51
|
Lewin AS, Rossmiller B, Mao H. Gene augmentation for adRP mutations in RHO. Cold Spring Harb Perspect Med 2014; 4:a017400. [PMID: 25037104 DOI: 10.1101/cshperspect.a017400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in the gene for rhodopsin, RHO, cause autosomal dominant retinitis pigmentosa, a disease characterized by death of rod photoreceptor cells. At the end stage, when most rods are gone, cones die too, taking central vision with them. One goal of gene therapy, therefore, is to preserve central vision by promoting rod survival in the vicinity of the macula. Dominance in RHO mutations is associated with two phenomena: interference with the function of normal rhodopsin and intrinsic toxicity of the mutant protein. In the case of interference, increased production of the wild-type protein may be therapeutic, but in the case of toxicity, suppression of the mutant protein may also be needed. RHO augmentation has made use of advances in gene delivery to the retina using adeno-associated virus (AAV). Several strategies have been developed for suppression of rhodopsin expression, but because of the heterogeneity of RHO mutations they are not specific for the mutant allele: They suppress both mutant and wild-type RHO. Experiments in autosomal dominant retinitis pigmentosa (adRP) mouse models suggest that both RHO augmentation and supplementation plus suppression preserve the survival of rod cells.
Collapse
Affiliation(s)
- Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Brian Rossmiller
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Haoyu Mao
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610
| |
Collapse
|
52
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
53
|
Abstract
Significant advances have been made over the last decade or two in the elucidation of the molecular pathogenesis of inherited ocular disorders. In particular, remarkable successes have been achieved in exploration of gene-based medicines for these conditions, both in preclinical and in clinical studies. Progress in the development of gene therapies targeted toward correcting the primary genetic defect or focused on modulating secondary effects associated with retinal pathologies are discussed in the review. Likewise, the recent utilization of genes encoding light-sensing molecules to provide new functions to residual retinal cells in the degenerating retina is discussed. While a great deal has been learned over the last two decades, the next decade should result in an increasing number of preclinical studies progressing to human clinical trial, an exciting prospect for patients, those active in research and development and bystanders alike.
Collapse
|
54
|
Petrs-Silva H, Linden R. Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol 2013; 8:127-36. [PMID: 24391438 PMCID: PMC3878960 DOI: 10.2147/opth.s38041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant adenoassociated viral vectors, which show a positive safety record and have so far been successful in several clinical trials for congenital retinal disease. Gene therapy for RP is under development in a variety of animal models, and the results raise expectations of future clinical application. Nonetheless, the translation of such strategies to the bedside requires further understanding of the mutations and mechanisms that cause visual defects, as well as thorough examination of potential adverse effects.
Collapse
Affiliation(s)
- Hilda Petrs-Silva
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
55
|
Borel F, Kay MA, Mueller C. Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther 2013; 22:692-701. [PMID: 24352214 DOI: 10.1038/mt.2013.285] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022] Open
Abstract
RNA interference has become a ubiquitous biological tool, and is being harnessed for therapeutic purposes as well. Therapeutic posttranscriptional gene silencing takes advantage of the endogenous RNAi pathway through delivery of either chemically synthesized siRNAs, or transgenes expressing hairpin-based inhibitory RNAs (e.g., shRNAs and artificial miRNAs). RNAi has expanded the field of viral gene therapy from gene replacement to gene knockdown. Here, we review various noncoding RNAs such as shRNAs, miRNAs, and miRNA decoys which can be utilized for therapeutic applications when expressed from recombinant adeno-associated vectors (AAV), and present examples of their basic design. In addition the basis of exploiting cellular miRNA profiles for detargeting AAV expression from specific cells is described. Finally, an overview of AAV-mediated RNAi preclinical studies is presented, and current RNAi-based clinical trials are reviewed.
Collapse
Affiliation(s)
- Florie Borel
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mark A Kay
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Christian Mueller
- 1] Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA [2] Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
56
|
Colella P, Auricchio A. Gene therapy of inherited retinopathies: a long and successful road from viral vectors to patients. Hum Gene Ther 2013; 23:796-807. [PMID: 22734691 DOI: 10.1089/hum.2012.123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inherited retinopathies (IRs) are common and untreatable blinding conditions inherited mostly as monogenic due to mutations in genes expressed in retinal photoreceptors (PRs) and in retinal pigment epithelium (RPE). Over the last two decades, the retina has emerged as one of the most favorable target tissues for gene therapy given its small size and its enclosed and immune-privileged environment. Different types of viral vectors have been developed, especially those based on the adeno-associated virus (AAV), which efficiently deliver therapeutic genes to PRs or RPE upon subretinal injections. Dozens of successful proofs of concept of the efficacy of gene therapy for recessive and dominant IRs have been generated in small and large models that have paved the way to the first clinical trials using AAV in patients with Leber congenital amaurosis, a severe form of childhood blindness. The results from these initial trials suggest that retinal gene therapy with AAV is safe in humans, that vision can be improved in patients that have suffered from severe impairment of visual function, in some cases for decades, and that readministration of AAV to the subretinal space is feasible, effective, and safe. However, none of the trials could match the levels of efficacy of gene therapy observed in a dog model of the disease, suggesting that there is room for improvement. In conclusion, these results bode well for further testing of AAV-mediated retinal gene therapy in patients with other monogenic and complex forms of blindness.
Collapse
|
57
|
Abstract
Sight-restoring therapy for the visually impaired and blind is a major unmet medical need. Ocular gene therapy is a rational choice for restoring vision or preventing the loss of vision because most blinding diseases originate in cellular components of the eye, a compartment that is optimally suited for the delivery of genes, and many of these diseases have a genetic origin or genetic component. In recent years we have witnessed major advances in the field of ocular gene therapy, and proof-of-concept studies are under way to evaluate the safety and efficacy of human gene therapies. Here we discuss the concepts and recent advances in gene therapy in the retina. Our review discusses traditional approaches such as gene replacement and neuroprotection and also new avenues such as optogenetic therapies. We conjecture that advances in gene therapy in the retina will pave the way for gene therapies in other parts of the brain.
Collapse
Affiliation(s)
- José-Alain Sahel
- INSERM UMR_S 968, UPMC, University of Paris 06, Institut de la Vision, Paris, France.
| | | |
Collapse
|
58
|
Caspase-7 ablation modulates UPR, reprograms TRAF2-JNK apoptosis and protects T17M rhodopsin mice from severe retinal degeneration. Cell Death Dis 2013; 4:e528. [PMID: 23470535 PMCID: PMC3613823 DOI: 10.1038/cddis.2013.34] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The UPR is activated in the mouse retina expressing misfolded T17M rhodopsin (RHO) during autosomal dominant retinitis pigmentosa (ADRP) progression. Therefore, the goal of this study is to validate the UPR-induced caspase-7 as a new therapeutic target that modulates the UPR, reduces the level of apoptosis and protects the ADRP retina from retinal degeneration and light-induced damage. Mice were analyzed using ERG, SD-OCT and histology to determine the role of caspase-7 ablation. The results of these experiments demonstrate the significant preservation of photoreceptors and their function in T17M RHO CASP-7 retinas from P30 to P90 compared with control mice. These mice were also protected from the light-induced decline in the ERG responses and apoptosis. The RNA and protein analyses of T17M RHO+Csp7-siRNA, Tn+Csp7-siRNA 661W cells and T17M RHO CASP-7 retinas revealed that caspase-7 ablation reprograms the UPR and reduces JNK-induced apoptosis. This reduction is believed to occur through the downregulation of the mTOR and Hif1a proteins. In addition, decline in activated PARP1 was detected in T17M RHO CASP-7 retina. Altogether, our findings indicate that the targeting of caspase-7 in T17M RHO mice could be a feasible therapeutic strategy for advanced stages of ADRP.
Collapse
|
59
|
Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21:509-19. [PMID: 23358189 DOI: 10.1038/mt.2012.280] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral control. This review will provide a comprehensive summary of (i) existing gene therapy clinical trials for several genetic forms of blindness and (ii) preclinical efficacy and safety studies in a variety of animal models of retinal disease which demonstrate strong potential for clinical application. To be as comprehensive as possible, we include additional proof of concept studies using gene replacement, neurotrophic/neuroprotective, optogenetic, antiangiogenic, or antioxidative stress strategies as well as a description of the current challenges and future directions in the ocular gene therapy field to this review as a supplement.
Collapse
Affiliation(s)
- Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
60
|
Successful subretinal delivery and monitoring of MicroBeads in mice. PLoS One 2013; 8:e55173. [PMID: 23383096 PMCID: PMC3557268 DOI: 10.1371/journal.pone.0055173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background To monitor viability of implanted genetically engineered and microencapsulated human stem cells (MicroBeads) in the mouse eye, and to study the impact of the beads and/or xenogenic cells on retinal integrity. Methodology/Principal Findings MicroBeads were implanted into the subretinal space of SV126 wild type mice using an ab externo approach. Viability of microencapsulated cells was monitored by noninvasive retinal imaging (Spectralis™ HRA+OCT). Retinal integrity was also assessed with retinal imaging and upon the end of the study by light and electron microscopy. The implanted GFP-marked cells encapsulated in subretinal MicroBeads remained viable over a period of up to 4 months. Retinal integrity and viability appeared unaltered apart from the focal damage due to the surgical implantation, GFAP upregulation, and opsin mistargeting in the immediate surrounding tissue. Conclusions/Significance The accessibility for routine surgery and its immune privileged state make the eye an ideal target for release system implants for therapeutic substances, including neurotrophic and anti-angiogenic compounds or protein based biosimilars. Microencapsulated human stem cells (MicroBeads) promise to overcome limitations inherent with single factor release systems, as they are able to produce physiologic combinations of bioactive compounds.
Collapse
|
61
|
Zhang N, Kolesnikov AV, Jastrzebska B, Mustafi D, Sawada O, Maeda T, Genoud C, Engel A, Kefalov VJ, Palczewski K. Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. J Clin Invest 2012; 123:121-37. [PMID: 23221340 DOI: 10.1172/jci66176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of the E150K mutation in the rod opsin gene associated with autosomal recessive retinitis pigmentosa (arRP) has yet to be determined. We generated knock-in mice carrying a single nucleotide change in exon 2 of the rod opsin gene resulting in the E150K mutation. This novel mouse model displayed severe retinal degeneration affecting rhodopsin's stabilization of rod outer segments (ROS). Homozygous E150K (KK) mice exhibited early-onset retinal degeneration, with disorganized ROS structures, autofluorescent deposits in the subretinal space, and aberrant photoreceptor phagocytosis. Heterozygous (EK) mice displayed a delayed-onset milder retinal degeneration. Further, mutant receptors were mislocalized to the inner segments and perinuclear region. Though KK mouse rods displayed markedly decreased phototransduction, biochemical studies of the mutant rhodopsin revealed only minimally affected chromophore binding and G protein activation. Ablation of the chromophore by crossing KK mice with mice lacking the critical visual cycle protein LRAT slowed retinal degeneration, whereas blocking phototransduction by crossing KK mice with GNAT1-deficient mice slightly accelerated this process. This study highlights the importance of proper higher-order organization of rhodopsin in the native tissue and provides information about the signaling properties of this mutant rhodopsin. Additionally, these results suggest that patients heterozygous for the E150K mutation should be periodically reevaluated for delayed-onset retinal degeneration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Rossmiller B, Mao H, Lewin AS. Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Mol Vis 2012; 18:2479-96. [PMID: 23077406 PMCID: PMC3472929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 10/04/2012] [Indexed: 12/04/2022] Open
Abstract
Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.
Collapse
|
63
|
Palfi A, Chadderton N, McKee AG, Blanco Fernandez A, Humphries P, Kenna PF, Farrar GJ. Efficacy of Codelivery of Dual AAV2/5 Vectors in the Murine Retina and Hippocampus. Hum Gene Ther 2012; 23:847-58. [DOI: 10.1089/hum.2011.142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Arpad Palfi
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Flow Cytometry Core Facilities, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Naomi Chadderton
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Alex G. McKee
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Peter Humphries
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Paul F. Kenna
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - G. Jane Farrar
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|