51
|
Steinstraesser L, Sorkin M, Jacobsen F, Al-Benna S, Kesting MR, Niederbichler AD, Otte JM, Hirsch T, Stupka J, Steinau HU, Schulte M. Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery. BMC Immunol 2011; 12:8. [PMID: 21255430 PMCID: PMC3037344 DOI: 10.1186/1471-2172-12-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/21/2011] [Indexed: 12/23/2022] Open
Abstract
Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin.
Collapse
Affiliation(s)
- Lars Steinstraesser
- Laboratory for Molecular Oncology and Wound Healing, Department of Plastic Surgery, Operative Reference Centre for Soft Tissue Sarcomas, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Pesonen S, Kangasniemi L, Hemminki A. Oncolytic Adenoviruses for the Treatment of Human Cancer: Focus on Translational and Clinical Data. Mol Pharm 2010; 8:12-28. [PMID: 21126047 DOI: 10.1021/mp100219n] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sari Pesonen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lotta Kangasniemi
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
53
|
Matthews QL. Capsid-incorporation of antigens into adenovirus capsid proteins for a vaccine approach. Mol Pharm 2010; 8:3-11. [PMID: 21047139 DOI: 10.1021/mp100214b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Some viral vectors are potent inducers of cellular and humoral responses; therefore, viral vectors can be used to vaccinate against cancer or infectious diseases. This report will focus on adenovirus (Ad)-based vectors. Traditional viral-vector vaccination embodies the concept that the vector uses the host-cell machinery to express antigens that are encoded as transgenes within the viral vector. Several preclinical successes have used this approach in animal model systems. However, in some instances, these conventional Ad-based vaccines have yielded suboptimal clinical results. These suboptimal results are ascribed, in part, to preexisting Ad serotype 5 (Ad5) immunity. To address this issue, the "antigen capsid-incorporation" strategy has been developed to circumvent the drawbacks associated with conventional transgene expression of antigens by Ad vectors. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. Incorporating immunogenic peptides into the Ad capsid offers potential advantages. Importantly, vaccination by means of the antigen capsid-incorporated approach results in a strong humoral response, similar to the response generated by native Ad capsid proteins. This strategy also allows for the boosting of antigenic specific responses. This strategy may be the way forward for improved vaccine schemes, especially for those infections requiring a strong humoral antigenic response.
Collapse
Affiliation(s)
- Qiana L Matthews
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, the Gene Therapy Center, and Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
54
|
The host outer membrane proteins OmpA and OmpC are associated with the Shigella phage Sf6 virion. Virology 2010; 409:319-27. [PMID: 21071053 DOI: 10.1016/j.virol.2010.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/22/2010] [Accepted: 10/16/2010] [Indexed: 01/16/2023]
Abstract
Assembly of dsDNA bacteriophage is a precisely programmed process. Potential roles of host cell components in phage assembly haven't been well understood. It was previously reported that two unidentified proteins were present in bacteriophage Sf6 virion (Casjens et al, 2004, J.Mol.Biol. 339, 379-394, Fig. 2A). Using tandem mass spectrometry, we have identified the two proteins as outer membrane proteins (OMPs) OmpA and OmpC from its host Shigella flexneri. The transmission electron cryo-microscopy structure of Sf6 shows significant density at specific sites at the phage capsid inner surface. This density fit well with the characteristic beta-barrel domains of OMPs, thus may be due to the two host proteins. Locations of this density suggest a role in Sf6 morphogenesis reminiscent of phage-encoded cementing proteins. These data indicate a new, OMP-related phage:host linkage, adding to previous knowledge that some lambdoid bacteriophage genomes contain OmpC-like genes that express phage-encoded porins in the lysogenic state.
Collapse
|
55
|
Ranki T, Hemminki A. Serotype chimeric human adenoviruses for cancer gene therapy. Viruses 2010; 2:2196-2212. [PMID: 21994616 PMCID: PMC3185575 DOI: 10.3390/v2102196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/16/2010] [Accepted: 09/22/2010] [Indexed: 11/16/2022] Open
Abstract
Cancer gene therapy consists of numerous approaches where the common denominator is utilization of vectors for achieving therapeutic effect. A particularly potent embodiment of the approach is virotherapy, in which the replication potential of an oncolytic virus is directed towards tumor cells to cause lysis, while normal cells are spared. Importantly, the therapeutic effect of the initial viral load is amplified through viral replication cycles and production of progeny virions. All cancer gene therapy approaches rely on a sufficient level of delivery of the anticancer agent into target cells. Thus, enhancement of delivery to target cells, and reduction of delivery to non-target cells, in an approach called transductional targeting, is attractive. Both genetic and non-genetic retargeting strategies have been utilized. However, in the context of oncolytic viruses, it is beneficial to have the specific modification included in progeny virions and hence genetic modification may be preferable. Serotype chimerism utilizes serotype specific differences in receptor usage, liver tropism and seroprevalence in order to gain enhanced infection of target tissue. This review will focus on serotype chimeric adenoviruses for cancer gene therapy applications.
Collapse
Affiliation(s)
- Tuuli Ranki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, University of Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland; E-Mail:
- HUSLAB, Helsinki University Central Hospital, P.O. Box 100, 00029 HUS, Helsinki, Finland
- Haartman Institute & Transplantation Laboratory, University of Helsinki, P.O. Box 21, 00014 University of Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, P.O.Box 20, 00014 University of Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, University of Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland; E-Mail:
- HUSLAB, Helsinki University Central Hospital, P.O. Box 100, 00029 HUS, Helsinki, Finland
- Haartman Institute & Transplantation Laboratory, University of Helsinki, P.O. Box 21, 00014 University of Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, P.O.Box 20, 00014 University of Helsinki, Finland
- Author to whom correspondence should be addressed; E-Mail: ; Tel. +358-9-1912 5464; Fax: +358-9-1912 5465
| |
Collapse
|
56
|
Abstract
Respiratory tract viral infections are responsible for an incredible amount of morbidity and mortality throughout the world. Older diagnostic methods, such as tissue culture and serology, have been replaced with more advanced molecular techniques, such as PCR and reverse-transcriptase PCR, nucleic acid sequence-based amplification and loop-mediated isothermal amplification. These techniques are faster, have greater sensitivity and specificity, and are becoming increasingly accessible. In the minds of most, PCR has replaced tissue culture and serology as the gold standard for detection of respiratory viruses owing to its speed, availability and versatility. PCR/reverse-transcriptase PCR has been used in a variety of detection platforms, in multiplex assays (detecting multiple pathogens simultaneously) and in automated systems (sample in-answer out devices). Molecular detection has many proven advantages over standard virological methods and will further separate itself through increased multiplexing, processing speed and automation. However, tissue culture remains an important method for detecting novel viral mutations within a virus population, for detecting novel viruses and for phenotypic characterization of viral isolates.
Collapse
Affiliation(s)
- Eric T Beck
- Midwest Respiratory Virus Program (MRVP), Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
57
|
Chailertvanitkul VA, Pouton CW. Adenovirus: a blueprint for non-viral gene delivery. Curr Opin Biotechnol 2010; 21:627-32. [PMID: 20638266 DOI: 10.1016/j.copbio.2010.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 02/02/2023]
Abstract
Although adenoviral vectors may not find a direct clinical role in gene therapy, an understanding of the mechanisms of DNA delivery that adenoviruses use is of vital importance to the design of next-generation non-viral gene delivery systems. Adenoviruses overcome a series of biological barriers, including endosomal escape, intracellular trafficking, capsid dissociation, and nuclear import of DNA, to deliver their genome to the host cell nucleus. The understanding of these processes at the molecular level is progressing and is set to inform the design of synthetic gene delivery systems.
Collapse
Affiliation(s)
- V Ann Chailertvanitkul
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | | |
Collapse
|
58
|
Jia H, Titmuss S. Polymer-functionalized nanoparticles: from stealth viruses to biocompatible quantum dots. Nanomedicine (Lond) 2010; 4:951-66. [PMID: 19958231 DOI: 10.2217/nnm.09.81] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this article, we focus on nanoparticles that have been functionalized by polymers. We draw our examples from nanoparticle systems that have found biomedical and therapeutic applications. Our aim is to highlight the physical principles that might explain why these systems have been found to be successful in biomedical applications and to highlight other physical properties that might lead to new applications. We consider viruses, gold nanoparticles, magnetic nanoparticles and quantum dots, focussing attention on the ways in which functionalization by polymers has been used to alter the physical characteristics of the particular nanoparticle to improve its function as a possible therapy. In the case of viral vectors, polymer functionalization tunes the biocompatibility, suppressing the binding of antibodies and conferring the nanoparticle with stealth properties. By contrast, the inorganic nanoparticles comprise materials in a form that is not normally encountered in the human body, and polymer functionalization is necessary to ensure biocompatibility.
Collapse
Affiliation(s)
- H Jia
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | | |
Collapse
|
59
|
Seregin SS, Amalfitano A. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther 2010; 9:1521-31. [PMID: 19780714 DOI: 10.1517/14712590903307388] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenovirus (Ad)-based vectors offer several benefits showing their potential for use in a variety of vaccine applications. Recombinant Ad-based vaccines possess potent immunogenic potential, capable of generating humoral and cellular immune responses to a variety of pathogen-specific antigens expressed by the vectors. Ad5 vectors can be readily produced, allowing for usage in thousands of clinical trial subjects. This is now coupled with a history of safe clinical use in the vaccine setting. However, traditional Ad5-based vaccines may not be generating optimal antigen-specific immune responses, and generate diminished antigen-specific immune responses when pre-existing Ad5 immunity is present. These limitations have driven initiation of several approaches to improve the efficacy of Ad-based vaccines, and/or allow modified vaccines to overcome pre-existing Ad immunity. These include: generation of chemically modified Ad5 capsids; generation of chimeric Ads; complete replacement of Ad5-based vaccine platforms with alternative (human and non-human origin) Ad serotypes, and Ad5 genome modification approaches that attempt to retain the native Ad5 capsid, while simultaneously improving the efficacy of the platform as well as minimizing the effect of pre-existing Ad immunity. Here we discuss recent advances in- and limitations of each of these approaches, relative to their abilities to overcome pre-existing Ad immunity.
Collapse
Affiliation(s)
- Sergey S Seregin
- Michigan State University, Department of Microbiology and Molecular Genetics, 4194 Biomedical and Physical Sciences Bldg, East Lansing, MI 48823, USA
| | | |
Collapse
|
60
|
Detection of infectious adenoviruses in environmental waters by fluorescence-activated cell sorting assay. Appl Environ Microbiol 2010; 76:1442-8. [PMID: 20080992 DOI: 10.1128/aem.01937-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Methods for rapid detection and quantification of infectious viruses in the environment are urgently needed for public health protection. A fluorescence-activated cell-sorting (FACS) assay was developed to detect infectious adenoviruses (Ads) based on the expression of viral protein during replication in cells. The assay was first developed using recombinant Ad serotype 5 (rAd5) with the E1A gene replaced by a green fluorescent protein (GFP) gene. Cells infected with rAd5 express GFP, which is captured and quantified by FACS. The results showed that rAd5 can be detected at concentrations of 1 to 10(4) PFU per assay within 3 days, demonstrating a linear correlation between the viral concentration and the number of GFP-positive cells with an r(2) value of >0.9. Following the same concept, FACS assays using fluorescently labeled antibodies specific to the E1A and hexon proteins, respectively, were developed. Assays targeting hexon showed greater sensitivity than assays targeting E1A. The results demonstrated that as little as 1 PFU Ads was detected by FACS within 3 days based on hexon protein, with an r(2) value greater than 0.9 over a 4-log concentration range. Application of this method to environmental samples indicated positive detection of infectious Ads in 50% of primary sewage samples and 33% of secondary treated sewage samples, but none were found in 12 seawater samples. The infectious Ads ranged in quantity between 10 and 165 PFU/100 ml of sewage samples. The results indicate that the FACS assay is a rapid quantification tool for detecting infectious Ads in environmental samples and also represents a considerable advancement for rapid environmental monitoring of infectious viruses.
Collapse
|
61
|
García J, Sovero M, Laguna-Torres VA, Gomez J, Chicaiza W, Barrantes M, Sanchez F, Jimenez M, Comach G, de Rivera IL, Agudo R, Arango AE, Barboza A, Aguayo N, Kochel TJ. Molecular characterization of adenovirus circulating in Central and South America during the 2006-2008 period. Influenza Other Respir Viruses 2010; 3:327-30. [PMID: 19903214 PMCID: PMC4941395 DOI: 10.1111/j.1750-2659.2009.00107.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Human Adenoviruses are recognized pathogens, causing a broad spectrum of diseases. Serotype identification is critical for epidemiological surveillance, detection of new strains and understanding of HAdvs pathogenesis. Little data is available about HAdvs subtypes in Latin America. Methods In this study, we have molecularly characterized 213 adenoviruses collected from ILI presenting patients, during 2006‐08, in Central and South America. Results Our results indicate that 161(76%) adenoviruses belong to subgroup C, 45 (21%) to subgroup B and 7 (3%) to subtype E4.
Collapse
|
62
|
Saini V, Martyshki DV, Towner VD, Mirov SB, Everts M. Limitations of Adenoviral Vector-Mediated Delivery of Gold Nanoparticles to Tumors for Hyperthermia Induction. ACTA ACUST UNITED AC 2009; 2. [PMID: 24403982 DOI: 10.2174/1875933500902010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel combinatorial treatment strategies are desired to achieve tumor eradication. In this regard, nanotechnology and gene therapy hold the potential to expand the available tumor treatment options. In particular, gold nanoparticles (AuNPs) have been utilized for hyperthermic tumor cell ablation. Similarly, adenoviral (Ad) vectors have been utilized for targeting, imaging, and cancer gene therapy. Thus, to combine AuNP-mediated hyperthermia with Ad vector-based gene therapy, we have previously coupled AuNPs to Ad vectors. Herein we tested the capability of these AuNP-coupled Ad vectors for hyperthermic tumor cell ablation. Towards this end, we compared absorption characteristics of different sized AuNPs and determined that in our system 20 nm diameter AuNPs are suitable for laser induced hyperthermic tumor cell killing. In addition, we observed that AuNPs outside and inside the cell contribute differentially towards hyperthermia induction. Unfortunately, due to the limitation of delivery of required amounts of AuNPs to cells, we observed that AuNP-coupled Ad vectors are unable to kill tumor cells via hyperthermia. However, with future technological advances, it may become possible to realize the potential of the multifunctional AuNP-coupled Ad vector system for simultaneous targeting, imaging, and combined hyperthermia and gene therapy of tumors.
Collapse
Affiliation(s)
- Vaibhav Saini
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center ; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama ; Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Dmitri V Martyshki
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victoria D Towner
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center
| | - Sergey B Mirov
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maaike Everts
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center ; Division of Molecular and Cellular Pathology, Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
63
|
Shashkova EV, May SM, Barry MA. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents. Virology 2009; 394:311-20. [PMID: 19765790 DOI: 10.1016/j.virol.2009.08.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/28/2009] [Accepted: 08/26/2009] [Indexed: 02/08/2023]
Abstract
Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereas Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.
Collapse
Affiliation(s)
- Elena V Shashkova
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | | | | |
Collapse
|
64
|
Abstract
Whole-genome sequencing of human adenovirus type 11 (HAdV-11) strain QS, isolated in China, was conducted, and its sequence was compared with the sequences of strains within the species of HAdVs. The HAdV-11 QS genome contains 34,755 nucleotides. Similar to the other HAdV subgenus B sequences, the HAdV-11 QS genome coded 37 functional proteins and could be divided into four early, two intermediate, and five late transcription regions. The amino acid sequences of the fiber and the hypervariable regions (HVRs) within the hexon gene of HAdV-11 QS were identical to the corresponding sequences of the HAdV-11a strain; further analyses that compared those amino acid sequences with the amino acid sequences of the HAdV species subgenus B:2 strains revealed that the highest degree of homology (>99.2%) existed between HAdV-11 QS and the prototypical HAdV-14 strain, except for a few coding sequences of HVRs within the hexon gene, DNA polymerase, pVI, and pre-terminal protein. This indicate that HAdV-11 strain QS, isolated in China, is a recombinant adenovirus of HAdV-14, and the recombination analyses also confirmed this finding. It is difficult to clarify the time and manner of the recombination, and further investigations are required to determine whether the emergence of recombination between HAdV-11a and HAdV-14 might increase virulence, thereby posing a new global challenge with regard to acute respiratory diseases in the near future.
Collapse
|
65
|
Lasaro MO, Ertl HCJ. New insights on adenovirus as vaccine vectors. Mol Ther 2009; 17:1333-9. [PMID: 19513019 PMCID: PMC2835230 DOI: 10.1038/mt.2009.130] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 05/20/2009] [Indexed: 12/15/2022] Open
Abstract
Adenovirus (Ad) vectors were initially developed for treatment of genetic diseases. Their usefulness for permanent gene replacement was limited by their high immunogenicity, which resulted in rapid elimination of transduced cells through induction of T and B cells to antigens of Ad and the transgene product. The very trait that excluded their use for sustained treatment of genetic diseases made them highly attractive as vaccine carriers. Recently though results showed that Ad vectors based on common human serotypes, such as serotype 5, may not be ideal as vaccine carriers. A recently conducted phase 2b trial, termed STEP trial, with an AdHu5-based vaccine expressing antigens of human immunodeficiency virus 1 (HIV-1) not only showed lack of efficacy in spite of the vaccine's immunogenicity, but also suggested an increased trend for HIV acquisition in individuals that had circulating AdHu5 neutralizing antibodies prior to vaccination. Alternative serotypes from humans or nonhuman primates (NHPs), to which most humans lack pre-existing immunity, have been vectored and may circumvent the problems encountered with the use of AdHu5 vectors in humans. In summary, although Ad vectors have seen their share of setbacks in recent years, they remain viable tools for prevention or treatment of a multitude of diseases.
Collapse
Affiliation(s)
- Marcio O Lasaro
- The Wistar Institute Vaccine Center, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
66
|
Abe S, Okuda K, Ura T, Kondo A, Yoshida A, Yoshizaki S, Mizuguchi H, Klinman D, Shimada M. Adenovirus type 5 with modified hexons induces robust transgene-specific immune responses in mice with pre-existing immunity against adenovirus type 5. J Gene Med 2009; 11:570-9. [PMID: 19391169 PMCID: PMC7385988 DOI: 10.1002/jgm.1332] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Adenovirus type 5 (Ad5) is widely used as a vehicle for vaccine delivery in the treatment of infectious disease and cancer. However, the efficacy of Ad5 vectors has been limited in humans because exposure to Ad5 infections results in most adults having neutralizing antibodies against Ad5. To overcome this limitation, the hexon epitope present in the fifth hypervariable region of Ad5 was modified. METHODS To evaluate the ability of Ad5 vectors encoding the HIV env protein to induce Ag-specific immune responses in the face of pre-existing anti-Ad5 immunity, mice were administrated intramuscularly with the Ad-Luc vector, and then vaccinated with parental or hexon-modified Ad5 vectors (Ad-HisHIV, Ad-END/AAAHIV or Ad-HIV) at week 8. HIV-specific cell-mediated immune responses were detected through a combination of tetramer assays and intracellular cytokine staining from weeks 8-23. RESULTS The hexon-modified Ad vector was able to escape from anti-Ad5 neutralizing antibody, and mice with the modified vector generated significantly lower individual neutralizing antibody than those immunized with the parental vector. Furthermore, mice with pre-existing anti-Ad immunity immunized with the modified vector generated significantly stronger cell-mediated anti-env responses than those immunized with the parental vector. CONCLUSIONS These data demonstrate that Ad5 vector with hexon modification reduce their sensitivity to pre-existing anti-Ad immunity and improve their clinical utility.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takehiro Ura
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Kondo
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Yoshida
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinji Yoshizaki
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Dennis Klinman
- National Cancer institute, National Institute of Health, Frederick, MD, USA
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
67
|
Abstract
Adenoviruses have been studied intensively for over 50 years as models of virus-cell interactions and latterly as gene vectors. With the advent of more sophisticated structural analysis techniques the disposition of most of the 13 structural proteins have been defined to a reasonable level. This review seeks to describe the functional properties of these proteins and shows that they all have a part to play in deciding the outcome of an infection and act at every level of the virus's path through the host cell. They are primarily involved in the induction of the different arms of the immune system and a better understanding of their overall properties should lead to more effective ways of combating virus infections.
Collapse
Affiliation(s)
- W C Russell
- School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| |
Collapse
|
68
|
Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C. The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 2009; 542:5-54. [PMID: 19565894 DOI: 10.1007/978-1-59745-561-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the last 4 decades, gene therapy has moved from preclinical to clinical studies for many diseases ranging from monogenic recessive disorders such as hemophilia to more complex diseases such as cancer, cardiovascular disorders, and human immunodeficiency virus (HIV). To date, more than 1,340 gene therapy clinical trials have been completed, are ongoing, or have been approved in 28 countries, using more than 100 genes. Most of those clinical trials (66.5%) were aimed at the treatment of cancer. Early hype, failures, and tragic events have now largely been replaced by the necessary stepwise progress needed to realize clinical benefits. We now understand better the strengths and weaknesses of various gene transfer vectors; this facilitates the choice of appropriate vectors for individual diseases. Continuous advances in our understanding of tumor biology have allowed the development of elegant, more efficient, and less toxic treatment strategies. In this introductory chapter, we review the history of gene therapy since the early 1960s and present in detail two major recurring themes in gene therapy: (1) the development of vector and delivery systems and (2) the design of strategies to fight or cure particular diseases. The field of cancer gene therapy experienced an "awkward adolescence." Although this field has certainly not yet reached maturity, it still holds the potential of alleviating the suffering of many individuals with cancer.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
69
|
Determining the concentration and the absorptivity factor at 260 nm in sodium dodecyl sulfate of the adenovirus reference material using analytical ultracentrifugation. Anal Biochem 2008; 380:152-4. [DOI: 10.1016/j.ab.2008.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/13/2008] [Indexed: 11/20/2022]
|
70
|
Meneses-Acosta A, Dormond E, Jacob D, Tom R, Bernier A, Perret S, St-Laurent G, Durocher Y, Gilbert R, Kamen A. Development of a suspension serum-free helper-dependent adenovirus production system and assessment of co-infection conditions. J Virol Methods 2008; 148:106-14. [PMID: 18079009 DOI: 10.1016/j.jviromet.2007.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 10/20/2007] [Accepted: 10/26/2007] [Indexed: 12/14/2022]
Abstract
Helper-dependent adenovirus (HDAd), deleted in all viral protein-coding sequences has been designed to reduce immune response and favor long-term expression of therapeutic genes in clinical programs. Its production requires co-infection of E1-complementing cells with helper adenovirus (HAd). Significant progresses have been made in the molecular design of HDAd, but large scale production remains a challenge. In this work, a scalable system for HDAd production is designed and evaluated focusing on the co-infection step. A human embryo kidney 293 (293) derived cell line, the 293SF/FLPe was generated to produce efficiently HDAd while restricting the packaging of HAd. This cell line was adapted to grow in suspension and in serum-free medium. Multiplicity of infection (MOI) of HDAd ranging from 0.1 to 50 was evaluated in presence of HAd at a MOI of 5. Optimal MOIs for HDAd amplification were found in the range of 5-10. HAd contamination was only 1%. These results were validated in a 3 L bioreactor under controlled operating conditions where a higher HDAd yield of 2.6 x 10(9) viral particles (VP)/mL or 3.5 x 10(8) infectious units (IU)/mL of HDAd was obtained.
Collapse
Affiliation(s)
- Angélica Meneses-Acosta
- Animal Cell Technology Group, Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Thorne BA, Quigley P, Nichols G, Moore C, Pastor E, Price D, Ament JW, Takeya RK, Peluso RW. Characterizing clearance of helper adenovirus by a clinical rAAV1 manufacturing process. Biologicals 2008; 36:7-18. [PMID: 17644406 DOI: 10.1016/j.biologicals.2007.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/13/2007] [Accepted: 04/03/2007] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) are being developed as gene therapy delivery vehicles and as genetic vaccines, and some of the most scaleable manufacturing methods for rAAV use live adenovirus to induce production. One aspect of establishing safety of rAAV products is therefore demonstrating adequate and reliable clearance of this helper virus by the vector purification process. The ICH Q5A regulatory guidance on viral safety provides recommendations for process design and characterization of viral clearance for recombinant proteins, and these principles were adapted to a rAAV serotype 1 purification process for clinical vectors. Specific objectives were to achieve overall adenovirus clearance factors significantly greater than input levels by using orthogonal separation and inactivation methods, and to segregate adenovirus from downstream operations by positioning a robust clearance step early in the process. Analytical tools for process development and characterization addressed problematic in-process samples, and a viral clearance validation study was performed using adenovirus and two non-specific model viruses. Overall clearance factors determined were >23 LRV for adenovirus, 11 LRV for BVDV, and >23 LRV for AMuLV.
Collapse
Affiliation(s)
- Barbara A Thorne
- Targeted Genetic Corporation, Process Development, 1100 Olive Way, Suite 100, Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Waszak P, Franqueville L, Franco-Motoya ML, Rosa-Calatrava M, Boucherat O, Lindholm L, Delacourt C, Boulanger P. Toxicity of Fiber- and Penton Base–modified Adenovirus Type 5 Vectors on Lung Development in Newborn Rats. Mol Ther 2007; 15:2008-16. [PMID: 17653105 DOI: 10.1038/sj.mt.6300254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transient overexpression of genes involved in lung regulation might prevent alveolar developmental disorders (ADDs) in premature neonates. However, adenovirus 5 (Ad5) vectors per se, and not isolated capsid proteins, induce ADDs after tracheal administration to newborn rats. To test the hypothesis that Ad5 capsid components are mainly responsible for ADDs, we evaluated newborn rats' lung development by morphometry after tracheal administration of a panel of Ad5 vectors with mutations in the fiber or penton base. Three distinct patterns of lung response were observed on postnatal day (PD) 21: (i) emphysematous-like lesions, common to Ad5 overexposing RGD motifs; (ii) altered septation, representative of the wild-type capsid Ad5 lesion; (iii) absence of lung toxicity, shown by Ad5 vectors with fibers shortened to seven repeats. None of these patterns correlated with the degree of lung inflammation or gene transduction. In contrast, a more impaired elastogenesis associated with emphysema was preceded by a significantly increased level of activated caspase 3 on PD11. Moreover, the altered septation was associated with a persistent and significant increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive alveolar septal cells on PD21. Our results underline the deleterious effects of Ad-induced apoptosis, which is not only responsible for limited transgene expression but also involved in lung development disorders.
Collapse
Affiliation(s)
- Paul Waszak
- Laboratoire de Virologie et Pathologie Humaine, CNRS FRE 3011, Université de Lyon, Faculté de Médecine RTH Laënnec, Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Eto Y, Yoshioka Y, Mukai Y, Okada N, Nakagawa S. Development of PEGylated adenovirus vector with targeting ligand. Int J Pharm 2007; 354:3-8. [PMID: 17904316 DOI: 10.1016/j.ijpharm.2007.08.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/14/2007] [Accepted: 08/18/2007] [Indexed: 12/14/2022]
Abstract
For effective gene therapy, a vector system that transduces the therapeutic gene into target cells efficiently and safely is essential. Adenovirus (Ad) vectors frequently are used for gene therapy research, especially cancer gene therapy, because of their high transduction efficiency. However, broad clinical utility of Ad vectors have not yet been achieved owing to problems related to several properties inherent to Ads. Systemic administration of Ad vectors leads to acute virus accumulation and undesirable transgene expression in the liver, with subsequent inefficient systemic cancer-targeted therapy and pronounced hepatotoxicity. Furthermore, most people have Ad-neutralizing antibodies, which hamper gene expression efficiency. Chemical conjugation of Ad surface with polyethylene glycol (PEG) (PEGylation) is one of the promising strategies to overcome these problems. Furthermore, PEGylation of Ad vectors with targeting ligands on the tip of PEG, which alter the transfection range of Ad vectors will improve the safety and efficiency of Ad gene-delivery vectors. In this review, we describe the molecular biology of Ads and outline this PEGylation approach including our data.
Collapse
Affiliation(s)
- Yusuke Eto
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
74
|
Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 2007; 7:189-204. [PMID: 17584037 PMCID: PMC2244792 DOI: 10.2174/156652307780859062] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting.
Collapse
Affiliation(s)
- Samuel K. Campos
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michael A. Barry
- Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA
- *Address correspondence to this author at the Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA; E-mail:
| |
Collapse
|
75
|
Hirsch T, von Peter S, Dubin G, Mittler D, Jacobsen F, Lehnhardt M, Eriksson E, Steinau HU, Steinstraesser L. Adenoviral gene delivery to primary human cutaneous cells and burn wounds. Mol Med 2007; 12:199-207. [PMID: 17225867 PMCID: PMC1770006 DOI: 10.2119/2006-00031.hirsch] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/25/2006] [Indexed: 11/06/2022] Open
Abstract
The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determined up to 30 days. Expression was quantified by FACS analysis and fluorimeter. Cytotoxicity was measured using the trypan blue exclusion method. 45 male Sprague Dawley rats received 2x10(8) pfu of Ad5-CMV-LacZ or carrier control intradermally into either superficial partial thickness scald burn or unburned skin. Animals were euthanized after 48 h, 7 or 14 days posttreatment. Transgene expression was assessed using immunohistochemistry and bioluminescent assays. The highest transfection rate was observed 48 h posttransfection: 79% for HKC, 70% for HFB, and 48% for HaCaT. The eGFP expression was detectable in all groups over 30 days (P>0.05). Cytotoxic effects of the adenoviral vector were observed for HFB after 10 days and HaCaT after 30 days. Reporter gene expression in vivo was significantly higher in burned skin compared with unburned skin (P=0,004). Gene expression decreases from 2 to 7 days with no significant expression after 14 days. This study demonstrates that effective adenoviral-mediated gene transfer of epidermal primary cells and cell-lines is feasible. Ex vivo gene transfer in epithelial cells might have promise for the use in severely burned patients who receive autologous keratinocyte sheets. Transient cutaneous gene delivery in burn wounds using adenoviral vectors causes significant concentrations in the wound tissue for at least 1 week. Based on these findings, we hypothesize that transient cutaneous adenoviral gene delivery of wound healing promoting factors has potential for clinical application.
Collapse
Affiliation(s)
- Tobias Hirsch
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Sebastian von Peter
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Grzegorz Dubin
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
- Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dominik Mittler
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Frank Jacobsen
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Markus Lehnhardt
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hans-Ulrich Steinau
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Lars Steinstraesser
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
- Address correspondence and reprint requests to Lars Steinstraesser, Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, 44789 Bochum/Germany. Phone: + 49 (0) 234/302-3442; fax: + 49 (0) 234/307-6379; e-mail:
| |
Collapse
|
76
|
Berkowitz SA, Philo JS. Monitoring the homogeneity of adenovirus preparations (a gene therapy delivery system) using analytical ultracentrifugation. Anal Biochem 2007; 362:16-37. [PMID: 17223062 DOI: 10.1016/j.ab.2006.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
This study explores the capability of modern analytical ultracentrifugation (AUC) to characterize the homogeneity, under product formulation conditions, of preparations of adenovirus vectors used in gene therapy and to assess the lot-to-lot consistency of this unique drug product. We demonstrate that a single sedimentation velocity run on an adenovirus sample can detect and accurately quantify a number of different forms of virus particles and subvirus particles. These forms include (a) intact virus monomer particles, (b) virus aggregates, (c) empty capsids (ECs), and (d) smaller assembly intermediates or subparticles formed during normal or aberrant virus assembly (or as a result of damage to the intact adenovirus or EC material during all phases of virus production). This information, which is collected on adenovirus samples under the exact formulation conditions that exist in the adenovirus vial, is obtained by direct boundary modeling of the AUC data generated from refractometric and/or UV detection systems using the computer program SEDFIT developed by Peter Schuck. Although both detectors are useful, refractometric detection using the Rayleigh interferometer offers a key advantage for providing accurate concentration information due to the similar response factors for both protein and DNA and its insensitivity to light scattering effects. Additional AUC data obtained from analytical band sedimentation velocity and density gradient sedimentation equilibrium experiments in CsCl with UV detection were also generated. These results further support conclusions concerning the solution properties of adenovirus, the identity of the different virus species, and the overall capability of boundary sedimentation velocity analysis.
Collapse
Affiliation(s)
- Steven A Berkowitz
- Department of Analytical Development, Biogen Idec Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
77
|
Hama S, Akita H, Iida S, Mizuguchi H, Harashima H. Quantitative and mechanism-based investigation of post-nuclear delivery events between adenovirus and lipoplex. Nucleic Acids Res 2007; 35:1533-43. [PMID: 17287293 PMCID: PMC1865055 DOI: 10.1093/nar/gkl1165] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Quantitative and mechanism-based information on differences in transfection efficiency between viral and non-viral vectors would be highly useful for improving the effectiveness of non-viral vectors. A previous quantitative comparison of intracellular trafficking between adenovirus and LipofectAMINE PLUS (LFN) revealed that the three orders of magnitude lower transfection efficiency of LFN was dominantly rate limited by the post-nuclear delivery process. In the present study, the contribution of transcription and translation processes to the overall differences in the transgene expression efficiency of nucleus-delivered DNA was independently evaluated by quantifying mRNA. As a result, transcription efficiency (Etranscript) of LFN, denoted as transgene expression divided by the amount of nuclear pDNA was about 16 times less than that for adenovirus. Furthermore, translation efficiency (Etranslate), denoted as transfection activity divided by mRNA expression was approximately 460 times less in LFN. Imaging of the decondensed form of DNA by in situ hybridization revealed that poor decondensation efficiency of LFN is involved in the inferior Etranscript. Moreover, the inferior translation efficiency (Etranslate) of LFN was mainly due to electrostatic interactions between LFN and mRNA. Collectively, an improvement in nuclear decondensation and the diminution of the interaction between vector and mRNA is essential for the development of new generations of non-viral vectors.
Collapse
Affiliation(s)
- Susumu Hama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Shinya Iida
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hiroyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
- *To whom correspondence should be addressed. +81 11 706 3919+81 11 706 4879
| |
Collapse
|
78
|
Xu L, Benson SD, Burnett RM. Nanoporous crystals of chicken embryo lethal orphan (CELO) adenovirus major coat protein, hexon. J Struct Biol 2007; 157:424-31. [PMID: 17071105 PMCID: PMC1941783 DOI: 10.1016/j.jsb.2006.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/11/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
CELO (chicken embryo lethal orphan) virus is an avian adenovirus that is being developed as a gene transfer vector. Its trimeric major coat protein (942 residues, 106,709 Da) has 42% sequence identity to human adenovirus type 2 (AdH2) hexon and 45% to AdH5 hexon. For structural studies, the growth of CELO virus has been optimized, and its hexon purified and crystallized. The hexon crystals, the first non-human example, diffract to 3.9 A resolution. Molecular replacement using the AdH5 model was used to identify the location of the CELO hexon within the unit cell. There is one hexon monomer in the asymmetric unit of the trigonal space group P321 (a=b=157.8 A, c=114.2 A, gamma=120 degrees) and the solvent content is 67.8%. The hexons pack in a hexagonal honeycomb so that large approximately 100 A diameter channels run through the entire crystal. This remarkable property of the crystals lends itself to their exploitation as a nanomaterial. Structural studies on CELO will elucidate the differences between avian and human adenoviruses and contribute to a better understanding of adenoviruses with non-human hosts.
Collapse
Affiliation(s)
| | | | - Roger M. Burnett
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104
| |
Collapse
|
79
|
Rux JJ, Burnett RM. Large-scale purification and crystallization of adenovirus hexon. METHODS IN MOLECULAR MEDICINE 2007; 131:231-50. [PMID: 17656787 DOI: 10.1007/978-1-59745-277-9_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter provides a protocol for the large-scale purification of adenovirus type 2 and 5 virions and the soluble major coat protein hexon. The purified virus particles remain intact and are suitable for vector, vaccine, or structural studies and can also be used as seed stock for further rounds of infection. The hexon may be used to produce crystals suitable for high-resolution X-ray crystallographic studies. Briefly, virus is propagated in HeLa cell suspension cultures. The infected cells are lysed, virions and hexon are separated by centrifugation, and the protein is then further purified by anion exchange chromatography. The entire purification procedure takes approx 1 wk and typically yields 10(13) virus particles and 10-20 mg of highly purified hexon.
Collapse
|
80
|
Marsh MP, Campos SK, Baker ML, Chen CY, Chiu W, Barry MA. Cryoelectron microscopy of protein IX-modified adenoviruses suggests a new position for the C terminus of protein IX. J Virol 2006; 80:11881-6. [PMID: 16987967 PMCID: PMC1642590 DOI: 10.1128/jvi.01471-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recombinant human adenovirus is a useful gene delivery vector for clinical gene therapy. Minor capsid protein IX of adenovirus has been of recent interest since multiple studies have shown that modifications can be made to its C terminus to alter viral tropism or add molecular tags and/or reporter proteins. We examined the structure of an engineered adenovirus displaying the enhanced green fluorescent protein (EGFP) fused to the C terminus of protein IX. Cryoelectron microscopy and reconstruction localized the C-terminal EGFP fusion between the H2 hexon and the H4 hexon, positioned between adjacent facets, directly above the density previously assigned as protein IIIa. The original assignment of IIIa was based largely on indirect evidence, and the data presented herein support the reassignment of the IIIa density as protein IX.
Collapse
Affiliation(s)
- Michael P Marsh
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
81
|
Tang L, Gilcrease EB, Casjens SR, Johnson JE. Highly discriminatory binding of capsid-cementing proteins in bacteriophage L. Structure 2006; 14:837-45. [PMID: 16698545 DOI: 10.1016/j.str.2006.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 12/31/2022]
Abstract
Cementing proteins that bind to the virion surface have been described in double-stranded DNA viruses such as herpesvirus, adenovirus, and numerous bacteriophages. The three-dimensional structure of bacteriophage L determined by electron cryo-microscopy reveals binding modes of two cementing proteins-one, called Dec, encoded by phage gene orf134 and the other by an as yet unidentified gene. These two proteins form homotrimers and bind at the quasi 3-fold axes nearest the icosahedral 2-fold axes and at the icosahedral 3-fold vertices, respectively. They do not bind at the quasi 3-fold axes near the icosahedral 5-fold vertices. These observations indicate precise recognition of the two cementing proteins at a subset of the quasi equivalent sites on the phage capsid. Sequence analysis shows striking similarity between the C-terminal portion of phage L Dec protein and five regions in the long tail fiber of a T4-like phage, suggesting functional parallelism between them.
Collapse
Affiliation(s)
- Liang Tang
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
82
|
McConnell MJ, Danthinne X, Imperiale MJ. Characterization of a permissive epitope insertion site in adenovirus hexon. J Virol 2006; 80:5361-70. [PMID: 16699016 PMCID: PMC1472126 DOI: 10.1128/jvi.00256-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/16/2006] [Indexed: 01/22/2023] Open
Abstract
A robust immune response is generated against components of the adenovirus capsid. In particular, a potent and long-lived humoral response is elicited against the hexon protein. This is due to the efficient presentation of adenovirus capsid proteins to CD4+ T cells by antigen-presenting cells, in addition to the highly repetitive structure of the adenovirus capsids, which can efficiently stimulate B-cell proliferation. In the present study, we take advantage of this immune response by inserting epitopes against which an antibody response is desired into the adenovirus hexon. We use a B-cell epitope from Bacillus anthracis protective antigen (PA) as a model antigen to characterize hypervariable region 5 (HVR5) of hexon as a site for peptide insertion. We demonstrate that HVR5 can accommodate a peptide of up to 36 amino acids without adversely affecting virus infectivity, growth, or stability. Viruses containing chimeric hexons elicited antibodies against PA in mice, with total immunoglobulin G (IgG) titers reaching approximately 1 x 10(3) after two injections. The antibody response contained both IgG1 and IgG2a subtypes, suggesting that Th1 and Th2 immunity had been stimulated. Coinjection of wild-type adenovirus and a synthetic peptide from PA produced no detectable antibodies, indicating that incorporation of the epitope into the capsid was crucial for immune stimulation. Together, these results indicate that the adenovirus capsid is an efficient vehicle for presenting B-cell epitopes to the immune system, making this a useful approach for the design of epitope-based vaccines.
Collapse
Affiliation(s)
- Michael J McConnell
- University of Michigan Medical School, 6304 Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0942, USA
| | | | | |
Collapse
|
83
|
Majhen D, Ambriović-Ristov A. Adenoviral vectors--how to use them in cancer gene therapy? Virus Res 2006; 119:121-33. [PMID: 16533542 DOI: 10.1016/j.virusres.2006.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 01/02/2023]
Abstract
Gene therapy is most often described as a technique for introducing the foreign genetic material into cells with a correction of a dysfunctional gene as its final goal. Today, it is well known that cancer is one of the leading causes of mortality in the world. Besides classical methods for cancer treatment new strategies against cancer are needed. Although originally being designed as a treatment for monogenetic illness, soon after, gene therapy appeared as a potential new strategy in cancer therapy. One of the widely used vectors for cancer gene therapy is adenovirus. In this review we have described molecular biology of adenoviruses and basis for construction of adenoviral vectors. We have also described concepts for cancer gene therapy including their in vitro and in vivo application. Special attention is drawn toward retargeting of adenovirus as a new approach in vector design for cancer gene therapy, in order to restrict transgene expression in tumor tissue. This approach uses biophysical as well as genetic characteristics of tumor itself and its supporting tissue, allowing new "bypass" in cancer gene therapy.
Collapse
Affiliation(s)
- Dragomira Majhen
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | |
Collapse
|
84
|
Leen AM, Bollard CM, Myers GD, Rooney CM. Adenoviral Infections in Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2006; 12:243-51. [PMID: 16503493 DOI: 10.1016/j.bbmt.2005.10.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/24/2005] [Indexed: 01/12/2023]
Abstract
Adenoviruses are lytic DNA viruses that are ubiquitous in human communities. In total, 51 different serotypes with varying tissue tropisms have been identified. Adenovirus infections, although frequent, are rarely fatal in immunocompetent individuals who have potent innate and adaptive immunity. But in immunosuppressed individuals, adenoviruses are a significant cause of morbidity and mortality, with limited treatment options. In particular, pediatric recipients of allogeneic hematopoietic stem cell transplantation frequently develop infections early in the posttransplantation period. Because the endogenous recovery of adenovirus-specific T cells has proven important in controlling infection, we explore the potential of adoptive T-cell immunotherapy as a therapeutic strategy. We discuss the advantages and limitations of T-cell therapy for the prophylaxis and treatment of adenovirus infection posttransplantation.
Collapse
Affiliation(s)
- Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, and the Methodist Hospital, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
85
|
Campos SK, Barry MA. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. Virology 2006; 349:453-62. [PMID: 16504233 DOI: 10.1016/j.virol.2006.01.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 12/22/2005] [Accepted: 01/18/2006] [Indexed: 11/17/2022]
Abstract
The direct genetic modification of adenoviral capsid proteins with new ligands is an attractive means to confer targeted tropism to adenoviral vectors. Although several capsid proteins have been reported to tolerate the genetic fusion of foreign peptides and proteins, direct comparison of cell targeting efficiencies through the different capsomeres has been lacking. Likewise, direct comparison of with one or multiple ligands has not been performed due to a lack of capsid-compatible ligands available for retargeting. Here we utilize a panel of metabolically biotinylated Ad vectors to directly compare targeted transduction through the fiber, protein IX, and hexon capsomeres using a variety of biotinylated ligands including antibodies, transferrin, EGF, and cholera toxin B. These results clearly demonstrate that cell targeting with a variety of high affinity receptor-binding ligands is only effective when transduction is redirected through the fiber protein. In contrast, protein IX and hexon-mediated targeting by the same set of ligands failed to mediate robust vector targeting, perhaps due to aberrant trafficking at the cell surface or inside targeted cells. These data suggest that vector targeting by genetic incorporation of high affinity ligands will likely be most efficient through modification of the adenovirus fiber rather than the protein IX and hexon capsomeres. In contrast, single-step monomeric avidin affinity purification of Ad vectors using the metabolic biotinylation system is most effective through capsomeres like protein IX and hexon.
Collapse
Affiliation(s)
- Samuel K Campos
- The Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
86
|
Affiliation(s)
- Roger M Burnett
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104
| |
Collapse
|
87
|
Das S, Paul S, Dutta C. Synonymous codon usage in adenoviruses: influence of mutation, selection and protein hydropathy. Virus Res 2005; 117:227-36. [PMID: 16307819 DOI: 10.1016/j.virusres.2005.10.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/19/2005] [Accepted: 10/19/2005] [Indexed: 11/23/2022]
Abstract
Trends in synonymous codon usage in adenoviruses have been examined through the multivariate statistical analysis on the annotated protein-coding regions of 22 adenoviral species, for which complete genome sequences are available. One of the major determinants of such trends is the G+C content at third codon positions of the genes, the average value of which varied from one viral genome to other depending on the overall mutational bias of the species. G3S and C3S interacted synergistically along the first principal axis of correspondence analysis on the Relative Synonymous Codon Usage of adenoviral genes, but antagonistically along the second principal axis. The intra-genomic variation in codon usage pattern in adenoviruses is generally influenced by asymmetrical mutational bias in two DNA strands. Other major determinants of the trends are the natural selection, putatively operative at the level of translation and quite interestingly, hydropathy of the encoded proteins. The trends in codon usage, though characterized by distinct virus-specific mutational bias, do not exhibit any sign of host-specificity. Significant variations are observed in synonymous codon choice in structural and nonstructural genes of adenoviruses.
Collapse
Affiliation(s)
- Sabyasachi Das
- Bioinformatics Centre, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | |
Collapse
|
88
|
Gorman JJ, Wallis TP, Whelan DA, Shaw J, Both GW. LH3, a “homologue” of the mastadenoviral E1B 55-kDa protein is a structural protein of atadenoviruses. Virology 2005; 342:159-66. [PMID: 16112161 DOI: 10.1016/j.virol.2005.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 07/18/2005] [Indexed: 11/20/2022]
Abstract
Ovine adenovirus serotype 7 (OAdV), the prototype atadenovirus, has gene homologues for most mastadenovirus structural proteins but lacks proteins V and IX. Instead, OAdV has structural proteins of 32 and 42 kDa although the gene encoding the latter had not previously been identified. The presently reported studies of OAdV virions have now identified a minor structural polypeptide of approximately 40 kDa as the product of the L1 52/55-kDa gene and, more surprisingly, shown that the 42-kDa protein is encoded by LH3. This gene product was previously thought to be a homologue of mastadenovirus E1B 55 kDa, which is a multi-functional, non-structural protein that cooperates with E1A in cell transformation. The lack of transforming activity previously demonstrated for OAdV combined with a structural role for the LH3 product indicates that the protein has a different function in atadenoviruses. We discuss the abundance and likely core location of LH3 in the virion and the possible derivation of the E1B 55-kDa gene from the LH3 gene.
Collapse
Affiliation(s)
- Jeffrey J Gorman
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
89
|
Affiliation(s)
- Yuanming Zhang
- Division of Infectious Diseases, Children's Hospital of Philadelphia, PA, USA
| | | |
Collapse
|
90
|
Fabry CMS, Rosa-Calatrava M, Conway JF, Zubieta C, Cusack S, Ruigrok RWH, Schoehn G. A quasi-atomic model of human adenovirus type 5 capsid. EMBO J 2005; 24:1645-54. [PMID: 15861131 PMCID: PMC1142584 DOI: 10.1038/sj.emboj.7600653] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 03/30/2005] [Indexed: 12/22/2022] Open
Abstract
Adenoviruses infect a wide range of vertebrates including humans. Their icosahedral capsids are composed of three major proteins: the trimeric hexon forms the facets and the penton, a noncovalent complex of the pentameric penton base and trimeric fibre proteins, is located at the 12 capsid vertices. Several proteins (IIIa, VI, VIII and IX) stabilise the capsid. We have obtained a 10 A resolution map of the human adenovirus 5 by image analysis from cryo-electron micrographs (cryoEMs). This map, in combination with the X-ray structures of the penton base and hexon, was used to build a quasi-atomic model of the arrangement of the two major capsid components and to analyse the hexon-hexon and hexon-penton interactions. The secondary proteins, notably VIII, were located by comparing cryoEM maps of native and pIX deletion mutant virions. Minor proteins IX and IIIa are located on the outside of the capsid, whereas protein VIII is organised with a T=2 lattice on the inner face of the capsid. The capsid organisation is compared with the known X-ray structure of bacteriophage PRD1.
Collapse
Affiliation(s)
- Céline M S Fabry
- Laboratoire de Virologie Moléculaire et Structurale, FRE 2854 CNRS-Université Joseph Fourier, Grenoble Cedex, France
- EMBL Grenoble Outstation, Grenoble Cedex, France
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathogenèse Virale, Faculté de Médecine et Institut Fédératif de Recherche RTH Laennec, Lyon, France
| | - James F Conway
- Institut de Biologie Structurale, Grenoble Cedex, France
| | | | | | - Rob W H Ruigrok
- Laboratoire de Virologie Moléculaire et Structurale, FRE 2854 CNRS-Université Joseph Fourier, Grenoble Cedex, France
- EMBL Grenoble Outstation, Grenoble Cedex, France
| | - Guy Schoehn
- Laboratoire de Virologie Moléculaire et Structurale, FRE 2854 CNRS-Université Joseph Fourier, Grenoble Cedex, France
- EMBL Grenoble Outstation, Grenoble Cedex, France
- EMBL, 6 rue Jules Horowitz, BP 181 38042 Grenoble, France. Tel: +33 4 76 20 70 96; Fax: +33 4 76 20 71 99; E-mail:
| |
Collapse
|