardiology, Mainz, Germany
- Center of Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," University of Belgrade, Belgrade, Serbia
| | - Thomas Münzel
- Department of Cardiology 1, Center for Cardiology, Mainz, Germany
- Partner Site Rhine-Main, German Center for Cardiovascular Research, Mainz, Germany
| |
Collapse
|
56
|
Münzel T, Gori T, Al-Kindi S, Deanfield J, Lelieveld J, Daiber A, Rajagopalan S. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur Heart J 2018; 39:3543-3550. [PMID: 30124840 PMCID: PMC6174028 DOI: 10.1093/eurheartj/ehy481] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022] Open
Abstract
Ambient air pollution is a leading cause of non-communicable disease globally. The largest proportion of deaths and morbidity due to air pollution is now known to be due to cardiovascular disorders. Several particulate and gaseous air pollutants can trigger acute events (e.g. myocardial infarction, stroke, heart failure). While the mechanisms by which air pollutants cause cardiovascular events is undergoing continual refinement, the preponderant evidence support rapid effects of a diversity of pollutants including all particulate pollutants (e.g. course, fine, ultrafine particles) and gaseous pollutants such as ozone, on vascular function. Indeed alterations in endothelial function seem to be critically important in transducing signals and eventually promoting cardiovascular disorders such as hypertension, diabetes, and atherosclerosis. Here, we provide an updated overview of the impact of particulate and gaseous pollutants on endothelial function from human and animal studies. The evidence for causal mechanistic pathways from both animal and human studies that support various hypothesized general pathways and their individual and collective impact on vascular function is highlighted. We also discuss current gaps in knowledge and evidence from trials evaluating the impact of personal-level strategies to reduce exposure to fine particulate matter (PM2.5) and impact on vascular function, given the current lack of definitive randomized evidence using hard endpoints. We conclude by an exhortation for formal inclusion of air pollution as a major risk factor in societal guidelines and provision of formal recommendations to prevent adverse cardiovascular effects attributable to air pollution.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Tommaso Gori
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Sadeer Al-Kindi
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, Case Western Reserve School of Medicine, 11100 Euclid Ave, Cleveland, OH, USA
| | - John Deanfield
- UCL Institute of Cardiovascular Science, 170 Tottenham Court Road, London, UK
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, Case Western Reserve School of Medicine, 11100 Euclid Ave, Cleveland, OH, USA
| |
Collapse
|
57
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Irwin MH, Kanara I, Pinkert CA, Powers WR, Steliou K, Vavvas DG, Kodukula K. A New Approach to Treating Neurodegenerative Otologic Disorders. Biores Open Access 2018; 7:107-115. [PMID: 30069423 PMCID: PMC6069589 DOI: 10.1089/biores.2018.0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hearing loss, the most common neurological disorder and the fourth leading cause of years lived with disability, can have profound effects on quality of life. The impact of this "invisible disability," with significant consequences, economic and personal, is most substantial in low- and middle-income countries, where >80% of affected people live. Given the importance of hearing for communication, enjoyment, and safety, with up to 500 million affected globally at a cost of nearly $800 billion/year, research on new approaches toward prevention and treatment is attracting increased attention. The consequences of noise pollution are largely preventable, but irreversible hearing loss can result from aging, disease, or drug side effects. Once damage occurs, treatment relies on hearing aids and cochlear implants. Preventing, delaying, or reducing some degree of hearing loss may be possible by avoiding excessive noise and addressing major contributory factors such as cardiovascular risk. However, given the magnitude of the problem, these interventions alone are unlikely to be sufficient. Recent advances in understanding principal mechanisms that govern hearing function, together with new drug discovery paradigms designed to identify efficacious therapies, bode well for pharmaceutical intervention. This review surveys various causes of loss of auditory function and discusses potential neurological underpinnings, including mitochondrial dysfunction. Mitochondria mitigate cell protection, survival, and function and may succumb to cumulative degradation of energy production and performance; the end result is cell death. Energy-demanding neurons and vestibulocochlear hair cells are vulnerable to mitochondrial dysfunction, and hearing impairment and deafness are characteristic of neurodegenerative mitochondrial disease phenotypes. Beyond acting as cellular powerhouses, mitochondria regulate immune responses to infections, and studies of this phenomenon have aided in identifying nuclear factor kappa B and nuclear factor erythroid 2-related factor 2/antioxidant response element signaling as targets for discovery of otologic drugs, respectively, suppressing or upregulating these pathways. Treatment with free radical scavenging antioxidants is one therapeutic approach, with lipoic acid and corresponding carnitine esters exhibiting improved biodistribution and other features showing promise. These compounds are also histone deacetylase (HDAC) inhibitors, adding epigenetic modulation to the mechanistic milieu through which they act. These data suggest that new drugs targeting mitochondrial dysfunction and modulating epigenetic pathways via HDAC inhibition or other mechanisms hold great promise.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, Office for Science & Society, McGill University, Montreal, Canada
| | - Michael H. Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | | - Carl A. Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
- Bridgewater College, Bridgewater, Virginia
| |
Collapse
|
58
|
Münzel T, Sørensen M, Schmidt F, Schmidt E, Steven S, Kröller-Schön S, Daiber A. The Adverse Effects of Environmental Noise Exposure on Oxidative Stress and Cardiovascular Risk. Antioxid Redox Signal 2018; 28:873-908. [PMID: 29350061 PMCID: PMC5898791 DOI: 10.1089/ars.2017.7118] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022]
Abstract
Epidemiological studies have provided evidence that traffic noise exposure is linked to cardiovascular diseases such as arterial hypertension, myocardial infarction, and stroke. Noise is a nonspecific stressor that activates the autonomous nervous system and endocrine signaling. According to the noise reaction model introduced by Babisch and colleagues, chronic low levels of noise can cause so-called nonauditory effects, such as disturbances of activity, sleep, and communication, which can trigger a number of emotional responses, including annoyance and subsequent stress. Chronic stress in turn is associated with cardiovascular risk factors, comprising increased blood pressure and dyslipidemia, increased blood viscosity and blood glucose, and activation of blood clotting factors, in animal models and humans. Persistent chronic noise exposure increases the risk of cardiometabolic diseases, including arterial hypertension, coronary artery disease, diabetes mellitus type 2, and stroke. Recently, we demonstrated that aircraft noise exposure during nighttime can induce endothelial dysfunction in healthy subjects and is even more pronounced in coronary artery disease patients. Importantly, impaired endothelial function was ameliorated by acute oral treatment with the antioxidant vitamin C, suggesting that excessive production of reactive oxygen species contributes to this phenomenon. More recently, we introduced a novel animal model of aircraft noise exposure characterizing the underlying molecular mechanisms leading to noise-dependent adverse oxidative stress-related effects on the vasculature. With the present review, we want to provide an overview of epidemiological, translational clinical, and preclinical noise research addressing the nonauditory, adverse effects of noise exposure with focus on oxidative stress. Antioxid. Redox Signal. 28, 873-908.
Collapse
Affiliation(s)
- Thomas Münzel
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frank Schmidt
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Erwin Schmidt
- Institute for Molecular Genetics, Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Swenja Kröller-Schön
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|