51
|
Lima AC, Alvarez‐Lorenzo C, Mano JF. Design Advances in Particulate Systems for Biomedical Applications. Adv Healthc Mater 2016; 5:1687-723. [PMID: 27332041 DOI: 10.1002/adhm.201600219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/09/2016] [Indexed: 12/13/2022]
Abstract
The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field.
Collapse
Affiliation(s)
- Ana Catarina Lima
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Carmen Alvarez‐Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - João F. Mano
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
52
|
Santo VE, Babo P, Amador M, Correia C, Cunha B, Coutinho DF, Neves NM, Mano JF, Reis RL, Gomes ME. Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules 2016; 17:1985-97. [DOI: 10.1021/acs.biomac.6b00150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vítor E. Santo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Pedro Babo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Miguel Amador
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Bárbara Cunha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Daniela F. Coutinho
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Nuno M. Neves
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - João F. Mano
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Rui L. Reis
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Manuela E. Gomes
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| |
Collapse
|
53
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
54
|
Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 2016; 83:363-82. [PMID: 26803405 DOI: 10.1016/j.biomaterials.2016.01.024] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 02/08/2023]
Abstract
The rising incidence of bone disorders has resulted in the need for more effective therapies to meet this demand, exacerbated by an increasing ageing population. Bone tissue engineering is seen as a means of developing alternatives to conventional bone grafts for repairing or reconstructing bone defects by combining biomaterials, cells and signalling factors. However, skeletal tissue engineering has not yet achieved full translation into clinical practice as a consequence of several challenges. The use of additive manufacturing techniques for bone biofabrication is seen as a potential solution, with its inherent capability for reproducibility, accuracy and customisation of scaffolds as well as cell and signalling factor delivery. This review highlights the current research in bone biofabrication, the necessary factors for successful bone biofabrication, in addition to the current limitations affecting biofabrication, some of which are a consequence of the limitations of the additive manufacturing technology itself.
Collapse
Affiliation(s)
- Daniel Tang
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom; Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC; Research Centre for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan, ROC; School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - David F Williams
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan, ROC; Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Keng-Liang Ou
- Research Centre for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan, ROC; Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan, ROC; Research Centre for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan, ROC; Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC.
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
55
|
Diaz-Gomez L, Yang F, Jansen JA, Concheiro A, Alvarez-Lorenzo C, García-González CA. Low viscosity-PLGA scaffolds by compressed CO2foaming for growth factor delivery. RSC Adv 2016. [DOI: 10.1039/c6ra09369h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Foaming technology using supercritical and compressed fluids has emerged as a promising solution in regenerative medicine for manufacturing porous polymeric scaffolds.
Collapse
Affiliation(s)
- L. Diaz-Gomez
- Departamento de Farmacia y Tecnología Farmacéutica
- Facultad de Farmacia
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - F. Yang
- Department of Biomaterials
- Radboud University Medical Center
- 6500 HB Nijmegen
- The Netherlands
| | - J. A. Jansen
- Department of Biomaterials
- Radboud University Medical Center
- 6500 HB Nijmegen
- The Netherlands
| | - A. Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica
- Facultad de Farmacia
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - C. Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica
- Facultad de Farmacia
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - C. A. García-González
- Departamento de Farmacia y Tecnología Farmacéutica
- Facultad de Farmacia
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| |
Collapse
|
56
|
Monteiro N, Martins A, Pires RA, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM. Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Adv 2016. [DOI: 10.1039/c6ra21623d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dual release of growth/differentiation factors from liposomes induced osteogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Albino Martins
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Ricardo A. Pires
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Susana Faria
- Research Center Officinal Mathematical
- Department of Mathematics for Science and Technology
- University of Minho
- Portugal
| | - Nuno A. Fonseca
- Center for Neurosciences and Cell Biology (CNC)
- Faculty of Pharmacy of the University of Coimbra
- 3000 Coimbra
- Portugal
| | - João N. Moreira
- Center for Neurosciences and Cell Biology (CNC)
- Faculty of Pharmacy of the University of Coimbra
- 3000 Coimbra
- Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Nuno M. Neves
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| |
Collapse
|
57
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
58
|
Moraes APL, Moreira JJ, Brossi PM, Machado TS, Michelacci YM, Baccarin RY. Short- and long-term effects of platelet-rich plasma upon healthy equine joints: Clinical and laboratory aspects. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2015; 56:831-838. [PMID: 26246629 PMCID: PMC4502851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study aimed to verify whether transient inflammatory reactions incited by the administration of intra-articular platelet-rich plasma (PRP) affected joint components through short- and long-term in vivo evaluation of inflammatory biomarkers and extracellular matrix degradation products in synovial fluid. The effects of PRP were analyzed in a short phase protocol (SPP) and in a prolonged phase protocol (PPP), using saline-injected joints as controls. In the SPP, higher white blood cell counts and prostaglandin E2 and total protein concentrations were observed in the synovial fluid of PRP-treated joints (P < 0.05). There were no differences between the interleukin-1β, interleukin-1 receptor antagonist protein, tumor necrosis factor-α, chondroitin sulfate, or hyaluronic acid concentrations between PRP and saline injected joints. In the PPP, there were no differences in evaluated parameters between groups. PRP injection elicits a mild and self-limiting inflammatory response shortly after administration, without long-term deleterious effects on joint homeostasis.
Collapse
|
59
|
Monteiro N, Martins A, Reis RL, Neves NM. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther 2015; 1:109-118. [PMID: 31245450 PMCID: PMC6581799 DOI: 10.1016/j.reth.2015.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/07/2015] [Accepted: 05/25/2015] [Indexed: 11/22/2022] Open
Abstract
The inability to deliver bioactive agents locally in a transient but sustained manner is one of the challenges on the development of bio-functionalized scaffolds for tissue engineering (TE) and regenerative medicine. The mode of release is especially relevant when the bioactive agent is a growth factor (GF), because the dose and the spatiotemporal release of such agents at the site of injury are crucial to achieve a successful outcome. Strategies that combine scaffolds and drug delivery systems have the potential to provide more effective tissue regeneration relative to current therapies. Nanoparticles (NPs) can protect the bioactive agents, control its profile, decrease the occurrence and severity of side effects and deliver the bioactive agent to the target cells maximizing its effect. Scaffolds containing NPs loaded with bioactive agents can be used for their local delivery, enabling site-specific pharmacological effects such as the induction of cell proliferation and differentiation, and, consequently, neo-tissue formation. This review aims to describe the concept of combining NPs with scaffolds, and the current efforts aiming to develop highly multi-functional bioactive agent release systems, with the emphasis on their application in TE of connective tissues.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
60
|
Santo VE, Popa EG, Mano JF, Gomes ME, Reis RL. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomater 2015; 19:56-65. [PMID: 25795623 DOI: 10.1016/j.actbio.2015.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/04/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
The role of Platelet Lysates (PLs) as a source of growth factors (GFs) and as main element of three-dimensional (3D) hydrogels has been previously described. However, the resulting hydrogels usually suffer from high degree of contraction, limiting their usefulness. This work describes the development of a stable biomimetic 3D hydrogel structure based on PLs, through the spontaneous assembling of a high concentration of chitosan-chondroitin sulfate nanoparticles (CH/CS NPs) with PLs loaded by adsorption. The interactions between the NPs and the lysates resemble the ones observed in the extracellular matrix (ECM) native environment between glycosaminoglycans and ECM proteins. In vitro release studies were carried out focusing on the quantification of PDGF-BB and TGF-β1 GFs. Human adipose derived stem cells (hASCs) were entrapped in these 3D hydrogels and cultured in vitro under chondrogenic stimulus, in order to assess their potential use for cartilage regeneration. Histological, immunohistological and gene expression analysis demonstrated that the PL-assembled constructs entrapping hASCs exhibited results similar to the positive control (hASCS cultured in pellets), concerning the levels of collagen II expression and immunolocalization of collagen type I and II and aggrecan. Moreover, the deposition of new cartilage ECM was detected by alcian blue and safranin-O positive stainings. This work demonstrates the potential of PLs to act simultaneously as a source/carrier of GFs and as a 3D structure of support, through the application of a "bottom-up" approach involving the assembly of NPs, resulting in an enriched construct for cartilage regeneration applications.
Collapse
Affiliation(s)
- Vítor E Santo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elena G Popa
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
61
|
Brossi PM, Moreira JJ, Machado TSL, Baccarin RYA. Platelet-rich plasma in orthopedic therapy: a comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions. BMC Vet Res 2015; 11:98. [PMID: 25896610 PMCID: PMC4449579 DOI: 10.1186/s12917-015-0403-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/20/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This systematic review aimed to present and critically appraise the available information on the efficacy of platelet rich plasma (PRP) in equine and human orthopedic therapeutics and to verify the influence of study design and methodology on the assumption of PRP's efficacy. We searched Medline, PubMed, Embase, Bireme and Google Scholar without restrictions until July 2013. Randomized trials, human cohort clinical studies or case series with a control group on the use of PRP in tendons, ligaments or articular lesions were included. Equine clinical studies on the same topics were included independently of their design. Experimental studies relevant to the clarification of PRP's effects and mechanisms of action in tissues of interest, conducted in any animal species, were selected. RESULTS This review included 123 studies. PRP's beneficial effects were observed in 46.7% of the clinical studies, while the absence of positive effects was observed in 43.3%. Among experimental studies, 73% yielded positive results, and 7.9% yielded negative results. The most frequent flaws in the clinical trials' designs were the lack of a true placebo group, poor product characterization, insufficient blinding, small sampling, short follow-up periods, and adoption of poor outcome measures. The methods employed for PRP preparation and administration and the selected outcome measures varied greatly. Poor study design was a common feature of equine clinical trials. From studies in which PRP had beneficial effects, 67.8% had an overall high risk of bias. From the studies in which PRP failed to exhibit beneficial effects, 67.8% had an overall low risk of bias. CONCLUSIONS Most experimental studies revealed positive effects of PRP. Although the majority of equine clinical studies yielded positive results, the human clinical trials' results failed to corroborate these findings. In both species, beneficial results were more frequently observed in studies with a high risk of bias. The use of PRP in musculoskeletal lesions, although safe and promising, has still not shown strong evidence in clinical scenarios.
Collapse
Affiliation(s)
- Patrícia M Brossi
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Juliana J Moreira
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Thaís S L Machado
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Raquel Y A Baccarin
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
62
|
Improving the osteogenic efficacy of BMP2 with mechano growth factor by regulating the signaling events in BMP pathway. Cell Tissue Res 2015; 361:723-31. [DOI: 10.1007/s00441-015-2154-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022]
|
63
|
Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 2015; 84:45-67. [PMID: 25445719 PMCID: PMC4428953 DOI: 10.1016/j.addr.2014.11.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022]
Abstract
Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo.
Collapse
Affiliation(s)
- Julia E Samorezov
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
64
|
Lam J, Lu S, Kasper FK, Mikos AG. Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev 2015; 84:123-34. [PMID: 24993610 DOI: 10.1016/j.addr.2014.06.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023]
Abstract
The delivery of biologics is an important component in the treatment of osteoarthritis and the functional restoration of articular cartilage. Numerous factors have been implicated in the cartilage repair process, but the uncontrolled delivery of these factors may not only reduce their full reparative potential but can also cause unwanted morphological effects. It is therefore imperative to consider the type of biologic to be delivered, the method of delivery, and the temporal as well as spatial presentation of the biologic to achieve the desired effect in cartilage repair. Additionally, the delivery of a single factor may not be sufficient in guiding neo-tissue formation, motivating recent research toward the delivery of multiple factors. This review will discuss the roles of various biologics involved in cartilage repair and the different methods of delivery for appropriate healing responses. A number of spatiotemporal strategies will then be emphasized for the controlled delivery of single and multiple bioactive factors in both in vitro and in vivo cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Steven Lu
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.
| |
Collapse
|
65
|
Kyllönen L, D’Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 2015; 11:412-34. [PMID: 25218339 DOI: 10.1016/j.actbio.2014.09.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.
Collapse
|
66
|
Madeira C, Santhagunam A, Salgueiro JB, Cabral JM. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol 2015; 33:35-42. [DOI: 10.1016/j.tibtech.2014.11.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/29/2014] [Accepted: 11/07/2014] [Indexed: 01/25/2023]
|
67
|
Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 2014; 11:20140459. [PMID: 25401172 PMCID: PMC4223894 DOI: 10.1098/rsif.2014.0459] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 01/13/2023] Open
Abstract
Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
68
|
Han F, Zhou F, Yang X, Zhao J, Zhao Y, Yuan X. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-β1 and BMP-2 for regeneration of cartilage-bone interface. J Biomed Mater Res B Appl Biomater 2014; 103:1344-53. [DOI: 10.1002/jbm.b.33314] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/06/2014] [Accepted: 10/18/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Fengxuan Han
- Department of Polymer Materials; School of Materials Science and Engineering; and Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| | - Fang Zhou
- Department of Polymer Materials; School of Materials Science and Engineering; and Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| | - Xiaoling Yang
- Department of Polymer Materials; School of Materials Science and Engineering; and Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| | - Jin Zhao
- Department of Polymer Materials; School of Materials Science and Engineering; and Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| | - Yunhui Zhao
- Department of Polymer Materials; School of Materials Science and Engineering; and Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| | - Xiaoyan Yuan
- Department of Polymer Materials; School of Materials Science and Engineering; and Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| |
Collapse
|
69
|
Suliman S, Xing Z, Wu X, Xue Y, Pedersen TO, Sun Y, Døskeland AP, Nickel J, Waag T, Lygre H, Finne-Wistrand A, Steinmüller-Nethl D, Krueger A, Mustafa K. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J Control Release 2014; 197:148-57. [PMID: 25445698 DOI: 10.1016/j.jconrel.2014.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 11/15/2022]
Abstract
A low dose of 1μg rhBMP-2 was immobilised by four different functionalising techniques on recently developed poly(l-lactide)-co-(ε-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently linked onto nDPs that were used to modify the scaffolds [nDP-COV] or (iv) encapsulated in microspheres distributed on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted mass spectrometry for up to 70days. PHY scaffolds had an initial burst of release while MICS showed a gradual and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release, although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization. After 4weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed onto a polymer alone and the short distance effect prevents adverse systemic side effects.
Collapse
Affiliation(s)
- Salwa Suliman
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway.
| | - Zhe Xing
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway
| | - Xujun Wu
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ying Xue
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway
| | - Torbjorn O Pedersen
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway
| | - Yang Sun
- Department of Fibre and Polymer Technology, Royal Institute of Technology, KTH, Stockholm, Sweden
| | | | - Joachim Nickel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital of Würzburg, Germany; Fraunhofer Project Group Regenerative Technologies in Oncology, Würzburg, Germany
| | - Thilo Waag
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Henning Lygre
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology, KTH, Stockholm, Sweden
| | | | - Anke Krueger
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Kamal Mustafa
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway.
| |
Collapse
|
70
|
Della Porta G, Nguyen BNB, Campardelli R, Reverchon E, Fisher JP. Synergistic effect of sustained release of growth factors and dynamic culture on osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2014; 103:2161-71. [PMID: 25346530 DOI: 10.1002/jbm.a.35354] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 10/10/2014] [Indexed: 01/29/2023]
Abstract
Microparticles have been utilized as delivery vehicles of soluble factors to modify cellular behavior and therefore enhance tissue engineering regeneration. When incorporated into three-dimensional systems, microparticles can provide geometrical and temporal controlled release of bioactive agents, such as growth factors (GFs) to surrounding cells. This study investigates the effect of GFs release from biopolymer microparticles on osteoblastic differentiation of human mesenchymal stem cells (hMSCs) encapsulated in calcium (Ca)-alginate scaffolds while cultured in a tubular perfusion system bioreactor system. Empirical and deterministic models were used to demonstrate that poly(D,L-lactic-co-glycolic acid)-encapsulated GFs would result in a delayed release profile compared to GFs encapsulated into scaffolds directly. We hypothesized that the dual delivery of human bone-morphogenetic protein 2 (hBMP2) and human vascular endothelial growth factor to cells in dynamic culture would provide molecular and physical cues to promote differentiation. Results indicated that the exposures of hBMP2 and dynamic flow are sufficient in enhancing the osteoblastic differentiation pathway compared to no GF addition and static culture. The GF delivery system in a dynamic flow environment resulted in a synergistic effect on osteoblastic differentiation of hMSCs.
Collapse
Affiliation(s)
- Giovanna Della Porta
- Department of Industrial Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Laboratory of Cellular and Molecular Engineering (DEI), University of Bologna, 47521, Cesena (FC), Italy
| | | | | | | | | |
Collapse
|
71
|
Duarte ARC, Ünal B, Mano JF, Reis RL, Jensen KF. Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12391-9. [PMID: 25263163 DOI: 10.1021/la502822v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The fabrication of micrometer-sized core-shell particles for ultrasound-triggered delivery offers a variety of applications in medical research. In this work, we report the design and development of a glass capillary microfluidic system containing three concentric glass capillary tubes for the development of core-shell particles. The setup enables the preparation of perfluorocarbon-alginate core-shell microspheres in a single process, avoiding the requirement for further extensive purification steps. Core-shell microspheres in the range of 110-130 μm are prepared and are demonstrated to be stable up to 21 days upon immersion in calcium chloride solution or water. The mechanical stability of the particles is tested by injecting them through a 23 gauge needle into a polyacrylamide gel to mimic the tissue matrix. The integrity of the particles is maintained after the injection process and is disrupted after ultrasound exposure for 15 min. The results suggest that the perfluorcarbon-alginate microparticles could be a promising system for the delivery of compounds, such as proteins, peptides, and small-molecule drugs in ultrasound-based therapies.
Collapse
Affiliation(s)
- Ana Rita C Duarte
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
72
|
Trachtenberg JE, Vo TN, Mikos AG. Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration. Ann Biomed Eng 2014; 43:681-96. [PMID: 25319726 DOI: 10.1007/s10439-014-1151-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/06/2014] [Indexed: 12/16/2022]
Abstract
Pre-clinical animal models play a crucial role in the translation of biomedical technologies from the bench top to the bedside. However, there is a need for improved techniques to evaluate implanted biomaterials within the host, including consideration of the care and ethics associated with animal studies, as well as the evaluation of host tissue repair in a clinically relevant manner. This review discusses non-invasive, quantitative, and real-time techniques for evaluating host-materials interactions, quality and rate of neotissue formation, and functional outcomes of implanted biomaterials for bone and cartilage tissue engineering. Specifically, a comparison will be presented for pre-clinical animal models, histological scoring systems, and non-invasive imaging modalities. Additionally, novel technologies to track delivered cells and growth factors will be discussed, including methods to directly correlate their release with tissue growth.
Collapse
Affiliation(s)
- Jordan E Trachtenberg
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, TX, 77251-1892, USA
| | | | | |
Collapse
|
73
|
Minardi S, Sandri M, Martinez JO, Yazdi IK, Liu X, Ferrari M, Weiner BK, Tampieri A, Tasciotti E. Multiscale patterning of a biomimetic scaffold integrated with composite microspheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3943-53. [PMID: 24867543 PMCID: PMC4192098 DOI: 10.1002/smll.201401211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 05/02/2023]
Abstract
The ideal scaffold for regenerative medicine should concurrently mimic the structure of the original tissue from the nano- up to the macroscale and recapitulate the biochemical composition of the extracellular matrix (ECM) in space and time. In this study, a multiscale approach is followed to selectively integrate different types of nanostructured composite microspheres loaded with reporter proteins, in a multi-compartment collagen scaffold. Through the preservation of the structural cues of the functionalized collagen scaffold at the nano- and microscale, its macroscopic features (pore size, porosity, and swelling) are not altered. Additionally, the spatial confinement of the microspheres allows the release of the reporter proteins in each of the layers of the scaffold. Finally, the staged and zero-order release kinetics enables the temporal biochemical patterning of the scaffold. The versatile manufacturing of each component of the scaffold results in the ability to customize it to better mimic the architecture and composition of the tissues and biological systems.
Collapse
Affiliation(s)
- Silvia Minardi
- Department of Bioceramics and Bio-hybrid materials, National Research Council of Italy – ISTEC, Via Granarolo 64, 48018, Faenza RA, Italy
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX 77030 (USA)
| | - Monica Sandri
- Department of Bioceramics and Bio-hybrid materials, National Research Council of Italy – ISTEC, Via Granarolo 64, 48018, Faenza RA, Italy
| | - Jonathan O. Martinez
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX 77030 (USA)
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, 6767 Bertner Ave; Houston, TX 77030 (USA), Houston, TX USA
| | - Iman K. Yazdi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX 77030 (USA)
- Department of Biomedical Engineering, University of Houston, Houston, TX USA
| | - Xeuwu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX 77030 (USA)
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX 77030 (USA)
| | - Bradley K. Weiner
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX 77030 (USA)
- Department of Orthopedic Surgery Weill Cornell Medical College, The Methodist Hospital, 6550 Fannin St. 77030, Houston TX, USA
| | - Anna Tampieri
- Department of Bioceramics and Bio-hybrid materials, National Research Council of Italy – ISTEC, Via Granarolo 64, 48018, Faenza RA, Italy
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX 77030 (USA)
| |
Collapse
|
74
|
Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den Beucken JJJP, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 2014; 35:8829-8839. [PMID: 25047629 DOI: 10.1016/j.biomaterials.2014.07.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022]
Abstract
The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the structural layers of the osteochondral unit, and insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) were loaded into gelatin microparticles and embedded within the OPF hydrogel matrix in a spatially controlled manner. Three different scaffold formulations were implanted in a medial femoral condyle osteochondral defect: 1) IGF-1 in the chondral layer, 2) BMP-2 in the subchondral layer, and 3) IGF-1 and BMP-2 in their respective separate layers. The quantity and quality of osteochondral repair was evaluated at 6 and 12 weeks with histological scoring and micro-computed tomography (micro-CT). While histological scoring results at 6 weeks showed no differences between experimental groups, micro-CT analysis revealed that the delivery of BMP-2 alone increased the number of bony trabecular islets formed, an indication of early bone formation, over that of IGF-1 delivery alone. At 12 weeks post-implantation, minimal differences were detected between the three groups for cartilage repair. However, the dual delivery of IGF-1 and BMP-2 had a higher proportion of subchondral bone repair, greater bone growth at the defect margins, and lower bone specific surface than the single delivery of IGF-1. These results suggest that the delivery of BMP-2 enhances subchondral bone formation and that, while the dual delivery of IGF-1 and BMP-2 in separate layers does not improve cartilage repair under the conditions studied, they may synergistically enhance the degree of subchondral bone formation. Overall, bilayered OPF hydrogel composites demonstrate potential as spatially-guided, multiple growth factor release vehicles for osteochondral tissue repair.
Collapse
Affiliation(s)
- Steven Lu
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Johnny Lam
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Jordan E Trachtenberg
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Esther J Lee
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Hajar Seyednejad
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | | | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mark E Wong
- Department of Surgery, Division of Oral and Maxilofacial Surgery, The University of Texas School of Dentistry at Houston, Houston, USA
| | - John A Jansen
- Department of Biomaterials, Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA.
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA.
| |
Collapse
|
75
|
Amler E, Filová E, Buzgo M, Prosecká E, Rampichová M, Nečas A, Nooeaid P, Boccaccini AR. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine (Lond) 2014; 9:1083-94. [DOI: 10.2217/nnm.14.57] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A wide range of drug-delivery systems are currently attracting the attention of researchers. Nanofibers are very interesting carriers for drug delivery. This is because nanofibers are versatile, flexible, nanobiomimetic and similar to extracellular matrix components, possible to be functionalized both on their surface as well as in their core, and also because they can be produced easily and cost effectively. There have been increasing attempts to use nanofibers in the construction of a range of tissues, including cartilage and bone. Nanofibers have also been favorably engaged as a drug-delivery system in cell-free scaffolds. This short overview is devoted to current applications and to further perspectives of nanofibers as drug-delivery devices in the field of cartilage and bone regeneration, and also in osteochondral reconstruction.
Collapse
Affiliation(s)
- Evžen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06 Prague, Czech Republic
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- Nanoprogres, z.s.p.o., Nová 306, 53009, Pardubice, Czech Republic
| | - Eva Filová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- Institute of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná 3105, 272 01 Kladno, Czech Republic
| | - Matej Buzgo
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- University Centre for Energy Efficient Buildings, Třinecká 1024, 273 43 Buštěhrad, Czech Republic
| | - Eva Prosecká
- Department of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06 Prague, Czech Republic
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Michala Rampichová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- University Centre for Energy Efficient Buildings, Třinecká 1024, 273 43 Buštěhrad, Czech Republic
| | - Alois Nečas
- University of Veterinary & Pharmaceutical Sciences Brno, CEITEC – Central European Institute of Technology, Brno, Czech Republic
| | - Patcharakamon Nooeaid
- Institute of Biomaterials, Department of Materials Science & Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science & Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| |
Collapse
|
76
|
Santo VE, Rodrigues MT, Gomes ME. Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Rev Mol Diagn 2014; 13:553-66. [DOI: 10.1586/14737159.2013.819169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
77
|
Abstract
We overview the latest developments of polymeric/ceramic scaffolds and hydrogels that contain magnetic particles for the improvement of tissue engineering strategies.
Collapse
Affiliation(s)
- Sara Gil
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- ICVS/3B's – PT Government Associate Laboratory
- Guimarães, Portugal
| | - João F. Mano
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- ICVS/3B's – PT Government Associate Laboratory
- Guimarães, Portugal
| |
Collapse
|
78
|
Jeon JE, Vaquette C, Klein TJ, Hutmacher DW. Perspectives in Multiphasic Osteochondral Tissue Engineering. Anat Rec (Hoboken) 2013; 297:26-35. [DOI: 10.1002/ar.22795] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- June E. Jeon
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive Atlanta, GA 30332, USA
| |
Collapse
|
79
|
The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials 2013; 34:9401-12. [DOI: 10.1016/j.biomaterials.2013.08.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023]
|
80
|
Sundararaj SC, Thomas MV, Peyyala R, Dziubla TD, Puleo DA. Design of a multiple drug delivery system directed at periodontitis. Biomaterials 2013; 34:8835-42. [PMID: 23948165 PMCID: PMC3773615 DOI: 10.1016/j.biomaterials.2013.07.093] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/26/2013] [Indexed: 02/07/2023]
Abstract
Periodontal disease is highly prevalent, with 90% of the world population affected by either periodontitis or its preceding condition, gingivitis. These conditions are caused by bacterial biofilms on teeth, which stimulate a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The present research sought to demonstrate development of a multiple drug delivery system for stepwise treatment of different stages of periodontal disease. More specifically, multilayered films were fabricated from an association polymer comprising cellulose acetate phthalate and Pluronic F-127 to achieve sequential release of drugs. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. Different erosion times and adjustable sequential release profiles were achieved by modifying the number of layers or by inclusion of a slower-eroding polymer layer. Analysis of antibiotic and anti-inflammatory bioactivity showed that drugs released from the devices retained 100% bioactivity. The multilayered CAPP delivery system offers a versatile approach for releasing different drugs based on the pathogenesis of periodontitis and other conditions.
Collapse
Affiliation(s)
- Sharath C. Sundararaj
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| | - Mark V. Thomas
- College of Dentistry, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Rebecca Peyyala
- College of Dentistry, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Thomas D. Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA
| | - David A. Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| |
Collapse
|
81
|
Regenerating cartilages by engineered ASCs: prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther 2013; 22:186-95. [PMID: 23851345 DOI: 10.1038/mt.2013.165] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/04/2013] [Indexed: 01/19/2023] Open
Abstract
Adipose-derived stem cells (ASCs) hold promise for cartilage regeneration but their chondrogenesis potential is inferior. Here, we used a baculovirus (BV) system that exploited FLPo/Frt-mediated transgene recombination and episomal minicircle formation to genetically engineer rabbit ASCs (rASCs). The BV system conferred prolonged and robust TGF-β3/BMP-6 expression in rASCs cultured in porous scaffolds, which critically augmented rASCs chondrogenesis and suppressed osteogenesis/hypertrophy, leading to the formation of cartilaginous constructs with improved maturity and mechanical properties in 2-week culture. Twelve weeks after implantation into full-thickness articular cartilage defects in rabbits, these engineered constructs regenerated neocartilages that resembled native hyaline cartilages in cell morphology, matrix composition and mechanical properties. The neocartilages also displayed cartilage-specific zonal structures without signs of hypertrophy and degeneration, and eventually integrated with host cartilages. In contrast, rASCs that transiently expressed TGF-β3/BMP-6 underwent osteogenesis/hypertrophy and resulted in the formation of inferior cartilaginous constructs, which after implantation regenerated fibrocartilages. These data underscored the crucial role of TGF-β3/BMP-6 expression level and duration in rASCs in the cell differentiation, constructs properties and in vivo repair. The BV-engineered rASCs that persistently express TGF-β3/BMP-6 improved the chondrogenesis, in vitro cartilaginous constructs production and in vivo hyaline cartilage regeneration, thus representing a remarkable advance in cartilage engineering.
Collapse
|
82
|
Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 2013; 168:166-78. [PMID: 23541928 DOI: 10.1016/j.jconrel.2013.03.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022]
Abstract
Biodegradable oligo(poly(ethylene glycol) fumarate) (OPF) composite hydrogels have been investigated for the delivery of growth factors (GFs) with the aid of gelatin microparticles (GMPs) and stem cell populations for osteochondral tissue regeneration. In this study, a bilayered OPF composite hydrogel that mimics the distinctive hierarchical structure of native osteochondral tissue was utilized to investigate the effect of transforming growth factor-β3 (TGF-β3) with varying release kinetics and/or insulin-like growth factor-1 (IGF-1) on osteochondral tissue regeneration in a rabbit full-thickness osteochondral defect model. The four groups investigated included (i) a blank control (no GFs), (ii) GMP-loaded IGF-1 alone, (iii) GMP-loaded IGF-1 and gel-loaded TGF-β3, and (iv) GMP-loaded IGF-1 and GMP-loaded TGF-β3 in OPF composite hydrogels. The results of an in vitro release study demonstrated that TGF-β3 release kinetics could be modulated by the GF incorporation method. At 12weeks post-implantation, the quality of tissue repair in both chondral and subchondral layers was analyzed based on quantitative histological scoring. All groups incorporating GFs resulted in a significant improvement in cartilage morphology compared to the control. Single delivery of IGF-1 showed higher scores in subchondral bone morphology as well as chondrocyte and glycosaminoglycan amount in adjacent cartilage tissue when compared to a dual delivery of IGF-1 and TGF-β3, independent of the TGF-β3 release kinetics. The results suggest that although the dual delivery of TGF-β3 and IGF-1 may not synergistically enhance the quality of engineered tissue, the delivery of IGF-1 alone from bilayered composite hydrogels positively affects osteochondral tissue repair and holds promise for osteochondral tissue engineering applications.
Collapse
Affiliation(s)
- Kyobum Kim
- Department of Bioengineering, Rice University, Houston, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|