51
|
Merino A, Ripoll E, de Ramon L, Bolaños N, Goma M, Bestard O, Lloberas N, Grinyo JM, Ambròs JT. The Timing of Immunomodulation Induced by Mesenchymal Stromal Cells Determines the Outcome of the Graft in Experimental Renal Allotransplantation. Cell Transplant 2017; 26:1017-1030. [PMID: 28160460 DOI: 10.3727/096368917x695010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The immunomodulatory characteristics of mesenchymal stromal cells (MSCs) may lead to multifaceted strategies in rejection of organ transplantation. This study was designed to investigate, first, the effect of the donor-type MSCs from Wistar rats on the immune system of immunocompetent Lewis rats and, second, the rejection responses in a renal transplantation model of Wistar to Lewis. In the first experimental model, MSCs from the bone marrow induced a systemic immune response in the immunocompetent Lewis rats, characterized by two different phases. In the initial phase (days 1-3 after MSCs infusion), the main findings were a decrease in the percentage of the main peripheral blood (PB) lymphocyte subpopulations [T cells, B cells, and natural killer (NK) cells], an increase in the FOXP3 MFI in Tregs, and an elevated concentration of circulating proinflammatory cytokines (IL-1β and TNF-α). In the late phase (days 4-6), the percentage of T cells, B cells, and NK cells returned to baseline levels; the concentration of circulating IL-1β and TNF-α decreased; and the level of anti-inflammatory cytokines (IL-10 and IL-4) increased with respect to the initial phase. In the allogeneic kidney transplantation model, rats were randomized into four groups: nontreated, cyclosporine oral administration, and two groups of rats treated with two different schedules of MSC infusion: 4 days (MSCs-4) and 7 days (MSCs-7) before kidney transplantation and in both a further infusion at the day of transplantation. Both MSC treatments decreased the percentage of T, B, and NK cells in PB. Creatinine levels, survival, and histological parameters were better in MSCs-7 than in MSCs-4. We can conclude that MSCs, by themselves, produce changes in the immune system; they do not need a pathological condition to produce immunomodulatory responses. In the renal allograft model, the optimal time schedule for MSC infusion before grafting was 7 days to prevent acute rejection.
Collapse
|
52
|
|
53
|
Rosselli DD, Mumaw JL, Dickerson V, Brown CA, Brown SA, Schmiedt CW. Efficacy of allogeneic mesenchymal stem cell administration in a model of acute ischemic kidney injury in cats. Res Vet Sci 2016; 108:18-24. [DOI: 10.1016/j.rvsc.2016.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 06/13/2016] [Accepted: 07/02/2016] [Indexed: 01/05/2023]
|
54
|
Abstract
This concise review provides an assessment of one of the most conceptually and practically important properties of mesenchymal stromal cells, their ability to modulate immune responses, including underlying cellular and molecular mechanisms and prospects of clinical application in the treatment of autoimmune and other immunological disorders.
Collapse
|
55
|
Rovira J, Diekmann F, Campistol JM, Ramírez-Bajo MJ. Therapeutic application of extracellular vesicles in acute and chronic renal injury. Nefrologia 2016; 37:126-137. [PMID: 27462016 DOI: 10.1016/j.nefro.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/14/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022] Open
Abstract
A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation.
Collapse
Affiliation(s)
- Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Centre de Recerca Biomèdica CELLEX, Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, España; Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Centre de Recerca Biomèdica CELLEX, Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, España; Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; Departamento de Nefrología y Trasplante Renal, Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic, Barcelona, España.
| | - Josep M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Centre de Recerca Biomèdica CELLEX, Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, España; Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; Departamento de Nefrología y Trasplante Renal, Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic, Barcelona, España
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Centre de Recerca Biomèdica CELLEX, Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, España
| |
Collapse
|
56
|
Li Q, Zhang C, Fu X. Will stem cells bring hope to pathological skin scar treatment? Cytotherapy 2016; 18:943-956. [PMID: 27293205 DOI: 10.1016/j.jcyt.2016.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Pathological skin scars, such as keloids, aesthetically and psychosocially affect patients. The quest for scar reduction and the increasing recognition of patient satisfaction has led to the continued exploration of scar treatment. Stem cells are a promising source for tissue repair and regeneration. The multi-potency and secretory functions of these cells could offer possible treatments for pathological scars and have been examined in recent studies. Here, we analyze the factors that influence the formation of pathological skin scars, summarize recent research on pathological scar treatment with stem cells and elaborate on the possible mechanisms of this treatment. Additionally, other effects of stem cell treatments are also presented while evaluating potential side effects of stem cell-based pathological scar treatments. Thus, this review may provide meaningful guidance in the clinic for scar treatments with stem cells.
Collapse
Affiliation(s)
- Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Cuiping Zhang
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China; Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China.
| |
Collapse
|
57
|
Immune Complex-Type Deposits in the Fischer-344 to Lewis Rat Model of Renal Transplantation and a Subset of Human Transplant Glomerulopathy. Transplantation 2016; 100:1004-14. [DOI: 10.1097/tp.0000000000001068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
|
59
|
Regenerative pharmacology for the treatment of acute kidney injury: Skeletal muscle stem/progenitor cells for renal regeneration? Pharmacol Res 2016; 113:802-807. [PMID: 27001227 DOI: 10.1016/j.phrs.2016.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 01/01/2023]
Abstract
Regenerative pharmacology and advanced therapy medicinal products is a relatively new and challenging field in drug development. Acute kidney injury (AKI) is a common clinical condition in nephrology with increasing incidence and high mortality rate. During the last few decades, researchers have been eagerly trying to find novel therapeutic strategies for AKI treatment, including advanced pharmacological therapies using mesenchymal stem cells (MSCs). Several types of MSCs have been thoroughly investigated, including bone marrow, adipose derived and umbilical cord blood MSCs and shown promising results in kidney repair. Research has demonstrated, that MSCs exert their effect through reduction of apoptosis, increased production of growth factors, suppression of oxidative stress and inflammatory processes, promotion of renal tubular cell proliferation, as well as by migration and direct incorporation into the renal tissue. Skeletal muscle-derived stem/progenitor cells (MDSPCs) are mesenchymal stem cell lineage of multipotent cells, demonstrating long-term proliferation, high self-renewal capacities, and ability to enhance endogenous tissue repair. The capacity of MDSPCs to regenerate a variety of different tissues following acute injury or destructive tissue diseases have been demonstrated in preclinical and clinical studies. MDSPCs were also reported to promote endogenous tissue repair via paracrine pathway. Considering advantageous properties of MDSPCs, the administration of these cells might be considered as a potential strategy for the treatment of AKI. However, to date, the therapeutic effect of MDSPCs for renal regeneration has not been investigated. This review reflects the current development in AKI treatment using different types of MSCs and the pilot results of the experimental study in vivo using a novel type of stem cells - MDSPCs for the treatment of gentamicin-induced AKI.
Collapse
|
60
|
Lang H, Dai C. Effects of Bone Marrow Mesenchymal Stem Cells on Plasminogen Activator Inhibitor-1 and Renal Fibrosis in Rats with Diabetic Nephropathy. Arch Med Res 2016; 47:71-7. [PMID: 27018336 DOI: 10.1016/j.arcmed.2016.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS We undertook this study to observe the effects of bone marrow mesenchymal stem cells (BMSCs) on plasminogen activator inhibitor-1 (PAI-1) and renal fibrosis in rats with diabetic nephropathy and to explore its main mechanism. METHODS Thirty male Sprague Dawley rats were randomly divided into three groups: normal control group (NC group, n = 10), diabetic nephropathy group (DN group, n = 10), stem cell transplantation group (MSC group, n = 10). BMSCs were transplanted to rats in the MSC group via caudal vein infusion (2 × 10(6)/mL). At the end of 12 weeks, blood glucose, 24-h urinary protein, serum creatinine and renal mass index were measured. Morphology and collagen deposition in rat kidney were observed by HE and Masson staining, respectively. Expressions of PAI-1, transforming growth factor β1 (TGF-β1) and Smad3 in rat kidney were detected by immunohistochemistry and Western blot. RESULTS Compared with DN group, 24-h protein, serum creatinine and renal mass index decreased significantly in MSC group. No significant changes in blood glucose (p >0.05) were shown. Immunohistochemistry and Western blot showed that expressions of PAI-1, TGF-β1 and Smad3 in NC group were lower than DN group. Expression of each protein in MSC group was between two groups (p <0.05). Correlation analysis revealed that PAI-1 and TGF-β1 (r = 0.987, p <0.05) and Smad3 (r = 0.974, p <0.05) showed a significant positive correlation. TGF-β1 and Smad3 (r = 0.962, p <0.05) were positively correlated. CONCLUSIONS BMSCs significantly inhibited renal fibrosis in rats with DN. The mechanism may be related to inhibition of TGF-β1/Smad3 pathway, decreasing the expression of PAI-1 protein and reducing the accumulation of extracellular matrix, thereby balancing the fibrinolytic system.
Collapse
Affiliation(s)
- Hong Lang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical College, Hospital of Xuzhou Medical College, xuzhou, China
| | - Chun Dai
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical College, Hospital of Xuzhou Medical College, xuzhou, China.
| |
Collapse
|
61
|
Skeletal Muscle-Derived Stem/Progenitor Cells: A Potential Strategy for the Treatment of Acute Kidney Injury. Stem Cells Int 2016; 2016:9618480. [PMID: 27069485 PMCID: PMC4812499 DOI: 10.1155/2016/9618480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/21/2016] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle-derived stem/progenitor cells (MDSPCs) have been thoroughly investigated and already used in preclinical studies. However, therapeutic potential of MDSPCs isolated using preplate isolation technique for acute kidney injury (AKI) has not been evaluated. We aimed to characterize rat MDSPCs, compare them with bone marrow mesenchymal stem cells (BM-MSCs), and evaluate the feasibility of MDSPCs therapy for gentamicin-induced AKI in rats. We have isolated and characterized rat MDSPCs and BM-MSCs. Characteristics of rat BM-MSCs and MDSPCs were assessed by population doubling time, flow cytometry, immunofluorescence staining, RT-PCR, and multipotent differentiation capacity. Gentamicin-induced AKI model in rat was used to examine MDSPCs therapeutic effect. Physiological and histological kidney parameters were determined. MDSPCs exhibited similar immunophenotype, stem cell gene expression, and multilineage differentiation capacities as BM-MSCs, but they demonstrated higher proliferation rate. Single intravenous MDSPCs injection accelerated functional and morphological kidney recovery, as reflected by significantly lower serum creatinine levels, renal injury score, higher urinary creatinine, and GFR levels. PKH-26-labeled MDSPCs were identified within renal cortex 1 and 2 weeks after cell administration, indicating MDSPCs capacity to migrate and populate renal tissue. In conclusion, MDSPCs are capable of mediating functional and histological kidney recovery and can be considered as potential strategy for AKI treatment.
Collapse
|
62
|
Casiraghi F, Perico N, Cortinovis M, Remuzzi G. Mesenchymal stromal cells in renal transplantation: opportunities and challenges. Nat Rev Nephrol 2016; 12:241-53. [DOI: 10.1038/nrneph.2016.7] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
63
|
Abstract
Kidney transplantation is the best treatment for end-stage renal disease, but its implementation is limited by organ shortage and immune rejection. Side effects of current immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and tumorigenic potential, influence long-term graft outcomes. In recent years, continued research and subsequent discoveries concerning the properties and potential utilization of mesenchymal stem cells (MSCs) have aroused considerable interest and expectations. Biological characteristics of MSCs, including multi-lineage differentiation, homing potential, paracrine effect and immunomodulation, have opened new horizons for applications in kidney transplantation. However, many studies have shown that the biological activity of MSCs depends on internal inflammatory conditions, and the safety and efficacy of the clinical application of MSCs remain controversial. This review summarizes the findings of a large number of studies and aims to provide an objective viewpoint based on a comprehensive analysis of the presently established benefits and obstacles of implementing MSC-based therapy in kidney transplantation, and to promote its clinical translation.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, PR China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
64
|
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 2016; 89:767-78. [PMID: 26924058 DOI: 10.1016/j.kint.2015.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation.
Collapse
|
65
|
Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Adult stem cells as a tool for kidney regeneration. World J Nephrol 2016; 5:43-52. [PMID: 26788463 PMCID: PMC4707167 DOI: 10.5527/wjn.v5.i1.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/27/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Kidney regeneration is a challenging but promising strategy aimed at reducing the progression to end-stage renal disease (ESRD) and improving the quality of life of patients with ESRD. Adult stem cells are multipotent stem cells that reside in various tissues, such as bone marrow and adipose tissue. Although intensive studies to isolate kidney stem/progenitor cells from the adult kidney have been performed, it remains controversial whether stem/progenitor cells actually exist in the mammalian adult kidney. The efficacy of mesenchymal stem cells (MSCs) in the recovery of kidney function has been demonstrated in animal nephropathy models, such as acute tubular injury, glomerulonephritis, renal artery stenosis, and remnant kidney. However, their beneficial effects seem to be mediated largely via their paracrine effects rather than their direct differentiation into renal parenchymal cells. MSCs not only secrete bioactive molecules directly into the circulation, but they also release various molecules, such as proteins, mRNA, and microRNA, in membrane-covered vesicles. A detailed analysis of these molecules and an exploration of the optimal combination of these molecules will enable the treatment of patients with kidney disease without using stem cells. Another option for the treatment of patients with kidney disease using adult somatic cells is a direct/indirect reprogramming of adult somatic cells into kidney stem/progenitor cells. Although many hurdles still need to be overcome, this strategy will enable bona fide kidney regeneration rather than kidney repair using remnant renal parenchymal cells.
Collapse
|
66
|
Chen CL, Chou KJ, Fang HC, Hsu CY, Huang WC, Huang CW, Huang CK, Chen HY, Lee PT. Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition. Stem Cell Res Ther 2015; 6:239. [PMID: 26631265 PMCID: PMC4668678 DOI: 10.1186/s13287-015-0241-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/09/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Pathophysiological changes associated with chronic kidney disease impair angiogenic processes and increase renal fibrosis. Progenitor-like cells derived from adult kidney have been previously used to promote regeneration in acute kidney injury, even though it remained unclear whether the cells could be beneficial in chronic kidney disease (CKD). Methods In this study, we established a CKD model by five-sixths nephrectomy and mouse kidney progenitor-like cells (MKPCs) were intravenously administered weekly for 5 weeks after establishing CKD. We examined the impact of MKPCs on the progression of renal fibrosis and the potential of MKPCs to preserve the angiogenic process and prevent endothelial mesenchymal transition in vivo and in vitro. Results Our results demonstrate that the MKPCs delayed interstitial fibrosis and the progression of glomerular sclerosis and ameliorated the decline of kidney function. At 17 weeks, the treated mice exhibited lower blood pressures, higher hematocrit levels, and larger kidney sizes than the control mice. In addition, the MKPC treatment prolonged the survival of the mice with chronic kidney injuries. We observed a decreased recruitment of macrophages and myofibroblasts in the interstitium and the increased tubular proliferation. Notably, MKPC both decreased the level of vascular rarefaction and prevented endothelial mesenchymal transition (EndoMT) in the remnant kidneys. Moreover, the conditioned medium from the MKPCs ameliorated endothelial cell death under hypoxic culture conditions and prevented TGF-β-induced EndoMT through downregulation of phosphorylated Smad 3 in vitro. Conclusions MKPCs may be a beneficial treatment for kidney diseases characterized by progressive renal fibrosis. The enhanced preservation of angiogenic processes following MKPC injections may be associated with decreased fibrosis in the remnant kidney. These findings provide further understanding of the mechanisms involved in these processes and will help develop new cell-based therapeutic strategies for regenerative medicine in renal fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0241-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C L Chen
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - K J Chou
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - H C Fang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - C Y Hsu
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - W C Huang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - C W Huang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - C K Huang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - H Y Chen
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - P T Lee
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| |
Collapse
|
67
|
Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils. Res Vet Sci 2015; 103:60-9. [DOI: 10.1016/j.rvsc.2015.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022]
|
68
|
Reinders MEJ, Dreyer GJ, Bank JR, Roelofs H, Heidt S, Roelen DL, Zandvliet ML, Huurman VAL, Fibbe WE, van Kooten C, Claas FHJ, Rabelink TJ, de Fijter JW. Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study. J Transl Med 2015; 13:344. [PMID: 26537851 PMCID: PMC4632480 DOI: 10.1186/s12967-015-0700-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 01/05/2023] Open
Abstract
Background Mesenchymal stromal cells (MSC) may serve as an attractive therapy in renal transplantation due to their immunosuppressive and reparative properties. While most studies have used autologous MSCs, allogeneic MSCs offer the advantage of immediate availability for clinical use. This is of major importance for indications where instant treatment is needed, for example allograft rejection or calcineurin inhibitor toxicity. Clinical studies using allogeneic MSCs are limited in number. Although these studies showed no adverse reactions, allogeneic MSCs could possibly elicit an anti-donor immune response, which may increase the incidence of rejection and impact the allograft survival in the long term. These safety issues should be addressed before further studies are planned with allogeneic MSCs in the solid organ transplant setting. Methods/design 10 renal allograft recipients, 18–75 years old, will be included in this clinical phase Ib, open label, single center study. Patients will receive two doses of 1.5 × 106 per/kg body weight allogeneic bone marrow derived MSCs intravenously, at 25 and 26 weeks after transplantation, when immune suppression levels are reduced. The primary end point of this study is safety by assessing biopsy proven acute rejection (BPAR)/graft loss after MSC treatment. Secondary end points, all measured before and after MSC infusions, include: comparison of fibrosis in renal biopsy by quantitative Sirius Red scoring; de novo HLA antibody development and extensive immune monitoring; renal function measured by cGFR and iohexol clearance; CMV and BK infection and other opportunistic infections. Discussion This study will provide information on the safety of allogeneic MSC infusion and its effect on the incidence of BPAR/graft loss. Trial registration: NCT02387151
Collapse
Affiliation(s)
- Marlies E J Reinders
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Geertje J Dreyer
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Jonna R Bank
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Helene Roelofs
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Sebastiaan Heidt
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Dave L Roelen
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Maarten L Zandvliet
- Department of Clinical Parmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Volkert A L Huurman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Wim E Fibbe
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Frans H J Claas
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
69
|
Rosado MM, Bernardo ME, Scarsella M, Conforti A, Giorda E, Biagini S, Cascioli S, Rossi F, Guzzo I, Vivarelli M, Dello Strologo L, Emma F, Locatelli F, Carsetti R. Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev 2015; 24:93-103. [PMID: 25036865 DOI: 10.1089/scd.2014.0155] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone marrow (BM)-derived mesenchymal stromal cells (MSCs), endowed with immunosuppressive and anti-inflammatory properties, represent a promising tool in immunoregulatory and regenerative cell therapy. Clarifying the interactions between MSCs and B-lymphocytes may be crucial for designing innovative MSC-based strategies in conditions in which B cells play a role, including systemic lupus erythematosus (SLE) and rejection of kidney transplantation. In this study, we show that, both in healthy subjects and in patients, in vitro B-cell proliferation, plasma-cell differentiation, and antibody production are inhibited by BM-derived MSCs when peripheral blood lymphocytes are stimulated with CpG, but not when sorted B cells are cultured with MSCs+CpG. Inhibition is restored in CpG+MSC cocultures when sorted T cells are added to sorted B cells, suggesting that this effect is mediated by T cells, with both CD4(+) and CD8(+) cells playing a role. Moreover, cell-cell contact between MSCs and T cells, but not between MSCs and B cells, is necessary to inhibit B-cell proliferation. Thus, the presence of functional T cells, as well as cell-cell contact between MSCs and T cells, are crucial for B-cell inhibition. This information can be relevant for implementing MSC-based therapeutic immune modulation in patients in whom T-cell function is impaired.
Collapse
Affiliation(s)
- Maria Manuela Rosado
- 1 Immunology Research Area, Ospedale Pediatrico Bambino Gesù, IRCSS , Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Moghadasali R, Hajinasrollah M, Argani H, Nassiri SM, Najarasl M, Sodeifi N, Baharvand H, Aghdami N. Autologous transplantation of mesenchymal stromal cells tends to prevent progress of interstitial fibrosis in a rhesus Macaca mulatta monkey model of chronic kidney disease. Cytotherapy 2015; 17:1495-505. [PMID: 26341479 DOI: 10.1016/j.jcyt.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/09/2015] [Accepted: 06/11/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Chronic kidney disease (CKD) attributed to cisplatin is well documented. Mesenchymal stromal cells (MSCs) are proven to be renotropic. Although they have been shown to improve function in CKD and reduce fibrosis in different experimental rodent models, their efficiency in primates is unknown. The present study aimed to evaluate the prevention of CKD and reduction of fibrosis in monkeys treated with MSCs after cisplatin nephrotoxicity. METHODS We induced CKD in adult rhesus Macaca mulatta monkeys by means of intravenous administration of cisplatin. Autologous MSCs were transplanted by means of intrarenal arterial injections to assess the adverse effects of cisplatin in two CKD models: preventative and stable. Preventative CKD monkeys (n = 3) underwent cell transplantation 4 days after the cisplatin injection. The stable CKD monkeys (n = 2) underwent cell transplantation 6 months after the cisplatin injection. Non-treated (n = 4) and normal saline-injected animals (n = 3) comprised the control and vehicle groups, respectively. We followed the animals for survival rate, serum biochemistry, urine analysis and histopathological indices. RESULTS In the preventive CKD model, MSC transplantation tended to improve some renal functions but significantly reduced the histopathologic score compared with the vehicle and control groups. In the stable CKD model, MSCs did not ameliorate renal function or pathological score. CONCLUSIONS These results suggest that MSCs tend to delay progression of CKD and fibrosis but do not reduce established interstitial fibrosis in this unique primate model of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Reza Moghadasali
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hassan Argani
- Urology and Nephrology Research Center, Modares Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mostafa Najarasl
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Sodeifi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
71
|
Safety and Efficacy Endpoints for Mesenchymal Stromal Cell Therapy in Renal Transplant Recipients. J Immunol Res 2015; 2015:391797. [PMID: 26258149 PMCID: PMC4518147 DOI: 10.1155/2015/391797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Despite excellent short-term graft survival after renal transplantation, the long-term graft outcome remains compromised. It has become evident that a combination of sustained alloreactivity and calcineurin-inhibitor- (CNI-) related nephrotoxicity results in fibrosis and consequently dysfunction of the graft. New immunosuppressive regimens that can minimize or eliminate side effects, while maintaining efficacy, are required to improve long-term graft survival. In this perspective mesenchymal stromal cells (MSCs) are an interesting candidate, since MSCs have immunosuppressive and regenerative properties. The first clinical trials with MSCs in renal transplantation showed safety and feasibility and displayed promising results. Recently, the first phase II studies have been started. One of the most difficult and challenging aspects in those early phase trials is to define accurate endpoints that can measure safety and efficacy of MSC treatment. Since both graft losses and acute rejection rates declined, alternative surrogate markers such as renal function, histological findings, and immunological markers are used to measure efficacy and to provide mechanistic insight. In this review, we will discuss the current status of MSCs in renal transplantation with a focus on the endpoints used in the different experimental and clinical studies.
Collapse
|
72
|
Moon KH, Ko IK, Yoo JJ, Atala A. Kidney diseases and tissue engineering. Methods 2015; 99:112-9. [PMID: 26134528 DOI: 10.1016/j.ymeth.2015.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/12/2015] [Accepted: 06/25/2015] [Indexed: 02/08/2023] Open
Abstract
Kidney disease is a worldwide public health problem. Renal failure follows several disease stages including acute and chronic kidney symptoms. Acute kidney injury (AKI) may lead to chronic kidney disease (CKD), which can progress to end-stage renal disease (ESRD) with a mortality rate. Current treatment options are limited to dialysis and kidney transplantation; however, problems such as donor organ shortage, graft failure and numerous complications remain a concern. To address this issue, cell-based approaches using tissue engineering (TE) and regenerative medicine (RM) may provide attractive approaches to replace the damaged kidney cells with functional renal specific cells, leading to restoration of normal kidney functions. While development of renal tissue engineering is in a steady state due to the complex composition and highly regulated functionality of the kidney, cell therapy using stem cells and primary kidney cells has demonstrated promising therapeutic outcomes in terms of restoration of renal functions in AKI and CKD. In this review, basic components needed for successful renal kidney engineering are discussed, and recent TE and RM approaches to treatment of specific kidney diseases will be presented.
Collapse
Affiliation(s)
- Kyung Hyun Moon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA; Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
73
|
Chung HC, Ko IK, Atala A, Yoo JJ. Cell-based therapy for kidney disease. Korean J Urol 2015; 56:412-21. [PMID: 26078837 PMCID: PMC4462630 DOI: 10.4111/kju.2015.56.6.412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
The prevalence of renal disease continues to increase worldwide. When normal kidney is injured, the damaged renal tissue undergoes pathological and physiological events that lead to acute and chronic kidney diseases, which frequently progress to end stage renal failure. Current treatment of these renal pathologies includes dialysis, which is incapable of restoring full renal function. To address this issue, cell-based therapy has become a potential therapeutic option to treat renal pathologies. Recent development in cell therapy has demonstrated promising therapeutic outcomes, in terms of restoration of renal structure and function impaired by renal disease. This review focuses on the cell therapy approaches for the treatment of kidney diseases, including various cell sources used, as well recent advances made in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hyun Chul Chung
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA. ; Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
74
|
Papazova DA, Oosterhuis NR, Gremmels H, van Koppen A, Joles JA, Verhaar MC. Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis. Dis Model Mech 2015; 8:281-93. [PMID: 25633980 PMCID: PMC4348565 DOI: 10.1242/dmm.017699] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell-based therapy is a promising strategy for treating chronic kidney disease (CKD) and is currently the focus of preclinical studies. We performed a systematic review and meta-analysis to evaluate the efficacy of cell-based therapy in preclinical (animal) studies of CKD, and determined factors affecting cell-based therapy efficacy in order to guide future clinical trials. In total, 71 articles met the inclusion criteria. Standardised mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcome parameters including plasma urea, plasma creatinine, urinary protein, blood pressure, glomerular filtration rate, glomerulosclerosis and interstitial fibrosis. Sub-analysis for each outcome measure was performed for model-related factors (species, gender, model and timing of therapy) and cell-related factors (cell type, condition and origin, administration route and regime of therapy). Overall, meta-analysis showed that cell-based therapy reduced the development and progression of CKD. This was most prominent for urinary protein (SMD, 1.34; 95% CI, 1.00–1.68) and urea (1.09; 0.66–1.51), both P<0.001. Changes in plasma urea were associated with changes in both glomerulosclerosis and interstitial fibrosis. Sub-analysis showed that cell type (bone-marrow-derived progenitors and mesenchymal stromal cells being most effective) and administration route (intravenous or renal artery injection) were significant predictors of therapeutic efficacy. The timing of therapy in relation to clinical manifestation of disease, and cell origin and dose, were not associated with efficacy. Our meta-analysis confirms that cell-based therapies improve impaired renal function and morphology in preclinical models of CKD. Our analyses can be used to optimise experimental interventions and thus support both improved preclinical research and development of cell-based therapeutic interventions in a clinical setting.
Collapse
Affiliation(s)
- Diana A Papazova
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Nynke R Oosterhuis
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Arianne van Koppen
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
75
|
Reinders MEJ, Bank JR, Dreyer GJ, Roelofs H, Heidt S, Roelen DL, Al Huurman V, Lindeman J, van Kooten C, Claas FHJ, Fibbe WE, Rabelink TJ, de Fijter JW. Autologous bone marrow derived mesenchymal stromal cell therapy in combination with everolimus to preserve renal structure and function in renal transplant recipients. J Transl Med 2014; 12:331. [PMID: 25491391 PMCID: PMC4273432 DOI: 10.1186/s12967-014-0331-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background Kidney transplantation has improved survival and quality of life for patients with end-stage renal disease. Despite excellent short-term results due to better and more potent immunosuppressive drugs, long-term survival of transplanted kidneys has not improved accordingly in the last decades. Consequently there is a strong interest in immunosuppressive regimens that maintain efficacy for the prevention of rejection, whilst preserving renal structure and function. In this respect the infusion of mesenchymal stromal cells (MSCs) may be an interesting immune suppressive strategy. MSCs have immune suppressive properties and actively contribute to tissue repair. In experimental animal studies the combination of mammalian target of rapamycin (mTOR) inhibitor and MSCs was shown to attenuate allo immune responses and to promote allograft tolerance. The current study will test the hypothesis that MSC treatment, in combination with the mTOR inhibitor everolimus, facilitates tacrolimus withdrawal, reduces fibrosis and decreases the incidence of opportunistic infections compared to standard tacrolimus dose. Methods/design 70 renal allograft recipients, 18–75 years old, will be included in this Phase II, open label, randomized, non-blinded, prospective, single centre clinical study. Patients in the MSC treated group will receive two doses of autologous bone marrow derived MSCs IV (target 1,5x106, Range 1-2x106 million MSCs per/kg body weight), 7 days apart, 6 and 7 weeks transplantation in combination with everolimus and prednisolone. At the time of the second MSC infusion tacrolimus will be reduced to 50% and completely withdrawn 1 week later. Patients in the control group will receive everolimus, prednisolone and standard dose tacrolimus. The primary end point is to compare fibrosis by quantitative Sirius Red scoring of MSC treated and untreated groups at 6 months compared to 4 weeks post-transplant. Secondary end points include: composite end point efficacy failure (Biopsy Proven Acute Rejection, graft loss or death); renal function and proteinuria; opportunistic infections; immune monitoring and “subclinical” cardiovascular disease groups by assessing echocardiography in the different treatment groups. Discussion This study will provide information whether MSCs in combination with everolimus can be used for tacrolimus withdrawal, and whether this strategy leads to preservation of renal structure and function in renal recipients. Trial registration NCT02057965.
Collapse
|
76
|
Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014; 6:526-539. [PMID: 25426250 PMCID: PMC4178253 DOI: 10.4252/wjsc.v6.i5.526] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.
Collapse
|
77
|
Li X, Zhuang S. Recent advances in renal interstitial fibrosis and tubular atrophy after kidney transplantation. FIBROGENESIS & TISSUE REPAIR 2014; 7:15. [PMID: 25285155 PMCID: PMC4185272 DOI: 10.1186/1755-1536-7-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023]
Abstract
Although kidney transplantation has been an important means for the treatment of patients with end stage of renal disease, the long-term survival rate of the renal allograft remains a challenge. The cause of late renal allograft loss, once known as chronic allograft nephropathy, has been renamed “interstitial fibrosis and tubular atrophy” (IF/TA) to reflect the histologic pattern seen on biopsy. The mechanisms leading to IF/TA in the transplanted kidney include inflammation, activation of renal fibroblasts, and deposition of extracellular matrix proteins. Identifying the mediators and factors that trigger IF/TA may be useful in early diagnosis and development of novel therapeutic strategies for improving long-term renal allograft survival and patient outcomes. In this review, we highlight the recent advances in our understanding of IF/TA from three aspects: pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China ; Department of Medicine, Alpert Medical School of Brown University, Rhode Island Hospital, Middle House 301, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
78
|
Monguió-Tortajada M, Lauzurica-Valdemoros R, Borràs FE. Tolerance in organ transplantation: from conventional immunosuppression to extracellular vesicles. Front Immunol 2014; 5:416. [PMID: 25278936 PMCID: PMC4166341 DOI: 10.3389/fimmu.2014.00416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 12/26/2022] Open
Abstract
Organ transplantation is often the unique solution for organ failure. However, rejection is still an unsolved problem. Although acute rejection is well controlled, the chronic use of immunosuppressive drugs for allograft acceptance causes numerous side effects in the recipient and do not prevent chronic allograft dysfunction. Different alternative therapies have been proposed to replace the classical treatment for allograft rejection. The alternative therapies are mainly based in pre-infusions of different types of regulatory cells, including DCs, MSCs, and Tregs. Nevertheless, these approaches lack full efficiency and have many problems related to availability and applicability. In this context, the use of extracellular vesicles, and in particular exosomes, may represent a cell-free alternative approach in inducing transplant tolerance and survival. Preliminary approaches in vitro and in vivo have demonstrated the efficient alloantigen presentation and immunomodulation abilities of exosomes, leading to alloantigen-specific tolerance and allograft acceptance in rodent models. Donor exosomes have been used alone, processed by recipient antigen-presenting cells, or administered together with suboptimal doses of immunosuppressive drugs, achieving specific allograft tolerance and infinite transplant survival. In this review, we gathered the latest exosome-based strategies for graft acceptance and discuss the tolerance mechanisms involved in organ tolerance mediated by the administration of exosomes. We will also deal with the feasibility and difficulties that arise from the application of this strategy into the clinic.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- Innovation in Vesicles and Cells for Application Therapy Group (IVECAT), Institut d’Investigació Germans Trias i Pujol, Badalona, Spain
| | | | - Francesc E. Borràs
- Innovation in Vesicles and Cells for Application Therapy Group (IVECAT), Institut d’Investigació Germans Trias i Pujol, Badalona, Spain
- Nephrology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
79
|
Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells Int 2014; 2014:340257. [PMID: 25132856 PMCID: PMC4123563 DOI: 10.1155/2014/340257] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs.
Collapse
|
80
|
Abstract
Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Despite advances in renal replacement therapies and organ transplantation, poor quality of life for dialysis patients and long transplant waiting lists remain major concerns for nephrologists treating this condition. There is therefore a pressing need for novel therapies to promote renal cellular repair and tissue remodeling. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cells (MSCs) are undifferentiated cells that possess immunomodulatory and tissue trophic properties and the ability to differentiate into multiple cell types. Studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. Nevertheless, several limitations pertaining to inadequate engraftment, difficulty to monitor, and untoward effects of MSCs remain to be addressed. Adverse effects observed following intravascular administration of MSCs include immune rejection, adipogenic differentiation, malignant transformation, and prothrombotic events. Nonetheless, most studies indicate a remarkable capability of MSCs to achieve kidney repair. This review summarizes the regenerative potential of MSCs to provide functional recovery from renal failure, focusing on their application and the current challenges facing clinical translation.
Collapse
|
81
|
Leuning DG, Reinders ME, de Fijter JW, Rabelink TJ. Clinical Translation of Multipotent Mesenchymal Stromal Cells in Transplantation. Semin Nephrol 2014; 34:351-64. [DOI: 10.1016/j.semnephrol.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
Using stem and progenitor cells to recapitulate kidney development and restore renal function. Curr Opin Organ Transplant 2014; 19:140-4. [PMID: 24480967 DOI: 10.1097/mot.0000000000000052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is considerable interest in the idea of generating stem and precursor cells that can differentiate into kidney cells and be used to treat kidney diseases. Within this field, we highlight recent research articles focussing on mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and kidney-derived stem/progenitor cells (KSPCs). RECENT FINDINGS In preclinical studies, MSCs ameliorate varied acute and chronic kidney diseases. Their efficacy depends on immunomodulatory and paracrine properties but MSCs do not differentiate into functional kidney epithelia. iPSCs can be derived from healthy individuals and from kidney patients by forced expression of precursor genes. Like ESCs, iPSCs are pluripotent and so theoretically they have the potential to form functional kidney epithelia when used therapeutically. KSPCs, existing as cell subsets within adult and developing kidneys, constitute attractive future therapeutic agents. SUMMARY Results from preclinical studies are encouraging but caution is required regarding potential human therapeutic applications because molecular, morphological and functional characterization of 'kidney cells' generated from ECSs, iPSCs, KSPCs have not been exhaustive. The long-term safety of renal stem and precursor cells needs more study, including potential negative effects on renal growth and their potential for tumor formation.
Collapse
|
83
|
Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:595493. [PMID: 24895592 PMCID: PMC4034406 DOI: 10.1155/2014/595493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/15/2014] [Indexed: 02/08/2023]
Abstract
The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW Kidney transplantation has improved the life expectancy and quality of life for patients with end-stage renal failure. However, despite the impressive improvements in short-term outcome parameters because of better and more potent immunosuppressive drugs, the long-term survival of renal allografts has changed little over the last decades. Sustained inflammation in the areas of interstitial fibrosis and tubular atrophy (IFTA) is a strong predictor of allograft failure. Mesenchymal stromal cells (MSCs) have potent anti-inflammatory and reparative properties, and could thus play a role in controlling these processes. RECENT FINDINGS Local resident MSCs and exogenous MSCs have been implicated in the repair of the injured kidney, mostly by their paracrine functions. In the experimental models and clinical trials, first results with MSCs for the treatment of inflammation and IFTA suggest beneficial effects. SUMMARY Endogenously and exogenously administered MSCs might enhance the intrinsic reparative capabilities of the kidney in transplant recipients and maybe developed as a tool to control both inflammation and fibrosis.
Collapse
|
85
|
Autologous and allogeneic mesenchymal stem cells in organ transplantation: what do we know about their safety and efficacy? Curr Opin Organ Transplant 2014; 19:65-72. [PMID: 24370985 DOI: 10.1097/mot.0000000000000043] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Recent developments toward the successful clinical application of autologous and allogeneic mesenchymal stem cells (MSCs) to organ transplantation are summarized with a focus on safety and efficacy. RECENT FINDINGS Clinical trials in organ transplantation and other conditions indicate that infusion of autologous or allogeneic MSCs is generally well tolerated. However, new studies also suggest that efficacy may be curtailed by sequestration in the lungs and early elimination. Safety concerns regarding autologous and/or allogeneic MSCs that have recently been investigated include transient proinflammatory effects, influences on opportunistic infections and cancers and alloantibody induction. Animal models indicate that autologous MSCs are likely to be efficacious in preventing or treating early intragraft inflammation and may reduce the risk of acute rejection - observations that have been borne out in a randomized controlled trial of living-donor kidney transplantation. The potential for donor-specific or third-party allogeneic MSCs to promote allograft tolerance is suggested by animal model studies but has not yet been proven in humans. SUMMARY Recent reports on the safety and efficacy of autologous MSCs for early posttransplant outcomes give cause for optimism. Benefits of allogeneic MSCs for long-term allograft survival and of MSCs for chronic transplant injury await clinical validation.
Collapse
|
86
|
Erpicum P, Detry O, Weekers L, Bonvoisin C, Lechanteur C, Briquet A, Beguin Y, Krzesinski JM, Jouret F. Mesenchymal stromal cell therapy in conditions of renal ischaemia/reperfusion. Nephrol Dial Transplant 2014; 29:1487-93. [PMID: 24516234 DOI: 10.1093/ndt/gft538] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) represents a worldwide public health issue of increasing incidence, with a significant morbi-mortality. AKI treatment mostly relies on supportive manoeuvres in the absence of specific target-oriented therapy. The pathophysiology of AKI commonly involves ischaemia/reperfusion (I/R) events, which cause both immune and metabolic consequences in renal tissue. Similarly, at the time of kidney transplantation (KT), I/R is an unavoidable event which contributes to early graft dysfunction and enhanced graft immunogenicity. Mesenchymal stromal cells (MSCs) represent a heterogeneous population of adult, fibroblast-like multi-potent cells characterized by their ability to differentiate into tissues of mesodermal lineages. Because MSC have demonstrated immunomodulatory, anti-inflammatory and tissue repair properties, MSC administration at the time of I/R and/or at later times has been hypothesized to attenuate AKI severity and to accelerate the regeneration process. Furthermore, MSC in KT could help prevent both I/R injury and acute rejection, thereby increasing graft function and survival. In this review, summarizing the encouraging observations in animal models and in pilot clinical trials, we outline the benefit of MSC therapy in AKI and KT, and envisage their putative role in renal ischaemic conditioning.
Collapse
Affiliation(s)
- Pauline Erpicum
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium
| | - Olivier Detry
- Abdominal Surgery and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium Laboratories of Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - Laurent Weekers
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium
| | - Catherine Bonvoisin
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, University of Liege CHU (ULg CHU), Liege, Belgium
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, University of Liege CHU (ULg CHU), Liege, Belgium Hematology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liege, Liege, Belgium
| | - Yves Beguin
- Laboratory of Cell and Gene Therapy, University of Liege CHU (ULg CHU), Liege, Belgium Hematology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liege, Liege, Belgium
| | - Jean-Marie Krzesinski
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium Laboratories of Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - François Jouret
- Divisions of Nephrology and Transplantation, University of Liege CHU (ULg CHU), Liege, Belgium Laboratories of Cardiovascular Sciences, University of Liege, Liege, Belgium
| |
Collapse
|
87
|
Reinders ME, Hoogduijn MJ. NK Cells and MSCs: Possible Implications for MSC Therapy in Renal Transplantation. ACTA ACUST UNITED AC 2014; 4:1000166. [PMID: 24900946 PMCID: PMC4040539 DOI: 10.4172/2157-7633.1000166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marlies Ej Reinders
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Hoogduijn
- Transplantation and Nephrology, Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
88
|
Herrera M, Mirotsou M. Stem cells: potential and challenges for kidney repair. Am J Physiol Renal Physiol 2013; 306:F12-23. [PMID: 24197069 DOI: 10.1152/ajprenal.00238.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Renal damage resulting from acute and chronic kidney injury poses an important problem to public health. Currently, patients with end-stage renal disease rely solely on kidney transplantation or dialysis for survival. Emerging therapies aiming to prevent and reverse kidney damage are thus in urgent need. Although the kidney was initially thought to lack the capacity for self-repair, several studies have indicated that this might not be the case; progenitor and stem cells appear to play important roles in kidney repair under various pathological conditions. In this review, we summarize recent findings on the role of progenitor/stem cells on kidney repair as well as discuss their potential as a therapeutic approach for kidney diseases.
Collapse
Affiliation(s)
- Marcela Herrera
- Division of Cardiology, Genome Research Bldg. II, Rm. 4022, 210 Research Drive, Duke Univ. Medical Center, Durham, NC 27710.
| | | |
Collapse
|
89
|
Aggarwal S, Moggio A, Bussolati B. Concise review: stem/progenitor cells for renal tissue repair: current knowledge and perspectives. Stem Cells Transl Med 2013; 2:1011-9. [PMID: 24167320 DOI: 10.5966/sctm.2013-0097] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The kidney is a specialized low-regenerative organ with several different types of cellular lineages; however, the identity of renal stem/progenitor cells with nephrogenic potential and their preferred niche(s) are largely unknown and debated. Most of the therapeutic approaches to kidney regeneration are based on administration of cells proven to enhance intrinsic reparative capabilities of the kidney. Endogenous or exogenous cells of different sources were tested in rodent models of ischemia-reperfusion, acute kidney injury, or chronic disease. The translation to clinics is at the moment focused on the role of mesenchymal stem cells. In addition, bioproducts from stem/progenitor cells, such as extracellular vesicles, are likely a new promising approach for reprogramming resident cells. This concise review reports the current knowledge about resident or exogenous stem/progenitor populations and their derived bioproducts demonstrating therapeutic effects in kidney regeneration upon injury. In addition, possible approaches to nephrogenesis and organ generation using organoids, decellularized kidneys, and blastocyst complementation are surveyed.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Department of Molecular Biotechnology and Life Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | | |
Collapse
|
90
|
Koch M, Lehnhardt A, Hu X, Brunswig-Spickenheier B, Stolk M, Bröcker V, Noriega M, Seifert M, Lange C. Isogeneic MSC application in a rat model of acute renal allograft rejection modulates immune response but does not prolong allograft survival. Transpl Immunol 2013; 29:43-50. [PMID: 23994720 DOI: 10.1016/j.trim.2013.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 12/17/2022]
Abstract
Application of mesenchymal stromal cells (MSCs) has been proposed for solid organ transplantation based on their potent immuno-modulatory effects in vitro and in vivo. We investigated the potential of MSCs to improve acceptance of kidney transplants in an MHC-incompatible rat model including isogeneic kidney transplantation (RTx) as control. MSCs were administered i.v. or i.a. at time of transplantation. No immunosuppression was applied. Renal function was monitored by serum-creatinine, histopathology, immunochemistry for graft infiltrating cells and expressions of inflammatory genes. We demonstrated the short-term beneficial effects of MSC injection. In the long term, however, MSC-related life-threatening/shortening events (thrombotic microangiopathy, infarctions, infections) were evident despite decreased T- and B-cell infiltration, lower interstitial inflammation and downregulated inflammatory genes particularly after i.a. MSC injection. We conclude that i.a. MSC administration provides efficient immunomodulation after allogeneic RTx, although timing and co-treatment strategies need further fine-tuning to develop the full potential of powerful cell therapy in solid organ transplantation.
Collapse
Affiliation(s)
- M Koch
- Dept. of Hepatobiliary Surgery and Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Rabelink TJ, Little MH. Stromal cells in tissue homeostasis: balancing regeneration and fibrosis. Nat Rev Nephrol 2013; 9:747-53. [DOI: 10.1038/nrneph.2013.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
92
|
Reinders ME, Roemeling-van Rhijn M, Khairoun M, Lievers E, de Vries DK, Schaapherder AF, Wong SW, Zwaginga JJ, Duijs JM, van Zonneveld AJ, Hoogduijn MJ, Fibbe WE, de Fijter JW, van Kooten C, Rabelink TJ, Roelofs H. Bone marrow-derived mesenchymal stromal cells from patients with end-stage renal disease are suitable for autologous therapy. Cytotherapy 2013; 15:663-72. [DOI: 10.1016/j.jcyt.2013.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/16/2022]
|
93
|
Franquesa M, Baan CC, Korevaar SS, Engela AU, Roemeling-van Rhijn M, Weimar W, Betjes MGH, Grinyo JM, Hoogduijn MJ. The effect of rabbit antithymocyte globulin on human mesenchymal stem cells. Transpl Int 2013; 26:651-8. [DOI: 10.1111/tri.12109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/04/2013] [Accepted: 04/04/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - Carla C. Baan
- Transplantation Laboratory; Internal Medicine; Erasmus MC; Rotterdam; the Netherlands
| | - Sander S. Korevaar
- Transplantation Laboratory; Internal Medicine; Erasmus MC; Rotterdam; the Netherlands
| | - Anja U. Engela
- Transplantation Laboratory; Internal Medicine; Erasmus MC; Rotterdam; the Netherlands
| | | | - Willem Weimar
- Transplantation Laboratory; Internal Medicine; Erasmus MC; Rotterdam; the Netherlands
| | - Michiel G. H. Betjes
- Transplantation Laboratory; Internal Medicine; Erasmus MC; Rotterdam; the Netherlands
| | - Josep M. Grinyo
- Experimental Nephrology and Nephrology Department; Bellvitge Hospital-UB-IDIBELL; Barcelona; Spain
| | - Martin J. Hoogduijn
- Transplantation Laboratory; Internal Medicine; Erasmus MC; Rotterdam; the Netherlands
| |
Collapse
|
94
|
English K, Wood KJ. Mesenchymal stromal cells in transplantation rejection and tolerance. Cold Spring Harb Perspect Med 2013; 3:a015560. [PMID: 23637312 PMCID: PMC3633184 DOI: 10.1101/cshperspect.a015560] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) have recently emerged as promising candidates for cell-based immunotherapy in solid organ transplantation (SOT). In addition to immune modulation, MSCs possess proreparative properties and preclinical studies indicate that MSCs have the capacity to prolong graft survival and in some cases induce tolerance. Currently, the application of MSCs in SOT is being evaluated in phase I/II clinical trials. Whereas the mechanisms of action used by MSC immunomodulation have been somewhat elucidated in vitro, the data from preclinical transplant models have been unclear. Furthermore, the optimal timing, dose, and route of administration remain to be elucidated. Importantly, MSCs have the ability to sense their environment, which may influence their function. In this article, we discuss the impact of the local microenvironment on MSCs and the mechanisms of MSC immunomodulation in the setting of SOT.
Collapse
Affiliation(s)
- Karen English
- Cellular Immunology Group, Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland.
| | | |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW To briefly show which are the mechanisms and cell types involved in kidney regeneration and describe some of the therapies currently under study in regenerative medicine for kidney transplantation. RECENT FINDINGS The kidney contains cell progenitors that under specific circumstances have the ability to regenerate specific structures. Apart from the knowledge gained in the self-regenerative properties of the kidney, new concepts in regenerative medicine such as organ engineering and the use of mesenchymal stem cell-based therapies are currently the focus of attention in the field. SUMMARY Overall, kidney regeneration is a reality and the knowledge on how to control it will be one of the main scopes in the present and future.
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW Organ transplantation and other major surgeries are impacted by ischemia-reperfusion injury (IRI). Mesenchymal stromal cells (MSCs) recently became an attractive alternative therapeutic tool to combat IRI. The present review highlights the effects of MSCs in the preclinical animal models of IRI and clinical trials, and explains their potential modes of action based on the pathophysiological IRI cascade. RECENT FINDINGS The application of MSCs in animal models of IRI show anti-inflammatory and anti-apoptotic effects, particularly for damage to the kidneys, heart and lungs. The mechanism of MSC action remains unclear, but may involve paracrine factors which could include the transfer of microvesicles, RNA or mitochondria. Although few clinical trials have reached completion, adverse effects appear minimal. SUMMARY MSCs show promise in protecting against IRI-induced damage. They appear to help recovery mainly by affecting the levels of inflammation and apoptosis during the organ repair process. In addition, they may mediate immunomodulatory effects on the innate and adaptive immune processes triggered during reperfusion and reduce fibrosis. Success in preclinical animal models has led to the initiation of ongoing clinical trials.
Collapse
|
97
|
Bone marrow contributions to fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:955-61. [PMID: 23385196 DOI: 10.1016/j.bbadis.2013.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 12/26/2022]
Abstract
Bone marrow transplant experiments in mice using labelled donor bone marrow have indicated that following injury bone marrow derived cells can circulate and home to the injured organs. In particular fibrocytes and myofibroblasts are capable of contributing to the wound healing response, including collagen deposition. In chronic injury this can lead to a pathological degree of fibrosis. Experiments have shown that this can be a relatively insignificant contribution to the scar forming population in certain organs and that the majority of the scar forming cells are intrinsic to the organ. Conversely, in certain circumstances, the circulating cells become major players in the organs fibrotic response. Whilst cell tracking experiments are relatively simple to perform, to actually determine a functional contribution to a fibrotic response more sophisticated approaches are required. This can include the use of bone marrow transplantation from recipients with collagen reporter systems which gives a read out of bone marrow derived cells that are transcriptional active for collagen production in a damaged organ. Another technique is to use bone marrow transplants from donors that have a mutation in the collagen to demonstrate a functional difference in fibrosis when bone marrow transplants performed. Recent reports have identified factors mediating recruitment of circulating fibrocytes to injured organs, such as CXCL12 and CXCL16 and shown that blocking these factors reduced fibrocyte recruitment and subsequent fibrosis. The identification of such factors may enable the development of novel therapies to block further fibrocyte engraftment and fibrosis in situations of pathological scarring. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
98
|
The role of mesenchymal stromal cells in chronic transplant rejection after solid organ transplantation. Curr Opin Organ Transplant 2013; 18:44-50. [DOI: 10.1097/mot.0b013e32835c2939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
99
|
Reinders MEJ, de Fijter JW, Roelofs H, Bajema IM, de Vries DK, Schaapherder AF, Claas FHJ, van Miert PPMC, Roelen DL, van Kooten C, Fibbe WE, Rabelink TJ. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med 2013; 2:107-11. [PMID: 23349326 DOI: 10.5966/sctm.2012-0114] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite excellent short-term results, long-term survival of transplanted kidneys has not improved accordingly. Although alloimmune responses and calcineurin inhibitor-related nephrotoxicity have been identified as main drivers of fibrosis, no effective treatment options have emerged. In this perspective, mesenchymal stromal cells (MSCs) are an interesting candidate because of their immunosuppressive and regenerative properties. Of importance, no other clinical studies have investigated their effects in allograft rejection and fibrosis. We performed a safety and feasibility study in kidney allograft recipients to whom two intravenous infusions (1 million cells per kilogram) of autologous bone marrow (BM) MSCs were given, when a protocol renal biopsy at 4 weeks or 6 months showed signs of rejection and/or an increase in interstitial fibrosis/tubular atrophy (IF/TA). Six patients received MSC infusions. Clinical and immune monitoring was performed up to 24 weeks after MSC infusions. MSCs fulfilled the release criteria, infusions were well-tolerated, and no treatment-related serious adverse events were reported. In two recipients with allograft rejection, we had a clinical indication to perform surveillance biopsies and are able to report on the potential effects of MSCs in rejection. Although maintenance immunosuppression remained unaltered, there was a resolution of tubulitis without IF/TA in both patients. Additionally, three patients developed an opportunistic viral infection, and five of the six patients displayed a donor-specific downregulation of the peripheral blood mononuclear cell proliferation assay, not reported in patients without MSC treatment. Autologous BM MSC treatment in transplant recipients with subclinical rejection and IF/TA is clinically feasible and safe, and the findings are suggestive of systemic immunosuppression.
Collapse
Affiliation(s)
- Marlies E J Reinders
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Roemeling-van Rhijn M, Khairoun M, Korevaar SS, Lievers E, Leuning DG, Ijzermans JN, Betjes MG, Genever PG, van Kooten C, de Fijter HJ, Rabelink TJ, Baan CC, Weimar W, Roelofs H, Hoogduijn MJ, Reinders ME. Human Bone Marrow- and Adipose Tissue-derived Mesenchymal Stromal Cells are Immunosuppressive In vitro and in a Humanized Allograft Rejection Model. ACTA ACUST UNITED AC 2013; Suppl 6:20780. [PMID: 24672744 PMCID: PMC3963708 DOI: 10.4172/2157-7633.s6-001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recent studies with bone marrow (BM)-derived Mesenchymal Stromal Cells (MSC) in transplant recipients demonstrate that treatment with MSC is safe and clinically feasible. While BM is currently the preferred source of MSC, adipose tissue is emerging as an alternative. To develop efficient therapies, there is a need for preclinical efficacy studies in transplantation. We used a unique humanized transplantation model to study the in vivo immunosuppressive effect of human BM-MSC and adipose tissue-derived MSC (ASC). Methods Gene expression of BM-MSC and ASC and their capacity to inhibit activated PBMC proliferation was evaluated. The in vivo immunosuppressive effect of BM-MSC and ASC was studied in a humanized mouse model. SCID mice were transplanted with human skin grafts and injected with human allogeneic PBMC with or without administration of BM-MSC or ASC. The effect of MSC on skin graft rejection was studied by immunohistochemistry and PCR. Results BM-MSC and ASC expressed TGFβ, CXCL-10 and IDO. IDO expression and acitivity increased significantly in BM-MSC and ASC upon IFN-γ stimulation. IFN-γ stimulated BM-MSC and ASC inhibited the proliferation of activated PBMC in a significant and dose dependent manner. In our humanized mouse model, alloreactivity was marked by pronounced CD45+ T-cell infiltrates consisting of CD4+ and CD8+ T cells and increased IFN-γ expression in the skin grafts which were all significantly inhibited by both BM-MSC and ASC. Conclusion BM-MSC and ASC are immunosuppressive in vitro and suppress alloreactivity in a preclinical humanized transplantation model.
Collapse
Affiliation(s)
| | - Meriem Khairoun
- Nephrology, Leiden University Medical Center, The Netherlands
| | | | - Ellen Lievers
- Nephrology, Leiden University Medical Center, The Netherlands
| | | | | | | | - Paul G Genever
- Department of Biology, University of York, York, United Kingdom
| | - Cees van Kooten
- Nephrology, Leiden University Medical Center, The Netherlands
| | | | - Ton J Rabelink
- Nephrology, Leiden University Medical Center, The Netherlands
| | - Carla C Baan
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Willem Weimar
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Helene Roelofs
- Immunohematology and blood transfusion, Leiden University Medical Center, The Netherlands
| | | | | |
Collapse
|