51
|
Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020; 120:11128-11174. [PMID: 32937071 PMCID: PMC7645917 DOI: 10.1021/acs.chemrev.0c00342] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The lack of in vitro tissue and organ models capable of mimicking human physiology severely hinders the development and clinical translation of therapies and drugs with higher in vivo efficacy. Bioprinting allow us to fill this gap and generate 3D tissue analogues with complex functional and structural organization through the precise spatial positioning of multiple materials and cells. In this review, we report the latest developments in terms of bioprinting technologies for the manufacturing of cellular constructs with particular emphasis on material extrusion, jetting, and vat photopolymerization. We then describe the different base polymers employed in the formulation of bioinks for bioprinting and examine the strategies used to tailor their properties according to both processability and tissue maturation requirements. By relating function to organization in human development, we examine the potential of pluripotent stem cells in the context of bioprinting toward a new generation of tissue models for personalized medicine. We also highlight the most relevant attempts to engineer artificial models for the study of human organogenesis, disease, and drug screening. Finally, we discuss the most pressing challenges, opportunities, and future prospects in the field of bioprinting for tissue engineering (TE) and regenerative medicine (RM).
Collapse
Affiliation(s)
- Ana Clotilde Fonseca
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Miguel J. S. Ferreira
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel R. Moxon
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Geoffrey Potjewyd
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Tim R. Dargaville
- Institute
of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Susan J. Kimber
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Marco Domingos
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
52
|
Perez-Valle A, Del Amo C, Andia I. Overview of Current Advances in Extrusion Bioprinting for Skin Applications. Int J Mol Sci 2020; 21:E6679. [PMID: 32932676 PMCID: PMC7555324 DOI: 10.3390/ijms21186679] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bioprinting technologies, which have the ability to combine various human cell phenotypes, signaling proteins, extracellular matrix components, and other scaffold-like biomaterials, are currently being exploited for the fabrication of human skin in regenerative medicine. We performed a systematic review to appraise the latest advances in 3D bioprinting for skin applications, describing the main cell phenotypes, signaling proteins, and bioinks used in extrusion platforms. To understand the current limitations of this technology for skin bioprinting, we briefly address the relevant aspects of skin biology. This field is in the early stage of development, and reported research on extrusion bioprinting for skin applications has shown moderate progress. We have identified two major trends. First, the biomimetic approach uses cell-laden natural polymers, including fibrinogen, decellularized extracellular matrix, and collagen. Second, the material engineering line of research, which is focused on the optimization of printable biomaterials that expedite the manufacturing process, mainly involves chemically functionalized polymers and reinforcement strategies through molecular blending and postprinting interventions, i.e., ionic, covalent, or light entanglement, to enhance the mechanical properties of the construct and facilitate layer-by-layer deposition. Skin constructs manufactured using the biomimetic approach have reached a higher level of complexity in biological terms, including up to five different cell phenotypes and mirroring the epidermis, dermis and hypodermis. The confluence of the two perspectives, representing interdisciplinary inputs, is required for further advancement toward the future translation of extrusion bioprinting and to meet the urgent clinical demand for skin equivalents.
Collapse
Affiliation(s)
| | | | - Isabel Andia
- Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Spain; (A.P.-V.); (C.D.A.)
| |
Collapse
|
53
|
Nesic D, Schaefer BM, Sun Y, Saulacic N, Sailer I. 3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. J Clin Med 2020; 9:E2238. [PMID: 32679657 PMCID: PMC7408636 DOI: 10.3390/jcm9072238] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) printing technology allows the production of an individualized 3D object based on a material of choice, a specific computer-aided design and precise manufacturing. Developments in digital technology, smart biomaterials and advanced cell culturing, combined with 3D printing, provide promising grounds for patient-tailored treatments. In dentistry, the "digital workflow" comprising intraoral scanning for data acquisition, object design and 3D printing, is already in use for manufacturing of surgical guides, dental models and reconstructions. 3D printing, however, remains un-investigated for oral mucosa/gingiva. This scoping literature review provides an overview of the 3D printing technology and its applications in regenerative medicine to then describe 3D printing in dentistry for the production of surgical guides, educational models and the biological reconstructions of periodontal tissues from laboratory to a clinical case. The biomaterials suitable for oral soft tissues printing are outlined. The current treatments and their limitations for oral soft tissue regeneration are presented, including "off the shelf" products and the blood concentrate (PRF). Finally, tissue engineered gingival equivalents are described as the basis for future 3D-printed oral soft tissue constructs. The existing knowledge exploring different approaches could be applied to produce patient-tailored 3D-printed oral soft tissue graft with an appropriate inner architecture and outer shape, leading to a functional as well as aesthetically satisfying outcome.
Collapse
Affiliation(s)
- Dobrila Nesic
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| | | | - Yue Sun
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, CH-3010 Bern, Switzerland;
| | - Irena Sailer
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| |
Collapse
|
54
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
55
|
Browning JR, Derr P, Derr K, Doudican N, Michael S, Lish SR, Taylor NA, Krueger JG, Ferrer M, Carucci JA, Gareau DS. A 3D biofabricated cutaneous squamous cell carcinoma tissue model with multi-channel confocal microscopy imaging biomarkers to quantify antitumor effects of chemotherapeutics in tissue. Oncotarget 2020; 11:2587-2596. [PMID: 32676161 PMCID: PMC7343636 DOI: 10.18632/oncotarget.27570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) causes approximately 10,000 deaths annually in the U. S. Current therapies are largely ineffective against metastatic and locally advanced cSCC. There is a need to identify novel, effective, and less toxic small molecule cSCC therapeutics. We developed a 3-dimensional bioprinted skin (3DBPS) model of cSCC tumors together with a microscopy assay to test chemotherapeutic effects in tissue. The full thickness SCC tissue model was validated using hematoxylin and eosin (H&E) and immunohistochemical histological staining, confocal microscopy, and cDNA microarray analysis. A nondestructive, 3D fluorescence confocal imaging assay with tdTomato-labeled A431 SCC and ZsGreen-labeled keratinocytes was developed to test efficacy and general toxicity of chemotherapeutics. Fluorescence-derived imaging biomarkers indicated that 50% of cancer cells were killed in the tissue after 1μM 5-Fluorouracil 48-hour treatment, compared to a baseline of 12% for untreated controls. The imaging biomarkers also showed that normal keratinocytes were less affected by treatment (11% killed) than the untreated tissue, which had no significant killing effect. Data showed that 5-Fluorouracil selectively killed cSCC cells more than keratinocytes. Our 3DBPS assay platform provides cellular-level measurement of cell viability and can be adapted to achieve nondestructive high-throughput screening (HTS) in bio-fabricated tissues.
Collapse
Affiliation(s)
- James R Browning
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Paige Derr
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Nicole Doudican
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Samantha R Lish
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Nicholas A Taylor
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - John A Carucci
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Daniel S Gareau
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
56
|
Klak M, Bryniarski T, Kowalska P, Gomolka M, Tymicki G, Kosowska K, Cywoniuk P, Dobrzanski T, Turowski P, Wszola M. Novel Strategies in Artificial Organ Development: What Is the Future of Medicine? MICROMACHINES 2020; 11:E646. [PMID: 32629779 PMCID: PMC7408042 DOI: 10.3390/mi11070646] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
The technology of tissue engineering is a rapidly evolving interdisciplinary field of science that elevates cell-based research from 2D cultures through organoids to whole bionic organs. 3D bioprinting and organ-on-a-chip approaches through generation of three-dimensional cultures at different scales, applied separately or combined, are widely used in basic studies, drug screening and regenerative medicine. They enable analyses of tissue-like conditions that yield much more reliable results than monolayer cell cultures. Annually, millions of animals worldwide are used for preclinical research. Therefore, the rapid assessment of drug efficacy and toxicity in the early stages of preclinical testing can significantly reduce the number of animals, bringing great ethical and financial benefits. In this review, we describe 3D bioprinting techniques and first examples of printed bionic organs. We also present the possibilities of microfluidic systems, based on the latest reports. We demonstrate the pros and cons of both technologies and indicate their use in the future of medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michal Wszola
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (T.B.); (P.K.); (M.G.); (G.T.); (K.K.); (P.C.); (T.D.); (P.T.)
| |
Collapse
|
57
|
Betz JF, Ho VB, Gaston JD. 3D Bioprinting and Its Application to Military Medicine. Mil Med 2020; 185:e1510-e1519. [DOI: 10.1093/milmed/usaa121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract
Introduction
Traditionally, tissue engineering techniques have largely focused on 2D cell culture models—monolayers of immortalized or primary cells growing on tissue culture plastic. Although these techniques have proven useful in research, they often lack physiological validity, because of the absence of fundamental tissue properties, such as multicellular organization, specialized extracellular matrix structures, and molecular or force gradients essential to proper physiological function. More recent advances in 3D cell culture methods have facilitated the development of more complex physiological models and tissue constructs; however, these often rely on self-organization of cells (bottom-up design), and the range of tissue construct size and complexity generated by these methods remains relatively limited. By borrowing from advances in the additive manufacturing field, 3D bioprinting techniques are enabling top-down design and fabrication of cellular constructs with controlled sizing, spacing, and chemical functionality. The high degree of control over engineered tissue architecture, previously unavailable to researchers, enables the generation of more complex, physiologically relevant 3D tissue constructs. Three main 3D bioprinting techniques are reviewed—extrusion, droplet-based, and laser-assisted bioprinting techniques are among the more robust 3D bioprinting techniques, each with its own strengths and weaknesses. High complexity tissue constructs created through 3D bioprinting are opening up new avenues in tissue engineering, regenerative medicine, and physiological model systems for researchers in the military medicine community.
Materials and Methods
Recent primary literature and reviews were selected to provide a broad overview of the field of 3D bioprinting and illustrate techniques and examples of 3D bioprinting relevant to military medicine. References were selected to illustrate specific examples of advances and potential military medicine applications in the 3D bioprinting field, rather than to serve as a comprehensive review.
Results
Three classes of 3D bioprinting techniques were reviewed: extrusion, droplet-based, and laser-assisted bioprinting. Advantages, disadvantages, important considerations, and constraints of each technique were discussed. Examples from the primary literature were given to illustrate the techniques. Relevant applications of 3D bioprinting to military medicine, namely tissue engineering/regenerative medicine and new models of physiological systems, are discussed in the context of advancing military medicine.
Conclusions
3D bioprinting is a rapidly evolving field that provides researchers the ability to build tissue constructs that are more complex and physiologically relevant than traditional 2D culture methods. Advances in bioprinting techniques, bioink formulation, and cell culture methods are being translated into new paradigms in tissue engineering and physiological system modeling, advancing the state of the art, and increasing construct availability to the military medicine research community.
Collapse
Affiliation(s)
- Jordan F Betz
- Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402
- Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Vincent B Ho
- Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Joel D Gaston
- Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402
- Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| |
Collapse
|
58
|
Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers (Basel) 2020; 12:polym12061237. [PMID: 32485901 PMCID: PMC7362214 DOI: 10.3390/polym12061237] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
The skin plays an important role in protecting the human body, and wound healing must be set in motion immediately following injury or trauma to restore the normal structure and function of skin. The extracellular matrix component of the skin mainly consists of collagen, glycosaminoglycan (GAG), elastin and hyaluronic acid (HA). Recently, natural collagen, polysaccharide and their derivatives such as collagen, gelatin, alginate, chitosan and pectin have been selected as the matrix materials of bioink to construct a functional artificial skin due to their biocompatible and biodegradable properties by 3D bioprinting, which is a revolutionary technology with the potential to transform both research and medical therapeutics. In this review, we outline the current skin bioprinting technologies and the bioink components for skin bioprinting. We also summarize the bioink products practiced in research recently and current challenges to guide future research to develop in a promising direction. While there are challenges regarding currently available skin bioprinting, addressing these issues will facilitate the rapid advancement of 3D skin bioprinting and its ability to mimic the native anatomy and physiology of skin and surrounding tissues in the future.
Collapse
|
59
|
Wei Z, Liu X, Ooka M, Zhang L, Song MJ, Huang R, Kleinstreuer NC, Simeonov A, Xia M, Ferrer M. Two-Dimensional Cellular and Three-Dimensional Bio-Printed Skin Models to Screen Topical-Use Compounds for Irritation Potential. Front Bioeng Biotechnol 2020; 8:109. [PMID: 32154236 PMCID: PMC7046801 DOI: 10.3389/fbioe.2020.00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/03/2020] [Indexed: 11/22/2022] Open
Abstract
Assessing skin irritation potential is critical for the safety evaluation of topical drugs and other consumer products such as cosmetics. The use of advanced cellular models, as an alternative to replace animal testing in the safety evaluation for both consumer products and ingredients, is already mandated by law in the European Union (EU) and other countries. However, there has not yet been a large-scale comparison of the effects of topical-use compounds in different cellular skin models. This study assesses the irritation potential of topical-use compounds in different cellular models of the skin that are compatible with high throughput screening (HTS) platforms. A set of 451 topical-use compounds were first tested for cytotoxic effects using two-dimensional (2D) monolayer models of primary neonatal keratinocytes and immortalized human keratinocytes. Forty-six toxic compounds identified from the initial screen with the monolayer culture systems were further tested for skin irritation potential on reconstructed human epidermis (RhE) and full thickness skin (FTS) three-dimensional (3D) tissue model constructs. Skin irritation potential of the compounds was assessed by measuring tissue viability, trans-epithelial electrical resistance (TEER), and secretion of cytokines interleukin 1 alpha (IL-1α) and interleukin 18 (IL-18). Among known irritants, high concentrations of methyl violet and methylrosaniline decreased viability, lowered TEER, and increased IL-1α secretion in both RhE and FTS models, consistent with irritant properties. However, at low concentrations, these two compounds increased IL-18 secretion without affecting levels of secreted IL-1α, and did not reduce tissue viability and TEER, in either RhE or FTS models. This result suggests that at low concentrations, methyl violet and methylrosaniline have an allergic potential without causing irritation. Using both HTS-compatible 2D cellular and 3D tissue skin models, together with irritation relevant activity endpoints, we obtained data to help assess the irritation effects of topical-use compounds and identify potential dermal hazards.
Collapse
Affiliation(s)
- Zhengxi Wei
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Xue Liu
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Masato Ooka
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Li Zhang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Min Jae Song
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
- 3D Bioprinting Core, National Eye Institute, Bethesda, MD, United States
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Nicole C. Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Anton Simeonov
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Marc Ferrer
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
60
|
Ramos T, Moroni L. Tissue Engineering and Regenerative Medicine 2019: The Role of Biofabrication-A Year in Review. Tissue Eng Part C Methods 2020; 26:91-106. [PMID: 31856696 DOI: 10.1089/ten.tec.2019.0344] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite its relative youth, biofabrication is unceasingly expanding by assimilating the contributions from various disciplinary areas and their technological advances. Those developments have spawned the range of available options to produce structures with complex geometries while accurately manipulating and controlling cell behavior. As it evolves, biofabrication impacts other research fields, allowing the fabrication of tissue models of increased complexity that more closely resemble the dynamics of living tissue. The recent blooming and evolutions in biofabrication have opened new windows and perspectives that could aid the translational struggle in tissue engineering and regenerative medicine (TERM) applications. Based on similar methodologies applied in past years' reviews, we identified the most high-impact publications and reviewed the major concepts, findings, and research outcomes in the context of advancement beyond the state-of-the-art in the field. We first aim to clarify the confusion in terminology and concepts in biofabrication to therefore introduce the striking evolutions in three-dimensional and four-dimensional bioprinting of tissues. We conclude with a short discussion on the future outlooks for innovation that biofabrication could bring to TERM research.
Collapse
Affiliation(s)
- Tiago Ramos
- Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
61
|
|
62
|
Baltazar T, Merola J, Catarino C, Xie CB, Kirkiles-Smith NC, Lee V, Hotta S, Dai G, Xu X, Ferreira FC, Saltzman WM, Pober JS, Karande P. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Eng Part A 2019; 26:227-238. [PMID: 31672103 DOI: 10.1089/ten.tea.2019.0201] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multilayered skin substitutes comprising allogeneic cells have been tested for the treatment of nonhealing cutaneous ulcers. However, such nonnative skin grafts fail to permanently engraft because they lack dermal vascular networks important for integration with the host tissue. In this study, we describe the fabrication of an implantable multilayered vascularized bioengineered skin graft using 3D bioprinting. The graft is formed using one bioink containing human foreskin dermal fibroblasts (FBs), human endothelial cells (ECs) derived from cord blood human endothelial colony-forming cells (HECFCs), and human placental pericytes (PCs) suspended in rat tail type I collagen to form a dermis followed by printing with a second bioink containing human foreskin keratinocytes (KCs) to form an epidermis. In vitro, KCs replicate and mature to form a multilayered barrier, while the ECs and PCs self-assemble into interconnected microvascular networks. The PCs in the dermal bioink associate with EC-lined vascular structures and appear to improve KC maturation. When these 3D printed grafts are implanted on the dorsum of immunodeficient mice, the human EC-lined structures inosculate with mouse microvessels arising from the wound bed and become perfused within 4 weeks after implantation. The presence of PCs in the printed dermis enhances the invasion of the graft by host microvessels and the formation of an epidermal rete. Impact Statement Three Dimensional printing can be used to generate multilayered vascularized human skin grafts that can potentially overcome the limitations of graft survival observed in current avascular skin substitutes. Inclusion of human pericytes in the dermal bioink appears to improve both dermal and epidermal maturation.
Collapse
Affiliation(s)
- Tânia Baltazar
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan Merola
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Carolina Catarino
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Catherine B Xie
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | | | - Vivian Lee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Stephanie Hotta
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Frederico C Ferreira
- Department of Bioengineering and Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Pankaj Karande
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
63
|
Ng WL, Yeong WY. The future of skin toxicology testing - Three-dimensional bioprinting meets microfluidics. Int J Bioprint 2019; 5:237. [PMID: 32596546 PMCID: PMC7310273 DOI: 10.18063/ijb.v5i2.1.237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/20/2019] [Indexed: 01/06/2023] Open
Abstract
Over the years, the field of toxicology testing has evolved tremendously from the use of animal models to the adaptation of in vitro testing models. In this perspective article, we aim to bridge the gap between the regulatory authorities who performed the testing and approval of new chemicals and the scientists who designed and fabricated these in vitro testing models. An in-depth discussion of existing toxicology testing guidelines for skin tissue models (definition, testing models, principle, and limitations) is first presented to have a good understanding of the stringent requirements that are necessary during the testing process. Next, the ideal requirements of toxicology testing platform (in terms of fabrication, testing, and screening process) are then discussed. We envisioned that the integration of three-dimensional bioprinting within miniaturized microfluidics platform would bring about a paradigm shift in the field of toxicology testing; providing standardization in the fabrication process, accurate, and rapid deposition of test chemicals, real-time monitoring, and high throughput screening for more efficient skin toxicology testing.
Collapse
Affiliation(s)
- Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, 639798 Singapore
| | - Wai Yee Yeong
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, 639798 Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
64
|
A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Acta Biomater 2019; 95:152-164. [PMID: 31271883 DOI: 10.1016/j.actbio.2019.06.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 01/12/2023]
Abstract
3D bioprinted vascular constructs have gained increased interest due to their significant potential for creating customizable alternatives to autologous vessel grafts. In this study, we developed a new approach for biofabricating fibrin-based vascular constructs using a novel rotary 3D bioprinter developed in our lab. We formulated a new bioink by incorporating fibrinogen with gelatin to achieve a desired shear-thinning property for rotary bioprinting. The blending of heat-treated gelatin with fibrinogen turned unprintable fibrinogen into a printable biomaterial for vessel bioprinting by leveraging the favorable rheological properties of gelatin. We discovered that the heat-treatment of gelatin remarkably affects the rheological properties of a gelatin-fibrinogen blended bioink, which in turn influences the printability of the ink. Further characterizations revealed that not only concentration of the gelatin but the heat treatment also affects cell viability during printing. Notably, the density of cells included in the bioinks also influenced printability and tissue volumetric changes of the printed vessel constructs during cultures. We observed increased collagen deposition and construct mechanical strength during two months of the cultures. The burst pressure of the vessel constructs reached 1110 mmHg, which is about 52% of the value of the human saphenous vein. An analysis of the tensile mechanical properties of the printed vessel constructs unveiled an increase in both the circumferential and axial elastic moduli during cultures. This study highlights important considerations for bioink formulation when bioprinting vessel constructs. STATEMENT OF SIGNIFICANCE: There has been an increased demand for small-diameter tissue-engineered vascular grafts. Vascular 3D bioprinting holds the potential to create equivalent vascular grafts but with the ability to tailor them to meet patient's needs. Here, we presented a new and innovative 3D rotary bioprinter and a new bioink formulation for printing vascular constructs using fibrinogen, a favorable biomaterial for vascular tissue engineering. The bioink was formulated by blending fibrinogen with a more printable biomaterial, gelatin. The systematic characterization of the effects of heat treatment and gelatin concentration as well as bioink cell concentration on the printability of the bioink offers new insight into the development of printable biomaterials for tissue biofabrication.
Collapse
|
65
|
Scaffold-Free Bioprinter Utilizing Layer-By-Layer Printing of Cellular Spheroids. MICROMACHINES 2019; 10:mi10090570. [PMID: 31470604 PMCID: PMC6780220 DOI: 10.3390/mi10090570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Free from the limitations posed by exogenous scaffolds or extracellular matrix-based materials, scaffold-free engineered tissues have immense clinical potential. Biomaterials may produce adverse responses, interfere with cell–cell interaction, or affect the extracellular matrix integrity of cells. The scaffold-free Kenzan method can generate complex tissues using spheroids on an array of needles but could be inefficient in terms of time, as it moves and places only a single spheroid at a time. We aimed to design and construct a novel scaffold-free bioprinter that can print an entire layer of spheroids at once, effectively reducing the printing time. The bioprinter was designed using computer-aided design software and constructed from machined, 3D printed, and commercially available parts. The printing efficiency and the operating precision were examined using Zirconia and alginate beads, which mimic spheroids. In less than a minute, the printer could efficiently pick and transfer the beads to the printing surface and assemble them onto the 4 × 4 needles. The average overlap coefficient between layers was measured and found to be 0.997. As a proof of concept using human induced pluripotent stem cell-derived spheroids, we confirmed the ability of the bioprinter to place cellular spheroids onto the needles efficiently to print an entire layer of tissue. This novel layer-by-layer, scaffold-free bioprinter is efficient and precise in operation and can be easily scaled to print large tissues.
Collapse
|