A potential role for notch signaling in the pathogenesis and regulation of hemangiomas.
J Craniofac Surg 2009;
20 Suppl 1:698-702. [PMID:
19169152 DOI:
10.1097/scs.0b013e318193d898]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hemangiomas are the most common benign tumor of infancy, yet its pathogenesis and the mechanisms governing proliferation and involution are not well understood. It is believed that hemangiomas arise out of clonal, abnormal hemangioma endothelial cells (HemECs). The underlying anomaly of the HemEC is not known, although studies have shown that vascular endothelial growth factor (VEGF) and VEGF signaling may influence HemECs. Moreover, there are numerous subtypes of hemangiomas, with differences in natural history, potential for morbidity, and prognosis, and little is known how this relates to HemEC. The Notch signaling pathway is a highly conserved pathway across species from worms to mammals. Notch signaling has been shown to play a role during embryogenesis in directing vascular patterning and development and arterial and venous cell fate determination. Postnatally, it has been implicated in tumor angiogenesis in multiple malignancies. Notch signaling triggers tumor angiogenesis at least in part to stimulation by VEGF, thus establishing that there is a cross talk between the VEGF and Notch pathways. Given the presence of VEGF and its receptors in hemangiomas and known VEGF-Notch cross talk in tumor angiogenesis, the authors hypothesize that Notch signaling may contribute to hemangioma proliferation and involution. Preliminary studies of resected hemangioma specimens by reverse transcription polymerase chain reaction (RT-PCR) show that all 4 Notch receptors and 2 Notch ligands, Jagged1 and Delta-like ligand 4, are expressed by hemangiomas. These findings support a role for Notch in hemangiomas, meriting further analysis of the functional relevance of Notch signaling in hemangiomas.
Collapse