51
|
Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2008; 105:7194-9. [PMID: 18443284 DOI: 10.1073/pnas.0801087105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has developed specialized mechanisms that enable growth on suboptimal nitrogen sources. Exposure of yeast cells to poor nitrogen sources or treatment with the Tor kinase inhibitor rapamycin elicits activation of Gln3 and transcription of nitrogen catabolite-repressed (NCR) genes whose products function in scavenging and metabolizing nitrogen. Here, we show that mutations in class C and D Vps components, which mediate Golgi-to-endosome vesicle transport, impair nuclear translocation of Gln3, NCR gene activation, and growth in poor nitrogen sources. In nutrient-replete conditions, a significant fraction of Gln3 is peripherally associated with light membranes and partially colocalizes with Vps10-containing foci. These results reveal a role for Golgi-to-endosome vesicular trafficking in TORC1-controlled nuclear translocation of Gln3 and support a model in which Tor-mediated signaling in response to nutrient cues occurs in these compartments. These findings have important implications for nutrient sensing and growth control via mTor pathways in metazoans.
Collapse
|
52
|
Cipriano DJ, Wang Y, Bond S, Hinton A, Jefferies KC, Qi J, Forgac M. Structure and regulation of the vacuolar ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:599-604. [PMID: 18423392 DOI: 10.1016/j.bbabio.2008.03.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 12/31/2022]
Abstract
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c'', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c''), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.
Collapse
Affiliation(s)
- Daniel J Cipriano
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Fei W, Alfaro G, Muthusamy BP, Klaassen Z, Graham TR, Yang H, Beh CT. Genome-wide analysis of sterol-lipid storage and trafficking in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:401-14. [PMID: 18156287 PMCID: PMC2238164 DOI: 10.1128/ec.00386-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/14/2007] [Indexed: 12/15/2022]
Abstract
The pandemic of lipid-related disease necessitates a determination of how cholesterol and other lipids are transported and stored within cells. The first step in this determination is the identification of the genes involved in these transport and storage processes. Using genome-wide screens, we identified 56 yeast (Saccharomyces cerevisiae) genes involved in sterol-lipid biosynthesis, intracellular trafficking, and/or neutral-lipid storage. Direct biochemical and cytological examination of mutant cells revealed an unanticipated link between secretory protein glycosylation and triacylglycerol (TAG)/steryl ester (SE) synthesis for the storage of lipids. Together with the analysis of other deletion mutants, these results suggested at least two distinct events for the biogenesis of lipid storage particles: a step affecting neutral-lipid synthesis, generating the lipid core of storage particles, and another step for particle assembly. In addition to the lipid storage mutants, we identified mutations that affect the localization of unesterified sterols, which are normally concentrated in the plasma membrane. These findings implicated phospholipase C and the protein phosphatase Ptc1p in the regulation of sterol distribution within cells. This study identified novel sterol-related genes that define several distinct processes maintaining sterol homeostasis.
Collapse
Affiliation(s)
- Weihua Fei
- Department of Biochemistry, National University of Singapore, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
54
|
Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 2007; 64:923-37. [PMID: 17501918 PMCID: PMC3694341 DOI: 10.1111/j.1365-2958.2007.05694.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Frank
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Koers
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Peter Strauch
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Weitner
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Carol Ringelberg
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jay C. Dunlap
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jennifer J. Loros
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Ulrich Kück
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- For correspondence. ; Tel. (+49) 0 234 3226212; Fax (+49) 0 234 3214184
| |
Collapse
|
55
|
Abstract
The acidity of intracellular compartments and the extracellular environment is crucial to various cellular processes, including membrane trafficking, protein degradation, bone resorption and sperm maturation. At the heart of regulating acidity are the vacuolar (V-)ATPases--large, multisubunit complexes that function as ATP-driven proton pumps. Their activity is controlled by regulating the assembly of the V-ATPase complex or by the dynamic regulation of V-ATPase expression on membrane surfaces. The V-ATPases have been implicated in a number of diseases and, coupled with their complex isoform composition, represent attractive and potentially highly specific drug targets.
Collapse
Affiliation(s)
- Michael Forgac
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111, USA.
| |
Collapse
|
56
|
Wang Y, Cipriano DJ, Forgac M. Arrangement of subunits in the proteolipid ring of the V-ATPase. J Biol Chem 2007; 282:34058-65. [PMID: 17897940 PMCID: PMC2394185 DOI: 10.1074/jbc.m704331200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar ATPases (V-ATPases) are multisubunit complexes containing two domains. The V(1) domain (subunits A-H) is peripheral and carries out ATP hydrolysis. The V(0) domain (subunits a, c, c', c'', d, and e) is membrane-integral and carries out proton transport. In yeast, there are three proteolipid subunits as follows: subunit c (Vma3p), subunit c' (Vma11p), and subunit c'' (Vma16p). The proteolipid subunits form a six-membered ring containing single copies of subunits c' and c'' and four copies of subunit c. To determine the possible arrangements of proteolipid subunits in V(0) that give rise to a functional V-ATPase complex, a series of gene fusions was constructed to constrain the arrangement of pairs of subunits in the ring. Fusions containing c'' employed a truncated version of this protein lacking the first putative transmembrane helix (which we have shown previously to be functional), to ensure that the N and C termini of all subunits were located on the luminal side of the membrane. Fusion constructs were expressed in strains disrupted in c', c'', or both but containing a wild copy of c to ensure the presence of the required number of copies of subunit c. The c-c''(DeltaTM1), c''(DeltaTM1)-c', and c'-c constructs all complemented the vma(-) phenotype and gave rise to complexes possessing greater than 25% of wild-type levels of activity. By contrast, neither the c-c', the c'-c''(DeltaTM1), nor the c''(DeltaTM1)-c constructs complemented the vma(-) phenotype. These results suggest that functionally assembled V-ATPase complexes contain the proteolipid subunits arranged in a unique order in the ring.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- ¶ To whom correspondence should be addressed: Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111. Tel: 617-636-6939; Fax: 617-636-0445; E-mail:
| |
Collapse
|
57
|
Sato K, Nakano A. Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett 2007; 581:2076-82. [PMID: 17316621 DOI: 10.1016/j.febslet.2007.01.091] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/23/2007] [Accepted: 01/30/2007] [Indexed: 11/26/2022]
Abstract
The evolutionarily conserved coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). COPII coat is responsible for direct capture of cargo proteins and for the physical deformation of the ER membrane that drives the COPII vesicle formation. In addition to coat proteins, recent data have indicated that the Ras-like small GTPase Sar1 plays multiple roles, such as COPII coat recruitment, cargo sorting, and completion of the final fission. In the present review, we summarize current knowledge of COPII-mediated vesicle formation from the ER, as well as highlighting non-canonical roles of COPII components.
Collapse
Affiliation(s)
- Ken Sato
- Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
58
|
Welsh LM, Tong AHY, Boone C, Jensen ON, Otte S. Genetic and molecular interactions of the Erv41p-Erv46p complex involved in transport between the endoplasmic reticulum and Golgi complex. J Cell Sci 2006; 119:4730-40. [PMID: 17077122 DOI: 10.1242/jcs.03250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erv41p and Erv46p are integral membrane proteins conserved across species. They were originally identified as abundant constituents of COPII-coated vesicles, and form a complex which cycles between the endoplasmic reticulum and Golgi complex. Yeast strains lacking these proteins are viable but display subtle secretory phenotypes. In order to obtain information about possible biological roles of this protein complex in endoplasmic reticulum to Golgi transport, we employed the Synthetic Genetic Array approach to screen for synthetic genetic interactions with the erv46 null mutation. We identified synthetic interactions with vma12, vma21, vma22 and vps1 deletion mutations. The vma21Δ mutation exacerbates transport defects caused by the erv46Δ mutation. Unexpectedly, yeast strains lacking Vma21p fail to sort the endoplasmic reticulum to Golgi v-SNARE, Bos1p, efficiently into COPII vesicles, yet these vesicles are fully fusion competent. In addition, we set out to identify, by a biochemical approach, proteins interacting with the Erv41p-Erv46p complex. We report a strong interaction between the Erv41p-Erv46p complex and endoplasmic reticulum glucosidase II. Strains lacking a cycling Erv41p-Erv46p complex display a mild glycoprotein processing defect.
Collapse
Affiliation(s)
- Leah M Welsh
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
59
|
Imamura H, Funamoto S, Yoshida M, Yokoyama K. Reconstitution in vitro of V1 complex of Thermus thermophilus V-ATPase revealed that ATP binding to the A subunit is crucial for V1 formation. J Biol Chem 2006; 281:38582-91. [PMID: 17050529 DOI: 10.1074/jbc.m608253200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H(+)-ATPase (V-ATPase or V-type ATPase) is a multisubunit complex comprised of a water-soluble V(1) complex, responsible for ATP hydrolysis, and a membrane-embedded V(o) complex, responsible for proton translocation. The V(1) complex of Thermus thermophilus V-ATPase has the subunit composition of A(3)B(3)DF, in which the A and B subunits form a hexameric ring structure. A central stalk composed of the D and F subunits penetrates the ring. In this study, we investigated the pathway for assembly of the V(1) complex by reconstituting the V(1) complex from the monomeric A and B subunits and DF subcomplex in vitro. Assembly of these components into the V(1) complex required binding of ATP to the A subunit, although hydrolysis of ATP is not necessary. In the absence of the DF subcomplex, the A and B monomers assembled into A(1)B(1) and A(3)B(3) subcomplexes in an ATP binding-dependent manner, suggesting that ATP binding-dependent interaction between the A and B subunits is a crucial step of assembly into V(1) complex. Kinetic analysis of assembly of the A and B monomers into the A(1)B(1) heterodimer using fluorescence resonance energy transfer indicated that the A subunit binds ATP prior to binding the B subunit. Kinetics of binding of a fluorescent ADP analog, N-methylanthraniloyl ADP (mant-ADP), to the monomeric A subunit also supported the rapid nucleotide binding to the A subunit.
Collapse
Affiliation(s)
- Hiromi Imamura
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | |
Collapse
|
60
|
Davis-Kaplan SR, Compton MA, Flannery AR, Ward DM, Kaplan J, Stevens TH, Graham LA. PKR1 Encodes an Assembly Factor for the Yeast V-Type ATPase. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
61
|
Owegi MA, Pappas DL, Finch MW, Bilbo SA, Resendiz CA, Jacquemin LJ, Warrier A, Trombley JD, McCulloch KM, Margalef KLM, Mertz MJ, Storms JM, Damin CA, Parra KJ. Identification of a Domain in the Vo Subunit d That Is Critical for Coupling of the Yeast Vacuolar Proton-translocating ATPase. J Biol Chem 2006; 281:30001-14. [PMID: 16891312 DOI: 10.1074/jbc.m605006200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar proton-translocating ATPase pumps consist of two domains, V(1) and V(o). Subunit d is a component of V(o) located in a central stalk that rotates during catalysis. By generating mutations, we showed that subunit d couples ATP hydrolysis and proton transport. The mutation F94A strongly uncoupled the enzyme, preventing proton transport but not ATPase activity. C-terminal mutations changed coupling as well; ATPase activity was decreased by 59-72%, whereas proton transport was not measurable (E328A) or was moderately reduced (E317A and C329A). Except for W325A, which had low levels of V(1)V(o), mutations allowed wild-type assembly regardless of the fact that subunits E and d were reduced at the membrane. N- and C-terminal deletions of various lengths were inhibitory and gradually destabilized subunit d, limiting V(1)V(o) formation. Both N and C terminus were required for V(o) assembly. The N-terminal truncation 2-19Delta prevented V(1)V(o) formation, although subunit d was available. The C terminus was required for retention of subunits E and d at the membrane. In addition, the C terminus of its bacterial homolog (subunit C from T. thermophilus) stabilized the yeast subunit d mutant 310-345Delta and allowed assembly of the rotor structure with subunits A and B. Structural features conserved between bacterial and eukaryotic subunit d and the significance of domain 3 for vacuolar proton-translocating ATPase function are discussed.
Collapse
Affiliation(s)
- Margaret A Owegi
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Bue CA, Bentivoglio CM, Barlowe C. Erv26p directs pro-alkaline phosphatase into endoplasmic reticulum-derived coat protein complex II transport vesicles. Mol Biol Cell 2006; 17:4780-9. [PMID: 16957051 PMCID: PMC1635384 DOI: 10.1091/mbc.e06-05-0455] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.
Collapse
Affiliation(s)
- Catherine A. Bue
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| | | | - Charles Barlowe
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| |
Collapse
|
63
|
Chavez C, Bowman EJ, Reidling JC, Haw KH, Bowman BJ. Analysis of Strains with Mutations in Six Genes Encoding Subunits of the V-ATPase. J Biol Chem 2006; 281:27052-62. [PMID: 16857684 DOI: 10.1074/jbc.m603883200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To address questions about the structure of the vacuolar ATPase, we have generated mutant strains of Neurospora crassa defective in six subunits, C, H, a, c, c', and c''. Except for strains lacking subunit c', the mutant strains were indistinguishable from each other in most phenotypic characteristics. They did not accumulate arginine in the vacuoles, grew poorly at pH 5.8 with altered morphology, and failed to grow at alkaline pH. Consistent with findings from Saccharomyces cerevisiae, the data indicate that subunits C and H are essential for generation of a functional enzyme. Unlike S. cerevisiae, N. crassa has a single isoform of the a subunit. Analysis of other fungal genomes indicates that only the budding yeasts have a two-gene family for subunit a. It has been unclear whether subunit c', a small proteolipid, is a component of all V-ATPases. Our data suggest that this subunit is present in all fungi, but not in other organisms. Mutation or deletion of the N. crassa gene encoding subunit c' did not completely eliminate V-ATPase function. Unlike other V-ATPase null strains, they grew, although slowly, at alkaline pH, were able to form conidia (asexual spores), and were inhibited by concanamycin, a specific inhibitor of the V-ATPase. The phenotypic character in which strains differed was the ability to go through the sexual cycle to generate mature spores and viable mutant progeny. Strains lacking the integral membrane subunits a, c, c', and c'' had more severe defects than strains lacking subunits C or H.
Collapse
Affiliation(s)
- Christopher Chavez
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
64
|
Lam KKY, Davey M, Sun B, Roth AF, Davis NG, Conibear E. Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. ACTA ACUST UNITED AC 2006; 174:19-25. [PMID: 16818716 PMCID: PMC2064155 DOI: 10.1083/jcb.200602049] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast chitin synthase Chs3 provides a well-studied paradigm for polytopic membrane protein trafficking. In this study, high-throughput analysis of the yeast deletion collection identifies a requirement for Pfa4, which is an uncharacterized protein with protein acyl transferase (PAT) homology, in Chs3 transport. PATs, which are the enzymatic mediators of protein palmitoylation, have only recently been discovered, and few substrates have been identified. We find that Chs3 is palmitoylated and that this modification is Pfa4-dependent, indicating that Pfa4 is indeed a PAT. Chs3 palmitoylation is required for ER export, but not for interaction with its dedicated ER chaperone, Chs7. Nonetheless, both palmitoylation and chaperone association are required to prevent the accumulation of Chs3 in high–molecular mass aggregates at the ER. Our data indicate that palmitoylation is necessary for Chs3 to attain an export-competent conformation, and suggest the possibility of a more general role for palmitoylation in the ER quality control of polytopic membrane proteins.
Collapse
Affiliation(s)
- Karen K Y Lam
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
65
|
Davis-Kaplan SR, Compton MA, Flannery AR, Ward DM, Kaplan J, Stevens TH, Graham LA. PKR1Encodes an Assembly Factor for the Yeast V-Type ATPase. J Biol Chem 2006; 281:32025-35. [PMID: 16926153 DOI: 10.1074/jbc.m606451200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion of the yeast gene PKR1 (YMR123W) results in an inability to grow on iron-limited medium. Pkr1p is localized to the membrane of the endoplasmic reticulum. Cells lacking Pkr1p show reduced levels of the V-ATPase subunit Vph1p due to increased turnover of the protein in mutant cells. Reduced levels of the V-ATPase lead to defective copper loading of Fet3p, a component of the high affinity iron transport system. Levels of Vph1p in cells lacking Pkr1p are similar to cells unable to assemble a functional V-ATPase due to lack of a V0 subunit or an endoplasmic reticulum (ER) assembly factor. However, unlike yeast mutants lacking a V0 subunit or a V-ATPase assembly factor, low levels of Vph1p present in cells lacking Pkr1p are assembled into a V-ATPase complex, which exits the ER and is present on the vacuolar membrane. The V-ATPase assembled in the absence of Pkr1p is fully functional because the mutant cells are able to weakly acidify their vacuoles. Finally, overexpression of the V-ATPase assembly factor Vma21p suppresses the growth and acidification defects of pkr1Delta cells. Our data indicate that Pkr1p functions together with the other V-ATPase assembly factors in the ER to efficiently assemble the V-ATPase membrane sector.
Collapse
Affiliation(s)
- Sandra R Davis-Kaplan
- Division of Immunology and Cell Biology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 2006; 6:744-50. [PMID: 16879425 DOI: 10.1111/j.1567-1364.2006.00040.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A set of homozygous diploid deletion mutants of the yeast Saccharomyces cerevisiae was screened for the genes required for tolerance to aliphatic alcohols. The screen identified 137, 122 and 48 deletion mutants sensitive to ethanol, 1-propanol and 1-pentanol, respectively. A number of the genes required for ethanol tolerance were those also required for tolerance to other alcohols. Numerous mutants with defective genes encoding for vacuolar H+ -ATPase (V-ATPase) were cosensitive to these alcohols. A global screening approach of yeast deletion library mutants was useful in elucidating the mechanisms of alcohol tolerance based on different lipophilicities.
Collapse
|
67
|
Ochotny N, Van Vliet A, Chan N, Yao Y, Morel M, Kartner N, von Schroeder HP, Heersche JNM, Manolson MF. Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. J Biol Chem 2006; 281:26102-11. [PMID: 16840787 DOI: 10.1074/jbc.m601118200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine. Mutations in human a3 and a4 result in osteopetrosis and distal renal tubular acidosis, respectively. Human a3 (G405R and R444L) and a4 (P524L and G820R) mutations were recreated in the yeast ortholog Vph1p, a3 (G424R and R462L), and a4 (W520L and G812R). Mutations in a3 resulted in wild type vacuolar acidification and growth on media containing 4 mM ZnCl2, 200 mM CaCl2, or buffered to pH 7.5 with V-ATPase hydrolytic and pumping activity decreased by 30-35%. Immunoblots confirmed wild type levels for V-ATPase a, A, and B subunits on vacuolar membranes. a4 G812R resulted in defective growth on selective media with V-ATPase hydrolytic and pumping activity decreased by 83-85% yet with wild type levels of a, A, and B subunits on vacuolar membranes. The a4 W520L mutation had defective growth on selective media with no detectable V-ATPase activity and reduced expression of a, A, and B subunits. The a4 W520L mutation phenotypes were dominant negative, as overexpression of wild type yeast a isoforms, Vph1p, or Stv1p, did not restore growth. However, deletion of endoplasmic reticulum assembly factors (Vma12p, Vma21p, and Vma22p) partially restored a and B expression. That a4 W520L affects both Vo and V1 subunits is a unique phenotype for any V-ATPase subunit mutation and supports the concerted pathway for V-ATPase assembly in vivo.
Collapse
Affiliation(s)
- Noelle Ochotny
- Department of Pharmacology, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
69
|
Poëa-Guyon S, Amar M, Fossier P, Morel N. Alternative splicing controls neuronal expression of v-ATPase subunit a1 and sorting to nerve terminals. J Biol Chem 2006; 281:17164-17172. [PMID: 16621796 DOI: 10.1074/jbc.m600927200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar proton ATPase accumulates protons inside various intracellular organelles such as synaptic vesicles; its membrane domain V0 could also be involved in membrane fusion. These different functions could require vacuolar proton ATPases possessing different V0 subunit a isoforms. In vertebrates, four genes encode isoforms a1-a4, and a1 variants are also generated by alternative splicing. We identified a novel a1 splice variant a1-IV and showed that the two a1 variants containing exon C are specifically expressed in neurons. Single neurons coexpress a2, a1-I, and a1-IV, and these subunit a isoforms are targeted to different membrane compartments. Recombinant a2 was accumulated in the trans-Golgi network, and a1-I was concentrated in axonal varicosities, whereas a1-IV was sorted to both distal dendrites and axons. Our results indicate that alternative splicing of exon N controls differential sorting of a1 variants to nerve terminals or distal dendrites, whereas exon C regulates their neuronal expression.
Collapse
Affiliation(s)
- Sandrine Poëa-Guyon
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 91198 Gif sur Yvette, France
| | - Muriel Amar
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 91198 Gif sur Yvette, France
| | - Philippe Fossier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 91198 Gif sur Yvette, France
| | - Nicolas Morel
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 91198 Gif sur Yvette, France.
| |
Collapse
|
70
|
Compton MA, Graham LA, Stevens TH. Vma9p (subunit e) is an integral membrane V0 subunit of the yeast V-ATPase. J Biol Chem 2006; 281:15312-9. [PMID: 16569636 DOI: 10.1074/jbc.m600890200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae vacuolar proton-translocating ATPase (V-ATPase) is composed of 14 subunits distributed between a peripheral V1 subcomplex and an integral membrane V0 subcomplex. Genome-wide screens have led to the identification of the newest yeast V-ATPase subunit, Vma9p. Vma9p (subunit e) is a small hydrophobic protein that is conserved from fungi to animals. We demonstrate that disruption of yeast VMA9 results in the failure of V1 and V0 V-ATPase subunits to assemble onto the vacuole and in decreased levels of the subunit a isoforms Vph1p and Stv1p. We also show that Vma9p is an integral membrane protein, synthesized and inserted into the endoplasmic reticulum (ER), which then localizes to the limiting membrane of the vacuole. All V0 subunits and V-ATPase assembly factors are required for Vma9p to efficiently exit the ER. In the ER, Vma9p and the V0 subunits interact with the V-ATPase assembly factor Vma21p. Interestingly, the association of Vma9p with the V0-Vma21p assembly complex is disrupted with the loss of any single V0 subunit. Similarly, Vma9p is required for V0 subunits Vph1p and Vma6p to associate with the V0-Vma21p complex. In contrast, the proteolipids associate with Vma21p even in the absence of Vma9p. These results demonstrate that Vma9p is an integral membrane subunit of the yeast V-ATPase V0 subcomplex and suggest a model for the arrangement of polypeptides within the V0 subcomplex.
Collapse
Affiliation(s)
- Mark A Compton
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | |
Collapse
|
71
|
|