51
|
Sierad LN, Shaw EL, Bina A, Brazile B, Rierson N, Patnaik SS, Kennamer A, Odum R, Cotoi O, Terezia P, Branzaniuc K, Smallwood H, Deac R, Egyed I, Pavai Z, Szanto A, Harceaga L, Suciu H, Raicea V, Olah P, Simionescu A, Liao J, Movileanu I, Harpa M, Simionescu DT. Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System. Tissue Eng Part C Methods 2016; 21:1284-96. [PMID: 26467108 DOI: 10.1089/ten.tec.2015.0170] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open-close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality.
Collapse
Affiliation(s)
- Leslie Neil Sierad
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Eliza Laine Shaw
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Alexander Bina
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Bryn Brazile
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Nicholas Rierson
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Sourav S Patnaik
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Allison Kennamer
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Rebekah Odum
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Ovidiu Cotoi
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Preda Terezia
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Klara Branzaniuc
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Harrison Smallwood
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Radu Deac
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Imre Egyed
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Zoltan Pavai
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Annamaria Szanto
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Lucian Harceaga
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Horatiu Suciu
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Victor Raicea
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Peter Olah
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Agneta Simionescu
- 4 Cardiovascular Tissue Engineering and Regenerative Medicine Laboratory, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Jun Liao
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Ionela Movileanu
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Marius Harpa
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Dan Teodor Simionescu
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| |
Collapse
|
52
|
Tissue-Engineered Tubular Heart Valves Combining a Novel Precontraction Phase with the Self-Assembly Method. Ann Biomed Eng 2016; 45:427-438. [DOI: 10.1007/s10439-016-1708-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022]
|
53
|
Miranda-Nieves D, Chaikof EL. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomater Sci Eng 2016; 3:694-711. [PMID: 33440491 DOI: 10.1021/acsbiomaterials.6b00250] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collagen and elastin represent the two most predominant proteins in the body and are responsible for modulating important biological and mechanical properties. Thus, the focus of this review is the use of collagen and elastin as biomaterials for the fabrication of living tissues. Considering the importance of both biomaterials, we first propose the notion that many tissues in the human body represent a reinforced composite of collagen and elastin. In the rest of the review, collagen and elastin biosynthesis and biophysics, as well as molecular sources and biomaterial fabrication methodologies, including casting, fiber spinning, and bioprinting, are discussed. Finally, we summarize the current attempts to fabricate a subset of living tissues and, based on biochemical and biomechanical considerations, suggest that future tissue-engineering efforts consider direct incorporation of collagen and elastin biomaterials.
Collapse
Affiliation(s)
- David Miranda-Nieves
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
54
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
55
|
Usprech J, Chen WLK, Simmons CA. Heart valve regeneration: the need for systems approaches. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:169-82. [PMID: 26862013 DOI: 10.1002/wsbm.1329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023]
Abstract
Tissue-engineered heart valves are promising alternatives to address the limitations of current valve replacements, particularly for growing children. Current heart valve tissue engineering strategies involve the selection of biomaterial scaffolds, cell types, and often in vitro culture conditions aimed at regenerating a valve for implantation and subsequent maturation in vivo. However, identifying optimal combinations of cell sources, biomaterials, and/or bioreactor conditions to produce functional, durable valve tissue remains a challenge. Despite some short-term success in animal models, attempts to recapitulate aspects of the native heart valve environment based on 'best guesses' of a limited number of regulatory factors have not proven effective. Better outcomes for valve tissue regeneration will likely require a systems-level understanding of the relationships between multiple interacting regulatory factors and their effects on cell function and tissue formation. Until recently, conventional culture methods have not allowed for multiple design parameters to be considered at once. Emerging microtechnologies are well suited to systematically probe multiple inputs, in combination, in high throughput and with great precision. When combined with statistical and network systems analyses, these microtechnologies have excellent potential to define multivariate signal-response relationships and reveal key regulatory pathways for robust functional tissue regeneration.
Collapse
Affiliation(s)
- Jenna Usprech
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Wen Li Kelly Chen
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
56
|
Zhu Z, Zhou J, Ding J, Xu J, Zhong H, Lei S. A novel approach to prepare a tissue engineering decellularized valve scaffold with poly(ethylene glycol)–poly(ε-caprolactone). RSC Adv 2016. [DOI: 10.1039/c5ra22808e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to explore the feasibility of preparing a decellularized valve scaffold with methoxy poly(ethylene glycol)–poly(ε-caprolactone) (MPEG–PCL).
Collapse
Affiliation(s)
- Zhigang Zhu
- Department of Cardiothoracic Surgery
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| | - Jianliang Zhou
- Department of Cardiothoracic Surgery
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| | - Jingli Ding
- Department of Gastroenterology
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| | - Haijun Zhong
- School of Pharmacy
- Nanchang University
- Nanchang
- P. R. China
| | - Shuijin Lei
- School of Materials Science and Engineering
- Nanchang University
- Nanchang
- P. R. China
| |
Collapse
|
57
|
Brugmans MM, Soekhradj-Soechit RS, van Geemen D, Cox M, Bouten CV, Baaijens FP, Driessen-Mol A. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Tissue Eng Part A 2016; 22:123-32. [DOI: 10.1089/ten.tea.2015.0203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Marieke M.C.P. Brugmans
- Xeltis B.V., Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Daphne van Geemen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P.T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anita Driessen-Mol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
58
|
Bioprinting a cardiac valve. Biotechnol Adv 2015; 33:1503-21. [DOI: 10.1016/j.biotechadv.2015.07.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022]
|
59
|
Xiang JX, Zheng XL, Gao R, Wu WQ, Zhu XL, Li JH, Lv Y. Liver regeneration using decellularized splenic scaffold: a novel approach in tissue engineering. Hepatobiliary Pancreat Dis Int 2015; 14:502-8. [PMID: 26459726 DOI: 10.1016/s1499-3872(15)60423-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoonosis and immunological rejection. We proposed that the spleen, which procured more extensively than the liver, could be an ideal source of decellularized scaffold for liver regeneration. METHODS After harvested from donor rat, the spleen was processed by 12-hour freezing/thawing x 2 cycles, then circulation perfusion of 0.02% trypsin and 3% Triton X-100 sequentially through the splenic artery for 32 hours in total to prepare decellularized scaffold. The structure and component characteristics of the scaffold were determined by hematoxylin and eosin and immumohistochemical staining, scanning electron microscope, DNA detection, porosity measurement, biocompatibility and cytocompatibility test. Recellularization of scaffold by 5 x 10(6) bone marrow mesenchymal stem cells (BMSCs) was carried out to preliminarily evaluate the feasibility of liver regeneration by BMSCs reseeding and differentiation in decellularized splenic scaffold. RESULTS After decellularization, a translucent scaffold, which retained the gross shape of the spleen, was generated. Histological evaluation and residual DNA quantitation revealed the remaining of extracellular matrix without nucleus and cytoplasm residue. Immunohistochemical study proved the existence of collagens I, IV, fibronectin, laminin and elastin in decellularized splenic scaffold, which showed a similarity with decellularized liver. A scanning electron microscope presented the remaining three-dimensional porous structure of extracellular matrix and small blood vessels. The porosity of scaffold, aperture of 45.36 +/- 4.87 μm and pore rate of 80.14% +/- 2.99% was suitable for cell engraftment. Subcutaneous implantation of decellularized scaffold presented good histocompatibility, and recellularization of the splenic scaffold demonstrated that BMSCs could locate and survive in the decellularized matrix. CONCLUSION Considering the more extensive organ source and satisfying biocompatibility, the present study indicated that the three-dimensional decellularized splenic scaffold might have considerable potential for liver regeneration when combined with BMSCs reseeding and differentiation.
Collapse
Affiliation(s)
- Jun-Xi Xiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | | | |
Collapse
|
60
|
Jana S, Lerman A, Simari RD. In Vitro Model of a Fibrosa Layer of a Heart Valve. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20012-20. [PMID: 26295833 DOI: 10.1021/acsami.5b04805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The fibrosa layer of a cardiac aortic valve is composed mostly of a dense network of type I collagen fibers oriented in circumferential direction. This main layer bears the tensile load and responds to the high stress on a leaflet. The inner fibrosa layer is also the site of pathophysiologic changes that result in valvular dysfunction, including stenosis and regurgitation. In vitro studies of these changes are limited by the absence of a substrate that mimics the circumferentially oriented structure of the fibrosa layer. In heart valve tissue engineering, generation of this layer is challenging. This study aimed to develop an artificial fibrosa layer of a native aortic leaflet. A unique morphologically biomimicked, pliable, but standalone substrate with circumferentially oriented nanofibers was fabricated by electrospinning on a novel collector designed for this study. The substrate had low-bulk tensile stiffness and ultimate strength; thus, cultured valvular interstitial cells (VICs) showed a fibroblast phenotype that is generally observed in a healthy aortic leaflet. Furthermore, gene and protein expression and morphology of VICs in substrates were close to those in the fibrosa layer of a native aortic leaflet. This artificial fibrosa layer can be useful for in vitro studies of valvular dysfunctions.
Collapse
Affiliation(s)
- Soumen Jana
- Division of Cardiovascular Diseases, Mayo Clinic , 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic , 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Robert D Simari
- School of Medicine, University of Kansas , 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| |
Collapse
|
61
|
Syedain Z, Reimer J, Schmidt J, Lahti M, Berry J, Bianco R, Tranquillo RT. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 2015; 73:175-84. [PMID: 26409002 DOI: 10.1016/j.biomaterials.2015.09.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
Diseased aortic valves often require replacement, with over 30% of the current aortic valve surgeries performed in patients who will outlive a bioprosthetic valve. While many promising tissue-engineered valves have been created in the lab using the cell-seeded polymeric scaffold paradigm, none have been successfully tested long-term in the aortic position of a pre-clinical model. The high pressure gradients and dynamic flow across the aortic valve leaflets require engineering a tissue that has the strength and compliance to withstand high mechanical demand without compromising normal hemodynamics. A long-term preclinical evaluation of an off-the-shelf tissue-engineered aortic valve in the sheep model is presented here. The valves were made from a tube of decellularized cell-produced matrix mounted on a frame. The engineered matrix is primarily composed of collagen, with strength and organization comparable to native valve leaflets. In vitro testing showed excellent hemodynamic performance with low regurgitation, low systolic pressure gradient, and large orifice area. The implanted valves showed large-scale leaflet motion and maintained effective orifice area throughout the duration of the 6-month implant, with no calcification. After 24 weeks implantation (over 17 million cycles), the valves showed no change in tensile mechanical properties. In addition, histology and DNA quantitation showed repopulation of the engineered matrix with interstitial-like cells and endothelialization. New extracellular matrix deposition, including elastin, further demonstrates positive tissue remodeling in addition to recellularization and valve function. Long-term implantation in the sheep model resulted in functionality, matrix remodeling, and recellularization, unprecedented results for a tissue-engineered aortic valve.
Collapse
Affiliation(s)
- Zeeshan Syedain
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Jay Reimer
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Jillian Schmidt
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Matthew Lahti
- Experimental Surgical Services, University of Minnesota, United States
| | - James Berry
- Experimental Surgical Services, University of Minnesota, United States
| | - Richard Bianco
- Experimental Surgical Services, University of Minnesota, United States
| | - Robert T Tranquillo
- Departments of Biomedical Engineering, University of Minnesota, United States; Department of Chemical Engineering & Material Science, University of Minnesota, United States.
| |
Collapse
|
62
|
Reimer JM, Syedain ZH, Haynie BHT, Tranquillo RT. Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes. Biomaterials 2015; 62:88-94. [PMID: 26036175 PMCID: PMC4490908 DOI: 10.1016/j.biomaterials.2015.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023]
Abstract
Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in principle. Engineered tissue tubes were fabricated by allowing ovine dermal fibroblasts to replace a sacrificial fibrin gel with an aligned, cell-produced collagenous matrix, which was subsequently decellularized. Previously, these engineered tubes became extensively recellularized following implantation into the sheep femoral artery. Thus, a tubular valve made from these tubes may be amenable to recellularization and, ideally, somatic growth. The suture line pattern generated three equi-spaced leaflets in the inner tube, which collapsed inward when exposed to back pressure, per tubular valve design. Valve testing was performed in a pulse duplicator system equipped with a secondary flow loop to allow for root distention. All tissue-engineered valves exhibited full leaflet opening and closing, minimal regurgitation (<5%), and low systolic pressure gradients (<2.5 mmHg) under pulmonary conditions. Valve performance was maintained under various trans-root pressure gradients and no tissue damage was evident after 2 million cycles of fatigue testing.
Collapse
Affiliation(s)
- Jay M Reimer
- Department of Biomedical Engineering, University of Minnesota, USA
| | | | - Bee H T Haynie
- Department of Biomedical Engineering, University of Minnesota, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, USA; Department of Chemical Engineering and Material Science, University of Minnesota, USA.
| |
Collapse
|
63
|
Gao Y, Jacot JG. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomark Insights 2015; 10:139-46. [PMID: 26379417 PMCID: PMC4554358 DOI: 10.4137/bmi.s20058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023] Open
Abstract
Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses.
Collapse
Affiliation(s)
- Yang Gao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jeffrey G Jacot
- Department of Bioengineering, Rice University, Houston, TX, USA
- Congenital Heart Surgery Services, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
64
|
Sanders B, Loerakker S, Fioretta ES, Bax DJP, Driessen-Mol A, Hoerstrup SP, Baaijens FPT. Improved Geometry of Decellularized Tissue Engineered Heart Valves to Prevent Leaflet Retraction. Ann Biomed Eng 2015; 44:1061-71. [PMID: 26183964 PMCID: PMC4826662 DOI: 10.1007/s10439-015-1386-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/07/2015] [Indexed: 11/25/2022]
Abstract
Recent studies on decellularized tissue engineered heart valves (DTEHVs) showed rapid host cell repopulation and increased valvular insufficiency developing over time, associated with leaflet shortening. A possible explanation for this result was found using computational simulations, which revealed radial leaflet compression in the original valvular geometry when subjected to physiological pressure conditions. Therefore, an improved geometry was suggested to enable radial leaflet extension to counteract for host cell mediated retraction. In this study, we propose a solution to impose this new geometry by using a constraining bioreactor insert during culture. Human cell based DTEHVs (n = 5) were produced as such, resulting in an enlarged coaptation area and profound belly curvature. Extracellular matrix was homogeneously distributed, with circumferential collagen alignment in the coaptation region and global tissue anisotropy. Based on in vitro functionality experiments, these DTEHVs showed competent hydrodynamic functionality under physiological pulmonary conditions and were fatigue resistant, with stable functionality up to 16 weeks in vivo simulation. Based on implemented mechanical data, our computational models revealed a considerable decrease in radial tissue compression with the obtained geometrical adjustments. Therefore, these improved DTEHV are expected to be less prone to host cell mediated leaflet retraction and will remain competent after implantation.
Collapse
Affiliation(s)
- Bart Sanders
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Emanuela S Fioretta
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
| | - Dave J P Bax
- Equipment & Prototype Center, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anita Driessen-Mol
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Simon P Hoerstrup
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- Swiss Center for Regenerative Medicine, University Hospital of Zürich, Zurich, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
65
|
Park YB, Seo S, Kim JA, Heo JC, Lim YC, Ha CW. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2015; 10:035014. [PMID: 26107298 DOI: 10.1088/1748-6041/10/3/035014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The extracellular matrix (ECM) surrounding cells contains a variety of proteins that provide structural support and regulate cellular functions. Previous studies have shown that decellularized ECM isolated from tissues or cultured cells can be used to improve cell differentiation in tissue engineering applications. In this study we evaluated the effect of decellularized chondrocyte-derived ECM (CDECM) on the chondrogenesis of human placenta-derived mesenchymal stem cells (hPDMSCs) in a pellet culture system. After incubation with or without chondrocyte-derived ECM in chondrogenic medium for 1 or 3 weeks, the sizes and wet masses of the cell pellets were compared with untreated controls (hPDMSCs incubated in chondrogenic medium without chondrocyte-derived ECM). In addition, histologic analysis of the cell pellets (Safranin O and collagen type II staining) and quantitative reverse transcription-PCR analysis of chondrogenic markers (aggrecan, collagen type II, and SOX9) were carried out. Our results showed that the sizes and masses of hPDMSC pellets incubated with chondrocyte-derived ECM were significantly higher than those of untreated controls. Differentiation of hPDMSCs (both with and without chondrocyte-derived ECM) was confirmed by Safranin O and collagen type II staining. Chondrogenic marker expression and glycosaminoglycan (GAG) levels were significantly higher in hPDMSC pellets incubated with chondrocyte-derived ECM compared with untreated controls, especially in cells precultured with chondrocyte-derived ECM for 7 d. Taken together, these results demonstrate that chondrocyte-derived ECM enhances the chondrogenesis of hPDMSCs, and this effect is further increased by preculture with chondrocyte-derived ECM. This preculture method for hPDMSC chondrogenesis represents a promising approach for cartilage tissue engineering.
Collapse
|
66
|
Duan B, Hockaday LA, Das S, Xu C, Butcher JT. Comparison of Mesenchymal Stem Cell Source Differentiation Toward Human Pediatric Aortic Valve Interstitial Cells within 3D Engineered Matrices. Tissue Eng Part C Methods 2015; 21:795-807. [PMID: 25594437 DOI: 10.1089/ten.tec.2014.0589] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Living tissue-engineered heart valves (TEHV) would be a major benefit for children who require a replacement with the capacity for growth and biological integration. A persistent challenge for TEHV is accessible human cell source(s) that can mimic native valve cell phenotypes and matrix remodeling characteristics that are essential for long-term function. Mesenchymal stem cells derived from bone marrow (BMMSC) or adipose tissue (ADMSC) are intriguing cell sources for TEHV, but they have not been compared with pediatric human aortic valve interstitial cells (pHAVIC) in relevant 3D environments. In this study, we compared the spontaneous and induced multipotency of ADMSC and BMMSC with that of pHAVIC using different induction media within three-dimensional (3D) bioactive hybrid hydrogels with material modulus comparable to that of aortic heart valve leaflets. pHAVIC possessed some multi-lineage differentiation capacity in response to induction media, but limited to the earliest stages and much less potent than either ADMSC or BMMSC. ADMSC expressed cell phenotype markers more similar to pHAVIC when conditioned in basic fibroblast growth factor (bFGF) containing HAVIC growth medium, while BMMSC generally expressed similar extracellular matrix remodeling characteristics to pHAVIC. Finally, we covalently attached bFGF to PEG monoacrylate linkers and further covalently immobilized in the 3D hybrid hydrogels. Immobilized bFGF upregulated vimentin expression and promoted the fibroblastic differentiation of pHAVIC, ADMSC, and BMMSC. These findings suggest that stem cells retain a heightened capacity for osteogenic differentiation in 3D culture, but can be shifted toward fibroblast differentiation through matrix tethering of bFGF. Such a strategy is likely important for utilizing stem cell sources in heart valve tissue engineering applications.
Collapse
Affiliation(s)
- Bin Duan
- 1 Department of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Laura A Hockaday
- 1 Department of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Shoshana Das
- 2 Department of Biological and Environmental Engineering, Cornell University , Ithaca, New York
| | - Charlie Xu
- 2 Department of Biological and Environmental Engineering, Cornell University , Ithaca, New York
| | - Jonathan T Butcher
- 1 Department of Biomedical Engineering, Cornell University , Ithaca, New York
| |
Collapse
|
67
|
Jana S, Tranquillo RT, Lerman A. Cells for tissue engineering of cardiac valves. J Tissue Eng Regen Med 2015; 10:804-824. [DOI: 10.1002/term.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Soumen Jana
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester MN USA
| | - Robert T. Tranquillo
- Department of Biomedical Engineering; University of Minnesota; Minneapolis MN USA
| | - Amir Lerman
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester MN USA
| |
Collapse
|
68
|
Weidenhamer NK, Moore DL, Lobo FL, Klair NT, Tranquillo RT. Influence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues. J Tissue Eng Regen Med 2015; 9:605-18. [PMID: 25556358 PMCID: PMC4409517 DOI: 10.1002/term.1974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/08/2014] [Accepted: 10/27/2014] [Indexed: 12/19/2022]
Abstract
The variables that influence the in vitro recellularization potential of decellularized engineered tissues, such as cell culture conditions and scaffold alignment, have yet to be explored. The goal of this work was to explore the influence of insulin and ascorbic acid and extracellular matrix (ECM) alignment on the recellularization of decellularized engineered tissue by human mesenchymal stem cells (hMSCs). Aligned and non-aligned tissues were created by specifying the geometry and associated mechanical constraints to fibroblast-mediated fibrin gel contraction and remodelling using circular and C-shaped moulds. Decellularized tissues (matrices) of the same alignment were created by decellularization with detergents. Ascorbic acid promoted the invasion of hMSCs into the matrices due to a stimulated increase in motility and proliferation. Invasion correlated with hyaluronic acid secretion, α-smooth muscle actin expression and decreased matrix thickness. Furthermore, hMSCs invasion into aligned and non-aligned matrices was not different, although there was a difference in cell orientation. Finally, we show that hMSCs on the matrix surface appear to differentiate toward a smooth muscle cell or myofibroblast phenotype with ascorbic acid treatment. These results inform the strategy of recellularizing decellularized engineered tissue with hMSCs.
Collapse
Affiliation(s)
- Nathan K Weidenhamer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
69
|
Fitzpatrick LE, McDevitt TC. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci 2015; 3:12-24. [PMID: 25530850 PMCID: PMC4270054 DOI: 10.1039/c4bm00246f] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development and application of decellularized extracellular matrices (ECM) has grown rapidly in the fields of cell biology, tissue engineering and regenerative medicine in recent years. Similar to decellularized tissues and whole organs, cell-derived matrices (CDMs) represent bioactive, biocompatible materials consisting of a complex assembly of fibrillar proteins, matrix macromolecules and associated growth factors that often recapitulate, at least to some extent, the composition and organization of native ECM microenvironments. The unique ability to engineer CDMs de novo based on cell source and culture methods makes them an attractive alternative to conventional allogeneic and xenogeneic tissue-derived matrices that are currently harvested from cadaveric sources, suffer from inherent heterogeneity, and have limited ability for customization. Although CDMs have been investigated for a number of biomedical applications, including adhesive cell culture substrates, synthetic scaffold coatings, and tissue engineered products, such as heart valves and vascular grafts, the state of the field is still at a relatively nascent stage of development. In this review, we provide an overview of the various applications of CDM and discuss successes to date, current limitations and future directions.
Collapse
Affiliation(s)
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
70
|
MacGrogan D, Luxán G, Driessen-Mol A, Bouten C, Baaijens F, de la Pompa JL. How to make a heart valve: from embryonic development to bioengineering of living valve substitutes. Cold Spring Harb Perspect Med 2014; 4:a013912. [PMID: 25368013 DOI: 10.1101/cshperspect.a013912] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial-mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function.
Collapse
Affiliation(s)
- Donal MacGrogan
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Guillermo Luxán
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Anita Driessen-Mol
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Carlijn Bouten
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Frank Baaijens
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - José Luis de la Pompa
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW Aortic valve disease (AVD) is a growing public health problem, and the pathogenesis underlying AVD is complex. The lack of durable bioprostheses and pharmacologic therapies remain central needs in care. The purpose of this review is to highlight recent clinical studies that impact the care of children with AVD and is to explore ongoing translational research efforts. RECENT FINDINGS Clinical studies have evaluated the durability of bioprosthetics and surgical strategies, tested statins during early disease, and identified new predictive biomarkers. Large animal models have demonstrated the effectiveness of a novel bioprosthetic scaffold. Mouse models of latent AVD have advanced our ability to elucidate natural history and perform preclinical studies that test new treatments in the context of early disease. SUMMARY Current priorities for AVD patients include identifying new pharmacologic treatments and developing durable bioprostheses. Multidisciplinary efforts are needed that bridge pediatric and adult programs, and bring together different types of expertise and leverage network and consortium resources. As our understanding of the underlying complex genetics is better defined, companion diagnostics may transform future clinical trials and ultimately improve the care of patients with AVD by promoting personalized medicine and early intervention.
Collapse
|
72
|
Farag A, Vaquette C, Theodoropoulos C, Hamlet SM, Hutmacher DW, Ivanovski S. Decellularized periodontal ligament cell sheets with recellularization potential. J Dent Res 2014; 93:1313-9. [PMID: 25270757 DOI: 10.1177/0022034514547762] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The periodontal ligament is the key tissue facilitating periodontal regeneration. This study aimed to fabricate decellularized human periodontal ligament cell sheets for subsequent periodontal tissue engineering applications. The decellularization protocol involved the transfer of intact human periodontal ligament cell sheets onto melt electrospun polycaprolactone membranes and subsequent bi-directional perfusion with NH4OH/Triton X-100 and DNase solutions. The protocol was shown to remove 92% of DNA content. The structural integrity of the decellularized cell sheets was confirmed by a collagen quantification assay, immunostaining of human collagen type I and fibronectin, and scanning electron microscopy. ELISA was used to demonstrate the presence of residual basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) in the decellularized cell sheet constructs. The decellularized cell sheets were shown to have the ability to support recellularization by allogenic human periodontal ligament cells. This study describes the fabrication of decellularized periodontal ligament cell sheets that retain an intact extracellular matrix and resident growth factors and can support repopulation by allogenic cells. The decellularized hPDL cell sheet concept has the potential to be utilized in future "off-the-shelf" periodontal tissue engineering strategies.
Collapse
Affiliation(s)
- A Farag
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - C Vaquette
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - C Theodoropoulos
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - S M Hamlet
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - S Ivanovski
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| |
Collapse
|
73
|
Abstract
Although the adult mammalian heart was once believed to be a post-mitotic organ without any capacity for regeneration, recent findings have challenged this dogma. A modified view assigns to the mammalian heart a measurable capacity for regeneration throughout life. The ultimate goals of the cardiac regeneration field have been pursued by multiple strategies, including understanding the developmental biology of cardiomyocytes and cardiac stem and progenitor cells, applying chemical genetics, and engineering biomaterials and delivery methods that facilitate cell transplantation. Successful stimulation of endogenous regenerative capacity in injured adult mammalian hearts can benefit from studies of natural cardiac regeneration.
Collapse
Affiliation(s)
- Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Beatriz G. Gálvez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
74
|
Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater 2014; 10:1806-16. [PMID: 24486910 DOI: 10.1016/j.actbio.2014.01.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/15/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Decades of research have been undertaken towards the goal of tissue engineering using xenogeneic scaffolds. The primary advantages associated with use of xenogeneic tissue-derived scaffolds for in vitro development of replacement tissues and organs stem from the inherent extracellular matrix (ECM) composition and architecture. Native ECM possesses appropriate mechanical properties for physiological function of the biomaterial and signals for cell binding, growth and differentiation. Additionally, xenogeneic tissue is readily available. However, translation of xenogeneic scaffold-derived engineered tissues or organs into clinical therapies requires xenoantigenicity of the material to be adequately addressed prior to implantation. Failure to achieve this goal will result in a graft-specific host immune rejection response, jeopardizing in vivo survival of the resultant scaffold, tissue or organ. This review explores (i) the appropriateness of scaffold acellularity as an outcome measure for assessing reduction of the immunological barriers to the use of xenogeneic scaffolds for tissue engineering applications and (ii) the need for tissue engineers to strive for antigen removal during xenogeneic scaffold generation.
Collapse
Affiliation(s)
- Maelene L Wong
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
75
|
Tremblay C, Ruel J, Bourget JM, Laterreur V, Vallières K, Tondreau MY, Lacroix D, Germain L, Auger FA. A new construction technique for tissue-engineered heart valves using the self-assembly method. Tissue Eng Part C Methods 2014; 20:905-15. [PMID: 24576074 DOI: 10.1089/ten.tec.2013.0698] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue engineering appears as a promising option to create new heart valve substitutes able to overcome the serious drawbacks encountered with mechanical substitutes or tissue valves. The objective of this article is to present the construction method of a new entirely biological stentless aortic valve using the self-assembly method and also a first assessment of its behavior in a bioreactor when exposed to a pulsatile flow. A thick tissue was created by stacking several fibroblast sheets produced with the self-assembly technique. Different sets of custom-made templates were designed to confer to the thick tissue a three-dimensional (3D) shape similar to that of a native aortic valve. The construction of the valve was divided in two sequential steps. The first step was the installation of the thick tissue in a flat preshaping template followed by a 4-week maturation period. The second step was the actual cylindrical 3D forming of the valve. The microscopic tissue structure was assessed using histological cross sections stained with Masson's Trichrome and Picrosirius Red. The thick tissue remained uniformly populated with cells throughout the construction steps and the dense extracellular matrix presented corrugated fibers of collagen. This first prototype of tissue-engineered heart valve was installed in a bioreactor to assess its capacity to sustain a light pulsatile flow at a frequency of 0.5 Hz. Under the light pulsed flow, it was observed that the leaflets opened and closed according to the flow variations. This study demonstrates that the self-assembly method is a viable option for the construction of complex 3D shapes, such as heart valves, with an entirely biological material.
Collapse
Affiliation(s)
- Catherine Tremblay
- 1 Département de génie mécanique, Faculté des sciences et de génie, Université Laval , Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Regenerative implants for cardiovascular tissue engineering. Transl Res 2014; 163:321-41. [PMID: 24589506 DOI: 10.1016/j.trsl.2014.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 01/22/2023]
Abstract
A fundamental problem that affects the field of cardiovascular surgery is the paucity of autologous tissue available for surgical reconstructive procedures. Although the best results are obtained when an individual's own tissues are used for surgical repair, this is often not possible as a result of pathology of autologous tissues or lack of a compatible replacement source from the body. The use of prosthetics is a popular solution to overcome shortage of autologous tissue, but implantation of these devices comes with an array of additional problems and complications related to biocompatibility. Transplantation offers another option that is widely used but complicated by problems related to rejection and donor organ scarcity. The field of tissue engineering represents a promising new option for replacement surgical procedures. Throughout the years, intensive interdisciplinary, translational research into cardiovascular regenerative implants has been undertaken in an effort to improve surgical outcome and better quality of life for patients with cardiovascular defects. Vascular, valvular, and heart tissue repair are the focus of these efforts. Implants for these neotissues can be divided into 2 groups: biologic and synthetic. These materials are used to facilitate the delivery of cells or drugs to diseased, damaged, or absent tissue. Furthermore, they can function as a tissue-forming device used to enhance the body's own repair mechanisms. Various preclinical studies and clinical trials using these advances have shown that tissue-engineered materials are a viable option for surgical repair, but require refinement if they are going to reach their clinical potential. With the growth and accomplishments this field has already achieved, meeting those goals in the future should be attainable.
Collapse
|
77
|
Lee JS, Shin J, Park HM, Kim YG, Kim BG, Oh JW, Cho SW. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 2013; 15:206-18. [PMID: 24350561 DOI: 10.1021/bm4015039] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Decellularization of tissues or organs can provide an efficient strategy for preparing functional scaffolds for tissue engineering. Microstructures of native extracellular matrices and their biochemical compositions can be retained in the decellularized matrices, providing tissue-specific microenvironments for efficient tissue regeneration. Here, we report the versatility of liver extracellular matrix (LEM) that can be used for two-dimensional (2D) coating and three-dimensional (3D) hydrogel platforms for culture and transplantation of primary hepatocytes. Collagen type I (Col I) has typically been used for hepatocyte culture and transplantation. In this study, LEM was compared with Col I in terms of biophysical and mechanical characteristics and biological performance for enhancing cell viability, differentiation, and hepatic functions. Surface properties of LEM coating and mechanical properties and gelation kinetics of LEM hydrogel could be manipulated by adjusting the LEM concentration. In addition, LEM hydrogel exhibited improved elastic properties, rapid gelation, and volume maintenance compared to Col I hydrogel. LEM coating significantly improved hepatocyte functions such as albumin secretion and urea synthesis. More interestingly, LEM coating upregulated hepatic gene expression of human adipose-derived stem cells, indicating enhanced hepatic differentiation of these stem cells. The viability and hepatic functions of primary hepatocytes were also significantly improved in LEM hydrogel compared to Col I hydrogel both in vitro and in vivo. Albumin and hepatocyte transcription factor expression was upregulated in hepatocytes transplanted in LEM hydrogels. In conclusion, LEM can provide functional biomaterial platforms for diverse applications in liver tissue engineering by promoting survival and maturation of hepatocytes and hepatic commitment of stem cells. This study demonstrates the feasibility of decellularized matrix for both 2D coating and 3D hydrogel in liver tissue engineering.
Collapse
Affiliation(s)
- Jung Seung Lee
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
78
|
Transcatheter implantation of homologous "off-the-shelf" tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J Am Coll Cardiol 2013; 63:1320-1329. [PMID: 24361320 DOI: 10.1016/j.jacc.2013.09.082] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This study sought to evaluate long-term in vivo functionality, host cell repopulation, and remodeling of "off-the-shelf" tissue engineered transcatheter homologous heart valves. BACKGROUND Transcatheter valve implantation has emerged as a valid alternative to conventional surgery, in particular for elderly high-risk patients. However, currently used bioprosthetic transcatheter valves are prone to progressive dysfunctional degeneration, limiting their use in younger patients. To overcome these limitations, the concept of tissue engineered heart valves with self-repair capacity has been introduced as next-generation technology. METHODS In vivo functionality, host cell repopulation, and matrix remodeling of homologous transcatheter tissue-engineered heart valves (TEHVs) was evaluated up to 24 weeks as pulmonary valve replacements (transapical access) in sheep (n = 12). As a control, tissue composition and structure were analyzed in identical not implanted TEHVs (n = 5). RESULTS Transcatheter implantation was successful in all animals. Valve functionality was excellent displaying sufficient leaflet motion and coaptation with only minor paravalvular leakage in some animals. Mild central regurgitation was detected after 8 weeks, increasing to moderate after 24 weeks, correlating to a compromised leaflet coaptation. Mean and peak transvalvular pressure gradients were 4.4 ± 1.6 mm Hg and 9.7 ± 3.0 mm Hg, respectively. Significant matrix remodeling was observed in the entire valve and corresponded with the rate of host cell repopulation. CONCLUSIONS For the first time, the feasibility and long-term functionality of transcatheter-based homologous off-the-shelf tissue engineered heart valves are demonstrated in a relevant pre-clinical model. Such engineered heart valves may represent an interesting alternative to current prostheses because of their rapid cellular repopulation, tissue remodeling, and therewith self-repair capacity. The concept of homologous off-the-shelf tissue engineered heart valves may therefore substantially simplify previous tissue engineering concepts toward clinical translation.
Collapse
|
79
|
Cissell DD, Hu JC, Griffiths LG, Athanasiou KA. Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. J Biomech 2013; 47:1987-96. [PMID: 24268315 DOI: 10.1016/j.jbiomech.2013.10.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
Abstract
Xenogeneic tissues are derived from other animal species and provide a source of material for engineering mechanically functional tissue grafts, such as heart valves, tendons, ligaments, and cartilage. Xenogeneic tissues, however, contain molecules, known as antigens, which invoke an immune reaction following implantation into a patient. Therefore, it is necessary to remove the antigens from a xenogeneic tissue to prevent immune rejection of the graft. Antigen removal can be accomplished by treating a tissue with solutions and/or physical processes that disrupt cells and solubilize, degrade, or mask antigens. However, processes used for cell and antigen removal from tissues often have deleterious effects on the extracellular matrix (ECM) of the tissue, rendering the tissue unsuitable for implantation due to poor mechanical properties. Thus, the goal of an antigen removal process should be to reduce the antigen content of a xenogeneic tissue while preserving its mechanical functionality. To expand the clinical use of antigen-removed xenogeneic tissues as biomechanically functional grafts, it is essential that researchers examine tissue antigen content, ECM composition and architecture, and mechanical properties as new antigen removal processes are developed.
Collapse
Affiliation(s)
- Derek D Cissell
- Department of Orthopaedic Surgery, University of California, Davis, CA, USA; Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Orthopaedic Surgery, University of California, Davis, CA, USA.
| |
Collapse
|
80
|
Tubular heart valves from decellularized engineered tissue. Ann Biomed Eng 2013; 41:2645-54. [PMID: 23897047 DOI: 10.1007/s10439-013-0872-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/17/2013] [Indexed: 02/03/2023]
Abstract
A novel tissue-engineered heart valve (TEHV) was fabricated from a decellularized tissue tube mounted on a frame with three struts, which upon back-pressure cause the tube to collapse into three coapting "leaflets." The tissue was completely biological, fabricated from ovine fibroblasts dispersed within a fibrin gel, compacted into a circumferentially aligned tube on a mandrel, and matured using a bioreactor system that applied cyclic distension. Following decellularization, the resulting tissue possessed tensile mechanical properties, mechanical anisotropy, and collagen content that were comparable to native pulmonary valve leaflets. When mounted on a custom frame and tested within a pulse duplicator system, the tubular TEHV displayed excellent function under both aortic and pulmonary conditions, with minimal regurgitant fractions and transvalvular pressure gradients at peak systole, as well as well as effective orifice areas exceeding those of current commercially available valve replacements. Short-term fatigue testing of one million cycles with pulmonary pressure gradients was conducted without significant change in mechanical properties and no observable macroscopic tissue deterioration. This study presents an attractive potential alternative to current tissue valve replacements due to its avoidance of chemical fixation and utilization of a tissue conducive to recellularization by host cell infiltration.
Collapse
|
81
|
Spoon DB, Tefft BJ, Lerman A, Simari RD. Challenges of biological valve development. Interv Cardiol 2013. [DOI: 10.2217/ica.13.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|