51
|
Tropomodulin capping of actin filaments in striated muscle development and physiology. J Biomed Biotechnol 2011; 2011:103069. [PMID: 22013379 PMCID: PMC3196151 DOI: 10.1155/2011/103069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 11/17/2022] Open
Abstract
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.
Collapse
|
52
|
Conover GM, Gregorio CC. The desmin coil 1B mutation K190A impairs nebulin Z-disc assembly and destabilizes actin thin filaments. J Cell Sci 2011; 124:3464-76. [PMID: 21984811 DOI: 10.1242/jcs.087080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Desmin intermediate filaments intimately surround myofibrils in vertebrate muscle forming a mesh-like filament network. Desmin attaches to sarcomeres through its high-affinity association with nebulin, a giant F-actin binding protein that co-extends along the length of actin thin filaments. Here, we further investigated the functional significance of the association of desmin and nebulin in cultured primary myocytes to address the hypothesis that this association is key in integrating myofibrils to the intermediate filament network. Surprisingly, we identified eight peptides along the length of desmin that are capable of binding to C-terminal modules 160-170 in nebulin. In this study, we identified a targeted mutation (K190A) in the desmin coil 1B region that results in its reduced binding with the nebulin C-terminal modules. Using immunofluorescence microscopy and quantitative analysis, we demonstrate that expression of the mutant desmin K190A in primary myocytes results in a significant reduction in assembled endogenous nebulin and desmin at the Z-disc. Non-uniform actin filaments were markedly prevalent in myocytes expressing GFP-tagged desmin K190A, suggesting that the near-crystalline organization of actin filaments in striated muscle depends on a stable interaction between desmin and nebulin. All together, these data are consistent with a model in which Z-disc-associated nebulin interacts with desmin through multiple sites to provide efficient stability to satisfy the dynamic contractile activity of myocytes.
Collapse
Affiliation(s)
- Gloria M Conover
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
53
|
Alpha-actinin: a multidisciplinary protein with important role in B-cell driven autoimmunity. Autoimmun Rev 2011; 10:389-96. [PMID: 21241830 DOI: 10.1016/j.autrev.2010.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 12/27/2010] [Indexed: 12/13/2022]
Abstract
Alpha-actinin (α-actinin) is a ubiquitous cytoskeletal protein, which belongs to the superfamily of filamentous actin (F-actin) crosslinking proteins. It is present in multiple subcellular regions of both muscle and non-muscle cells, including cell-cell and cell-matrix contact sites, cellular protrusions and stress fiber dense regions and thus, it seems to bear multiple important roles in the cell by linking the cytoskeleton to many different transmembrane proteins in a variety of junctions. Four isoforms of human α-actinin have already been identified namely, the "muscles" α-actinin-2 and α-actinin-3 and the "non-muscles" α-actinin-1 and α-actinin-4. The precise functions of α-actinin isoforms as well as the precise role and significance of their binding to F-actin particularly in-vivo, have been elusive. They are generally believed to represent key structural components of large-scale F-actin cohesion in cells required for cell shape and motility. α-Actinin-2 has been implicated in myopathies such as nemalin body myopathy, hypertrophic and dilated cardiomyopathy and it may have at least an indirect pathogenetic role in diseases of the central nervous system (CNS) like schizophrenia, epilepsy, ischemic brain damage, CNS lupus and neurodegenerative disorders. The role of "non-muscle" α-actinins in the kidney seems to be crucial as an essential component of the glomerular filtration barrier. Therefore, they have been implicated in the pathogenesis of familial focal segmental glomerulosclerosis, nephrotic syndrome, IgA nephropathy, focal segmental glomerulosclerosis and minimal change disease. α-Actinin is also expressed on the membrane and cytosol of parenchymal and ductal cells of the liver and it seems that it interacts with hepatitis C virus in an essential way for the replication of the virus. Finally α-actinin, especially α-actinin-4, has been implicated in cancer cell progression and metastasis, as well as the migration of several cell types participating in the immune response. Based on these functions, the accumulating reported evidence of the importance of α-actinin as a target autoantigen in the pathogenesis of autoimmune diseases, particularly systemic lupus erythematosus and autoimmune hepatitis, is also discussed along with the possible perspectives that are potentially emerging from the study of this peculiar molecule in health and disease.
Collapse
|
54
|
Affiliation(s)
- Mathias Gautel
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| | | |
Collapse
|
55
|
Labeit S, Ottenheijm CAC, Granzier H. Nebulin, a major player in muscle health and disease. FASEB J 2010; 25:822-9. [PMID: 21115852 DOI: 10.1096/fj.10-157412] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nebulin is a giant 600- to 900-kDa filamentous protein that is an integral component of the skeletal muscle thin filament. Its functions have remained largely nebulous because of its large size and the difficulty in extracting nebulin in a native state from muscle. Recent improvements in the field, especially the development of knockout mouse models deficient in nebulin (NEB-KO mice), indicate now that nebulin performs a surprisingly wide range of functions. In addition to a major role in thin-filament length specification, nebulin also functions in the regulation of muscle contraction, as indicated by the findings that muscle fibers deficient in nebulin have a higher tension cost, and develop less force due to reduced myofilament calcium sensitivity and altered crossbridge cycling kinetics. In addition, the function of nebulin extends to a role in calcium homeostasis. These novel functions indicate that nebulin might have evolved in vertebrate skeletal muscles to develop high levels of muscle force efficiently. Finally, the NEB-KO mouse models also highlight the role of nebulin in the assembly and alignment of the Z disks. Notably, rapid progress in understanding the roles of nebulin in vivo provides clinically important insights into how nebulin deficiency in patients with nemaline myopathy contributes to debilitating muscle weakness.
Collapse
Affiliation(s)
- Siegfried Labeit
- Department of Integrative Pathophysiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
56
|
Tsukada T, Kotlyanskaya L, Huynh R, Desai B, Novak SM, Kajava AV, Gregorio CC, Kostyukova AS. Identification of residues within tropomodulin-1 responsible for its localization at the pointed ends of the actin filaments in cardiac myocytes. J Biol Chem 2010; 286:2194-204. [PMID: 21078668 DOI: 10.1074/jbc.m110.186924] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomodulin is a tropomyosin-dependent actin filament capping protein involved in the structural formation of thin filaments and in the regulation of their lengths through its localization at the pointed ends of actin filaments. The disordered N-terminal domain of tropomodulin contains three functional sites: two tropomyosin-binding and one tropomyosin-dependent actin-capping sites. The C-terminal half of tropomodulin consists of one compact domain containing a tropomyosin-independent actin-capping site. Here we determined the structural properties of tropomodulin-1 that affect its roles in cardiomyocytes. To explore the significance of individual tropomyosin-binding sites, GFP-tropomodulin-1 with single mutations that destroy each tropomyosin-binding site was expressed in cardiomyocytes. We demonstrated that both sites are necessary for the optimal localization of tropomodulin-1 at thin filament pointed ends, with site 2 acting as the major determinant. To investigate the functional properties of the tropomodulin C-terminal domain, truncated versions of GFP-tropomodulin-1 were expressed in cardiomyocytes. We discovered that the leucine-rich repeat (LRR) fold and the C-terminal helix are required for its proper targeting to the pointed ends. To investigate the structural significance of the LRR fold, we generated three mutations within the C-terminal domain (V232D, F263D, and L313D). Our results show that these mutations affect both tropomyosin-independent actin-capping activity and pointed end localization, most likely by changing local conformations of either loops or side chains of the surfaces involved in the interactions of the LRR domain. Studying the influence of these mutations individually, we concluded that, in addition to the tropomyosin-independent actin-capping site, there appears to be another regulatory site within the tropomodulin C-terminal domain.
Collapse
Affiliation(s)
- Takehiro Tsukada
- Department of Cell Biology and Anatomy and the Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
58
|
Pappas CT, Bliss KT, Zieseniss A, Gregorio CC. The Nebulin family: an actin support group. Trends Cell Biol 2010; 21:29-37. [PMID: 20951588 DOI: 10.1016/j.tcb.2010.09.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/25/2022]
Abstract
Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology, and Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
59
|
Hishiya A, Kitazawa T, Takayama S. BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress. Circ Res 2010; 107:1220-31. [PMID: 20884878 DOI: 10.1161/circresaha.110.225649] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE A homozygous disruption or genetic mutation of the bag3 gene, a member of the Bcl-2-associated athanogene (BAG) family proteins, causes cardiomyopathy and myofibrillar myopathy that is characterized by myofibril and Z-disc disruption. However, the detailed disease mechanism is not yet fully understood. OBJECTIVE bag3(-/-) mice exhibit differences in the extent of muscle degeneration between muscle groups with muscles experiencing the most usage degenerating at an accelerated rate. Usage-dependent muscle degeneration suggests a role for BAG3 in supporting cytoskeletal connections between the Z-disc and myofibrils under mechanical stress. The mechanism by which myofibrillar structure is maintained under mechanical stress remains unclear. The purpose of the study is to clarify the detailed molecular mechanism of BAG3-mediated muscle maintenance under mechanical stress. METHODS AND RESULTS To address the question of whether bag3 gene knockdown induces myofibrillar disorganization caused by mechanical stress, in vitro mechanical stretch experiments using rat neonatal cardiomyocytes and a short hairpin RNA-mediated gene knockdown system of the bag3 gene were performed. As expected, mechanical stretch rapidly disrupts myofibril structures in bag3 knockdown cardiomyocytes. BAG3 regulates the structural stability of F-actin through the actin capping protein, CapZβ1, by promoting association between Hsc70 and CapZβ1. BAG3 facilitates the distribution of CapZβ1 to the proper location, and dysfunction of BAG3 induces CapZ ubiquitin-proteasome-mediated degradation. Inhibition of CapZβ1 function by overexpressing CapZβ2 increased myofibril vulnerability and fragmentation under mechanical stress. On the other hand, overexpression of CapZβ1 inhibits myofibrillar disruption in bag3 knockdown cells under mechanical stress. As a result, heart muscle isolated from bag3(-/-) mice exhibited myofibrillar degeneration and lost contractile activity after caffeine contraction. CONCLUSIONS These results suggest novel roles for BAG3 and Hsc70 in stabilizing myofibril structure and inhibiting myofibrillar degeneration in response to mechanical stress. These proteins are possible targets for further research to identify therapies for myofibrillar myopathy or other degenerative diseases.
Collapse
Affiliation(s)
- Akinori Hishiya
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | | | | |
Collapse
|
60
|
Nebulin: A Study of Protein Repeat Evolution. J Mol Biol 2010; 402:38-51. [DOI: 10.1016/j.jmb.2010.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/22/2010] [Accepted: 07/07/2010] [Indexed: 11/22/2022]
|
61
|
Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS, Gregorio CC. Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J Cell Sci 2010; 123:3136-45. [PMID: 20736303 DOI: 10.1242/jcs.071837] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of actin filament assembly is essential for efficient contractile activity in striated muscle. Leiomodin is an actin-binding protein and homolog of the pointed-end capping protein, tropomodulin. These proteins are structurally similar, sharing a common domain organization that includes two actin-binding sites. Leiomodin also contains a unique C-terminal extension that has a third actin-binding WH2 domain. Recently, the striated-muscle-specific isoform of leiomodin (Lmod2) was reported to be an actin nucleator in cardiomyocytes. Here, we have identified a function of Lmod2 in the regulation of thin filament lengths. We show that Lmod2 localizes to the pointed ends of thin filaments, where it competes for binding with tropomodulin-1 (Tmod1). Overexpression of Lmod2 results in loss of Tmod1 assembly and elongation of the thin filaments from their pointed ends. The Lmod2 WH2 domain is required for lengthening because its removal results in a molecule that caps the pointed ends similarly to Tmod1. Furthermore, Lmod2 transcripts are first detected in the heart after it has begun to beat, suggesting that the primary function of Lmod2 is to maintain thin filament lengths in the mature heart. Thus, Lmod2 antagonizes the function of Tmod1, and together, these molecules might fine-tune thin filament lengths.
Collapse
Affiliation(s)
- Takehiro Tsukada
- Department of Cell Biology and Anatomy, and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
62
|
New insights into the structural roles of nebulin in skeletal muscle. J Biomed Biotechnol 2010; 2010:968139. [PMID: 20589077 PMCID: PMC2879575 DOI: 10.1155/2010/968139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/26/2010] [Indexed: 12/01/2022] Open
Abstract
One important feature of muscle structure and function that has remained relatively obscure is the mechanism that regulates thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length. Another structural feature of skeletal muscle that is not well understood is the mechanism involved in maintaining the regular lateral alignment of adjacent sarcomeres, that is, myofibrillar connectivity. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. Thus, novel structural roles of nebulin in skeletal muscle involve the regulation of thin filament length and maintaining myofibrillar connectivity. When these functions of nebulin are absent, muscle weakness ensues, as is the case in patients with nemaline myopathy with mutations in nebulin. Here we review these new insights in the role of nebulin in skeletal muscle structure.
Collapse
|
63
|
Pappas CT, Krieg PA, Gregorio CC. Nebulin regulates actin filament lengths by a stabilization mechanism. ACTA ACUST UNITED AC 2010; 189:859-70. [PMID: 20498015 PMCID: PMC2878950 DOI: 10.1083/jcb.201001043] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nebulin molecular ruler hypothesis is challenged as a truncated form of nebulin can stabilize actin filaments that are longer than the mini-nebulin itself. Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin filaments extended beyond the end of mini-nebulin, an observation which is inconsistent with a strict ruler function. However, under conditions that promote actin filament depolymerization, filaments associated with mini-nebulin were remarkably maintained at lengths either matching or longer than mini-nebulin. This indicates that mini-nebulin is able to stabilize portions of the filament it has no contact with. Knockdown of nebulin also resulted in more dynamic populations of thin filament components, whereas expression of mini-nebulin decreased the dynamics at both filament ends (i.e., recovered loss of endogenous nebulin). Thus, nebulin regulates thin filament architecture by a mechanism that includes stabilizing the filaments and preventing actin depolymerization.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology and Anatomy and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
64
|
Tonino P, Pappas CT, Hudson BD, Labeit S, Gregorio CC, Granzier H. Reduced myofibrillar connectivity and increased Z-disk width in nebulin-deficient skeletal muscle. J Cell Sci 2010; 123:384-91. [PMID: 20053633 DOI: 10.1242/jcs.042234] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A prominent feature of striated muscle is the regular lateral alignment of adjacent sarcomeres. An important intermyofibrillar linking protein is the intermediate filament protein desmin, and based on biochemical and structural studies in primary cultures of myocytes it has been proposed that desmin interacts with the sarcomeric protein nebulin. Here we tested whether nebulin is part of a novel biomechanical linker complex, by using a recently developed nebulin knockout (KO) mouse model and measuring Z-disk displacement in adjacent myofibrils of both extensor digitorum longus (EDL) and soleus muscle. Z-disk displacement increased as sarcomere length (SL) was increased and the increase was significantly larger in KO fibers than in wild-type (WT) fibers; results in 3-day-old and 10-day-old mice were similar. Immunoelectron microscopy revealed reduced levels of desmin in intermyofibrillar spaces adjacent to Z-disks in KO fibers compared with WT fibers. We also performed siRNA knockdown of nebulin and expressed modules within the Z-disk portion of nebulin (M160-M170) in quail myotubes and found that this prevented the mature Z-disk localization of desmin filaments. Combined, these data suggest a model in which desmin attaches to the Z-disk through an interaction with nebulin. Finally, because nebulin has been proposed to play a role in specifying Z-disk width, we also measured Z-disk width in nebulin KO mice. Results show that most Z-disks of KO mice were modestly increased in width (approximately 80 nm in soleus and approximately 40 nm in EDL fibers) whereas a small subset had severely increased widths (up to approximately 1 microm) and resembled nemaline rod bodies. In summary, structural studies on a nebulin KO mouse show that in the absence of nebulin, Z-disks are significantly wider and that myofibrils are misaligned. Thus the functional roles of nebulin extend beyond thin filament length regulation and include roles in maintaining physiological Z-disk widths and myofibrillar connectivity.
Collapse
Affiliation(s)
- Paola Tonino
- Department of Physiology, University of Arizona, Tucson, Arizona 85724-5217, USA
| | | | | | | | | | | |
Collapse
|
65
|
Chandra M, Mamidi R, Ford S, Hidalgo C, Witt C, Ottenheijm C, Labeit S, Granzier H. Nebulin alters cross-bridge cycling kinetics and increases thin filament activation: a novel mechanism for increasing tension and reducing tension cost. J Biol Chem 2009; 284:30889-96. [PMID: 19736309 PMCID: PMC2781488 DOI: 10.1074/jbc.m109.049718] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/01/2009] [Indexed: 11/06/2022] Open
Abstract
Nebulin is a giant filamentous F-actin-binding protein ( approximately 800 kDa) that binds along the thin filament of the skeletal muscle sarcomere. Nebulin is one of the least well understood major muscle proteins. Although nebulin is usually viewed as a structural protein, here we investigated whether nebulin plays a role in muscle contraction by using skinned muscle fiber bundles from a nebulin knock-out (NEB KO) mouse model. We measured force-pCa (-log[Ca(2+)]) and force-ATPase relations, as well as the rate of tension re-development (k(tr)) in tibialis cranialis muscle fibers. To rule out any alterations in troponin (Tn) isoform expression and/or status of Tn phosphorylation, we studied fiber bundles that had been reconstituted with bacterially expressed fast skeletal muscle recombinant Tn. We also performed a detailed analysis of myosin heavy chain, myosin light chain, and myosin light chain 2 phosphorylation, which showed no significant differences between wild type and NEB KO. Our mechanical studies revealed that NEB KO fibers had increased tension cost (5.9 versus 4.4 pmol millinewtons(-1) mm(-1) s(-1)) and reductions in k(tr) (4.7 versus 7.3 s(-1)), calcium sensitivity (pCa(50) 5.74 versus 5.90), and cooperativity of activation (n(H) 3.64 versus 4.38). Our findings indicate the following: 1) in skeletal muscle nebulin increases thin filament activation, and 2) through altering cross-bridge cycling kinetics, nebulin increases force and efficiency of contraction. These novel properties of nebulin add a new level of understanding of skeletal muscle function and provide a mechanism for the severe muscle weakness in patients with nebulin-based nemaline myopathy.
Collapse
Affiliation(s)
- Murali Chandra
- the Department of VCAPP, Washington State University, Pullman, Washington 99163, and
| | - Ranganath Mamidi
- the Department of VCAPP, Washington State University, Pullman, Washington 99163, and
| | - Steven Ford
- the Department of VCAPP, Washington State University, Pullman, Washington 99163, and
| | - Carlos Hidalgo
- From the Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724-5217
| | - Christian Witt
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Coen Ottenheijm
- From the Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724-5217
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Henk Granzier
- From the Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724-5217
| |
Collapse
|
66
|
Luther PK. The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. J Muscle Res Cell Motil 2009; 30:171-85. [PMID: 19830582 PMCID: PMC2799012 DOI: 10.1007/s10974-009-9189-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/23/2009] [Indexed: 02/04/2023]
Abstract
The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc.
Collapse
Affiliation(s)
- Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
67
|
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89:1217-67. [PMID: 19789381 PMCID: PMC3076733 DOI: 10.1152/physrev.00017.2009] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3-4 MDa), nebulin (600-800 kDa), and obscurin (approximately 720-900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a "molecular template," "molecular blueprint," or "molecular ruler" is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis.
Collapse
|
68
|
Skwarek-Maruszewska A, Hotulainen P, Mattila PK, Lappalainen P. Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. J Cell Sci 2009; 122:2119-26. [DOI: 10.1242/jcs.046805] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to the highly dynamic actin cytoskeleton in non-muscle cells, actin filaments in muscle sarcomeres are thought to be relatively stable and undergo dynamics only at their ends. However, many proteins that promote rapid actin dynamics are also expressed in striated muscles. We show that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, we found that turnover of these filaments depends on contractility of the cardiomyocytes. Studies using an actin-polymerization inhibitor suggest that the pool of dynamic actin filaments is composed of filaments that do not contribute to contractility. Furthermore, we provide evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. These data indicate that an excess of actin filaments is produced during sarcomere assembly, and that contractility is applied to recognize non-productive filaments that are subsequently destined for depolymerization. Consequently, contractility-induced actin dynamics plays an important role in sarcomere maturation.
Collapse
Affiliation(s)
| | - Pirta Hotulainen
- Institute of Biotechnology, PO Box 56, 00014, University of Helsinki, Finland
| | - Pieta K. Mattila
- Institute of Biotechnology, PO Box 56, 00014, University of Helsinki, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, PO Box 56, 00014, University of Helsinki, Finland
| |
Collapse
|
69
|
A nebulin ruler does not dictate thin filament lengths. Biophys J 2009; 96:1856-65. [PMID: 19254544 DOI: 10.1016/j.bpj.2008.10.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 10/28/2008] [Indexed: 11/21/2022] Open
Abstract
To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01-1.03 mum from the Z-line, but Tmod localized 1.13-1.31 mum from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly.
Collapse
|
70
|
Gokhin DS, Bang ML, Zhang J, Chen J, Lieber RL. Reduced thin filament length in nebulin-knockout skeletal muscle alters isometric contractile properties. Am J Physiol Cell Physiol 2009; 296:C1123-32. [PMID: 19295172 DOI: 10.1152/ajpcell.00503.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nebulin (NEB) is a large, rod-like protein believed to dictate actin thin filament length in skeletal muscle. NEB gene defects are associated with congenital nemaline myopathy. The functional role of NEB was investigated in gastrocnemius muscles from neonatal wild-type (WT) and NEB knockout (NEB-KO) mice, whose thin filaments have uniformly shorter lengths compared with WT mice. Isometric stress production in NEB-KO skeletal muscle was reduced by 27% compared with WT skeletal muscle on postnatal day 1 and by 92% on postnatal day 7, consistent with functionally severe myopathy. NEB-KO muscle was also more susceptible to a decline in stress production during a bout of 10 cyclic isometric tetani. Length-tension properties in NEB-KO muscle were altered in a manner consistent with reduced thin filament length, with length-tension curves from NEB-KO muscle demonstrating a 7.4% narrower functional range and an optimal length reduced by 0.13 muscle lengths. Expression patterns of myosin heavy chain isoforms and total myosin content did not account for the functional differences between WT and NEB-KO muscle. These data indicate that NEB is essential for active stress production, maintenance of functional integrity during cyclic activation, and length-tension properties consistent with a role in specifying normal thin filament length. Continued analysis of NEB's functional properties will strengthen the understanding of force transmission and thin filament length regulation in skeletal muscle and may provide insights into the molecular processes that give rise to nemaline myopathy.
Collapse
Affiliation(s)
- David S Gokhin
- Dept. of Orthopaedic Surgery, University of California-San Diego and Veterans Affairs Medical Center, San Diego, CA 92161, USA
| | | | | | | | | |
Collapse
|
71
|
Conover GM, Henderson SN, Gregorio CC. A myopathy-linked desmin mutation perturbs striated muscle actin filament architecture. Mol Biol Cell 2008; 20:834-45. [PMID: 19005210 DOI: 10.1091/mbc.e08-07-0753] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Desmin interacts with nebulin establishing a direct link between the intermediate filament network and sarcomeres at the Z-discs. Here, we examined a desmin mutation, E245D, that is located within the coil IB (nebulin-binding) region of desmin and that has been reported to cause human cardiomyopathy and skeletal muscle atrophy. We show that the coil IB region of desmin binds to C-terminal nebulin (modules 160-164) with high affinity, whereas binding of this desmin region containing the E245D mutation appears to enhance its interaction with nebulin in solid-phase binding assays. Expression of the desmin-E245D mutant in myocytes displaces endogenous desmin and C-terminal nebulin from the Z-discs with a concomitant increase in the formation of intracellular aggregates, reminiscent of a major histological hallmark of desmin-related myopathies. Actin filament architecture was strikingly perturbed in myocytes expressing the desmin-E245D mutant because most sarcomeres contained elongated or shorter actin filaments. Our findings reveal a novel role for desmin intermediate filaments in modulating actin filament lengths and organization. Collectively, these data suggest that the desmin E245D mutation interferes with the ability of nebulin to precisely regulate thin filament lengths, providing new insights into the potential molecular consequences of expression of certain disease-associated desmin mutations.
Collapse
Affiliation(s)
- Gloria M Conover
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
72
|
Yamashiro S, Cox EA, Baillie DL, Hardin JD, Ono S. Sarcomeric actin organization is synergistically promoted by tropomodulin, ADF/cofilin, AIP1 and profilin in C. elegans. J Cell Sci 2008; 121:3867-77. [PMID: 18984629 DOI: 10.1242/jcs.040477] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sarcomeric organization of thin and thick filaments in striated muscle is important for the efficient generation of contractile forces. Sarcomeric actin filaments are uniform in their lengths and regularly arranged in a striated pattern. Tropomodulin caps the pointed end of actin filaments and is a crucial regulator of sarcomere assembly. Here, we report unexpected synergistic functions of tropomodulin with enhancers of actin filament dynamics in Caenorhabditis elegans striated muscle. Pointed-end capping by tropomodulin inhibited actin filament depolymerization by ADF/cofilin in vitro. However, in vivo, the depletion of tropomodulin strongly enhanced the disorganization of sarcomeric actin filaments in ADF/cofilin mutants, rather than antagonistically suppressing the phenotype. Similar phenotypic enhancements by tropomodulin depletion were also observed in mutant backgrounds for AIP1 and profilin. These in vivo effects cannot be simply explained by antagonistic effects of tropomodulin and ADF/cofilin in vitro. Thus, we propose a model in which tropomodulin and enhancers of actin dynamics synergistically regulate elongation and shortening of actin filaments at the pointed end.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
73
|
Littlefield RS, Fowler VM. Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin Cell Dev Biol 2008; 19:511-9. [PMID: 18793739 DOI: 10.1016/j.semcdb.2008.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 08/19/2008] [Indexed: 01/18/2023]
Abstract
The actin (thin) filaments in striated muscle are highly regulated and precisely specified in length to optimally overlap with the myosin (thick) filaments for efficient myofibril contraction. Here, we review and critically discuss recent evidence for how thin filament lengths are controlled in vertebrate skeletal, vertebrate cardiac, and invertebrate (arthropod) sarcomeres. Regulation of actin polymerization dynamics at the slow-growing (pointed) ends by the capping protein tropomodulin provides a unified explanation for how thin filament lengths are physiologically optimized in all three muscle types. Nebulin, a large protein thought to specify thin filament lengths in vertebrate skeletal muscle through a ruler mechanism, may not control pointed-end actin dynamics directly, but instead may stabilize a large core region of the thin filament. We suggest that this stabilizing function for nebulin modifies the lengths primarily specified by pointed-end actin dynamics to generate uniform filament lengths in vertebrate skeletal muscle. We suggest that nebulette, a small homolog of nebulin, may stabilize a correspondingly shorter core region and allow individual thin filament lengths to vary according to working sarcomere lengths in vertebrate cardiac muscle. We present a unified model for thin filament length regulation where these two mechanisms cooperate to tailor thin filament lengths for specific contractile environments in diverse muscles.
Collapse
Affiliation(s)
- Ryan S Littlefield
- Center for Cell Dynamics, University of Washington, Friday Harbor Laboratories, Friday Harbor, WA 98250, USA
| | | |
Collapse
|
74
|
Cooper JA, Sept D. New insights into mechanism and regulation of actin capping protein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:183-206. [PMID: 18544499 DOI: 10.1016/s1937-6448(08)00604-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The heterodimeric actin capping protein, referred to here as "CP," is an essential element of the actin cytoskeleton, binding to the barbed ends of actin filaments and regulating their polymerization. In vitro, CP has a critical role in the dendritic nucleation process of actin assembly mediated by Arp2/3 complex, and in vivo, CP is important for actin assembly and actin-based process of morphogenesis and differentiation. Recent studies have provided new insight into the mechanism of CP binding the barbed end, which raises new possibilities for the dynamics of CP and actin in cells. In addition, a number of molecules that bind and regulate CP have been discovered, suggesting new ideas for how CP may integrate into diverse processes of cell physiology.
Collapse
Affiliation(s)
- John A Cooper
- Department of Cell Biology, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|