52
|
Potential of Electrospun Nanofibers for Biomedical and Dental Applications. MATERIALS 2016; 9:ma9020073. [PMID: 28787871 PMCID: PMC5456492 DOI: 10.3390/ma9020073] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/06/2016] [Accepted: 01/18/2016] [Indexed: 12/26/2022]
Abstract
Electrospinning is a versatile technique that has gained popularity for various biomedical applications in recent years. Electrospinning is being used for fabricating nanofibers for various biomedical and dental applications such as tooth regeneration, wound healing and prevention of dental caries. Electrospun materials have the benefits of unique properties for instance, high surface area to volume ratio, enhanced cellular interactions, protein absorption to facilitate binding sites for cell receptors. Extensive research has been conducted to explore the potential of electrospun nanofibers for repair and regeneration of various dental and oral tissues including dental pulp, dentin, periodontal tissues, oral mucosa and skeletal tissues. However, there are a few limitations of electrospinning hindering the progress of these materials to practical or clinical applications. In terms of biomaterials aspects, the better understanding of controlled fabrication, properties and functioning of electrospun materials is required to overcome the limitations. More in vivo studies are definitely required to evaluate the biocompatibility of electrospun scaffolds. Furthermore, mechanical properties of such scaffolds should be enhanced so that they resist mechanical stresses during tissue regeneration applications. The objective of this article is to review the current progress of electrospun nanofibers for biomedical and dental applications. In addition, various aspects of electrospun materials in relation to potential dental applications have been discussed.
Collapse
|
53
|
Preclinical in vivo Performance of Novel Biodegradable, Electrospun Poly(lactic acid) and Poly(lactic-co-glycolic acid) Nanocomposites: A Review. MATERIALS 2015; 8:4912-4931. [PMID: 28793481 PMCID: PMC5455478 DOI: 10.3390/ma8084912] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/26/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022]
Abstract
Bone substitute materials have witnessed tremendous development over the past decades and autogenous bone may still be considered the gold standard for many clinicians and clinical approaches in order to rebuild and restore bone defects. However, a plethora of novel xenogenic and synthetic bone substitute materials have been introduced in recent years in the field of bone regeneration. As the development of bone is actually a calcification process within a collagen fiber arrangement, the use of scaffolds in the formation of fibers may offer some advantages, along with additional handling characteristics. This review focuses on material characteristics and degradation behavior of electrospun biodegradable polyester scaffolds. Furthermore, we concentrated on the preclinical in vivo performance with regard to bone regeneration in preclinical studies. The major findings are as follows: Scaffold composition and architecture determine its biological behavior and degradation characteristics; The incorporation of inorganic substances and/or organic substances within composite scaffolds enhances new bone formation; L-poly(lactic acid) and poly(lactic-co-glycolic acid) composite scaffolds, especially when combined with basic substances like hydroxyapatite, tricalcium phosphate or demineralized bone powder, seem not to induce inflammatory tissue reactions in vivo.
Collapse
|
54
|
Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC. Nanotechnology in bone tissue engineering. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2015; 11:1253-63. [PMID: 25791811 PMCID: PMC4476906 DOI: 10.1016/j.nano.2015.02.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/23/2014] [Accepted: 02/21/2015] [Indexed: 02/04/2023]
Abstract
Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. FROM THE CLINICAL EDITOR Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field.
Collapse
Affiliation(s)
- Graham G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Adrian McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Abdullah H Feroze
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter H Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
55
|
Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 2015; 30:279-93. [PMID: 25995658 PMCID: PMC4438282 DOI: 10.3904/kjim.2015.30.3.279] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.
Collapse
Affiliation(s)
- Swapan Kumar Sarkar
- Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Byong Taek Lee
- Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
56
|
Sukul M, Nguyen TBL, Min YK, Lee SY, Lee BT. Effect of Local Sustainable Release of BMP2-VEGF from Nano-Cellulose Loaded in Sponge Biphasic Calcium Phosphate on Bone Regeneration. Tissue Eng Part A 2015; 21:1822-36. [PMID: 25808925 DOI: 10.1089/ten.tea.2014.0497] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bone regeneration is a coordinated process mainly regulated by multiple growth factors. Vascular endothelial growth factor (VEGF) stimulates angiogenesis and bone morphogenetic proteins (BMPs) induce osteogenesis during bone healing process. The aim of this study was to investigate how these growth factors released locally and sustainably from nano-cellulose (NC) simultaneously effect bone formation. A biphasic calcium phosphate (BCP)-NC-BMP2-VEGF (BNBV) scaffold was fabricated for this purpose. The sponge BCP scaffold was prepared by replica method and then loaded with 0.5% NC containing BMP2-VEGF. Growth factors were released from NC in a sustainable manner from 1 to 30 days. BNBV scaffolds showed higher cell attachment and proliferation behavior than the other scaffolds loaded with single growth factors. Bare BCP scaffolds and BNBV scaffolds seeded with rat bone marrow mesenchymal stem cells were implanted ectopically and orthotopically in nude mice for 4 weeks. No typical bone formation was exhibited in BNBV scaffolds in ectopic sites. BMP2 and VEGF showed positive effects on new bone formation in BNBV scaffolds, with and without seeded stem cells, in the orthotopic defects. This study demonstrated that the BNBV scaffold could be beneficial for improved bone regeneration. Stem cell incorporation into this scaffold could further enhance the bone healing process.
Collapse
Affiliation(s)
- Mousumi Sukul
- 1Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Thuy Ba Linh Nguyen
- 1Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,2Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Young-Ki Min
- 2Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,3Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sun-Young Lee
- 4Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute, Seoul, Republic of Korea
| | - Byong-Taek Lee
- 1Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,2Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|