51
|
Prognostic and Therapeutic Significance of Circulating Tumor Cell Phenotype Detection Based on Epithelial-Mesenchymal Transition Markers in Early and Midstage Colorectal Cancer First-Line Chemotherapy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2294562. [PMID: 34777560 PMCID: PMC8580652 DOI: 10.1155/2021/2294562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022]
Abstract
Purpose Epithelial-mesenchymal transition (EMT) is related to the process of metastasis and challenges the detection of circulating tumor cells (CTCs) based on epithelial cell adhesion molecules. Circulating tumor cells (CTCs) have been proven to be a prognostic indicator of colorectal cancer (CRC). Although there is evidence that CTC heterogeneity based on EMT markers is associated with disease progression, no standard recommendations have been established for clinical practice. This study is aimed at evaluating the prognostic significance of dynamic CTC detection based on EMT for early and midstage colorectal cancer patients. Methods 101 patients with early to midterm CRC were admitted from January 2016 to September 2018. All patients underwent CRC radical surgery and standard chemotherapy. Patients in the postchemotherapy were able to epithelial mesenchymal transformed (EMT) CTC testing in peripheral blood using the CanPatrol™ system. Multiple CTC tests were performed according to patient's own condition and different follow-up time points. Based on patient's basic information and follow-up data, the Kaplan-Meier method was utilized to establish the progression-free survival model, and the log-rank test was utilized to compare the survival rates between the two groups. Result Total CTC change of the patient is the best method to predict whether progression-free survival progresses in tumor patients (Area = 0.857). The second detection of total number of CTCs (P < 0.01) detected after chemotherapy, epithelial CTCs (P = 0.032), the increased total number of CTCs (P < 0.01), and the increased number of mesenchymal CTCs (P = 0.015) are significantly related with patient's poor progression-free survival. Conclusion Analysis of the second CTC count and classification after follow-up are more related to the survival prognosis of the tumor. The joint analysis of CTC dynamic monitoring data is a good tool to judge patient's survival prognosis.
Collapse
|
52
|
Shi Y, Ge X, Ju M, Zhang Y, Di X, Liang L. Circulating Tumor Cells in Esophageal Squamous Cell Carcinoma - Mini Review. Cancer Manag Res 2021; 13:8355-8365. [PMID: 34764697 PMCID: PMC8577339 DOI: 10.2147/cmar.s337489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
Esophageal cancer has high incidence and mortality rates and a low five-year survival rate of <15% owing to its strong capabilities of invasion, relapse and metastasis. The classic view holds that metastasis and diffusion is an advanced event during cancer progression, but recent studies show that distant diffusion of primary cancer cells may actually be an early event. Detection of circulating tumor cells (CTCs) in the circulation may indicate tumor spread, so CTCs are considered to be the key factor of metastatic cascade. In recent years, despite research progress on CTCs, there is a lack of systematic and important evidence to confirm the diagnostic, monitoring and prognostic values of CTCs in esophageal squamous cell carcinoma (ESCC). In this review, we clarify the relationship between CTC values and ESCC and provide more reliable evidence to improve the management and treatment of ESCC.
Collapse
Affiliation(s)
- Yujing Shi
- Jurong People's Hospital, Zhenjiang, 212400, People's Republic of China
| | - Xiaolin Ge
- Jiangsu Provincial People's Hospital, Nanjing, 212000, People's Republic of China
| | - Mengyang Ju
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
| | - Yumeng Zhang
- Nanjing Medical University, Nanjing, 212000, People's Republic of China
| | - Xiaoke Di
- Jiangsu Provincial People's Hospital, Nanjing, 212000, People's Republic of China
| | - Liang Liang
- Jurong People's Hospital, Zhenjiang, 212400, People's Republic of China
| |
Collapse
|
53
|
Li J. Significance of Circulating Tumor Cells in Nonsmall-Cell Lung Cancer Patients: Prognosis, Chemotherapy Efficacy, and Survival. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2680526. [PMID: 34795881 PMCID: PMC8594996 DOI: 10.1155/2021/2680526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Introduction We aimed to evaluate whether circulating tumor cells (CTCs) were the prognostic indicator responsible for chemotherapy and survival of NSCLC patients. Methods Between January 2013 and September 2017, CTCs in the peripheral blood of histologically confirmed stages III and IV NSCLC patients were collected. Blood specimens were obtained on the first day of treatment, chemotherapy 2 and 4 cycles, or targeted therapy 1 and 2 months for CTCs detection. The positive CTC status was defined as one or more CTCs per 7.5 ml. Results 100 patients were enrolled, of which 48 patients (48%) were identified to be CTC positive at baseline. A higher CTC-positive rate was observed in stage IV NSCLC patients than stage III patients (69% vs. 40%, P=0.015). CTC cluster was significantly correlated with disease control rate. Based on the baseline CTC number, patients were divided into low CTC levels (<4 CTCs, LL) and high CTC levels (≥4 CTCs, HL). There was clinically significant shorter median OS and OS (overall survival) and PFS (progression-free survival) in HL group patients (P < 0.001). Conclusions The positive association between the CTC number and survival suggested that the baseline CTC number and changes during treatment might be the prognostic information of response rate and overall survival in Chinese patients suffering stage III/IV NSCLC.
Collapse
Affiliation(s)
- Jianpeng Li
- Department of Oncology People's Hospital of Xintai City, Xintai Hospital Affiliated to Shandong First Medical University, No. 1329 Xinpu Road, Xintai 271200, Shandong, China
| |
Collapse
|
54
|
Hepatocellular carcinoma: metastatic pathways and extra-hepatic findings. Abdom Radiol (NY) 2021; 46:3698-3707. [PMID: 34091729 DOI: 10.1007/s00261-021-03151-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023]
Abstract
Although a small portion of patients with hepatocellular carcinoma (HCC) have radiologically evident extrahepatic disease at the initial presentation, a larger number of them develop metastatic disease later during the course of treatment or after definitive treatment. Furthermore, early metastatic disease could be overlooked by imaging due to small size and non-specificity of findings. Extrahepatic spread of HCC occurs via different pathways and is directly fueled by tumor biology and its molecular characteristics. Early and accurate detection of extrahepatic disease in patients with HCC has significant impact on management and selection of treatment options. Additionally, precise staging of disease will allow for better prediction of survival and outcome. Different pathways of regional and systemic spread of HCC with their proposed mechanisms and relevant underlying molecular derangement will be discussed in this article. Potential roles in management of patients with HCC will be discussed and reviewed in this article.
Collapse
|
55
|
Zhang H, Lin X, Huang Y, Wang M, Cen C, Tang S, Dique MR, Cai L, Luis MA, Smollar J, Wan Y, Cai F. Detection Methods and Clinical Applications of Circulating Tumor Cells in Breast Cancer. Front Oncol 2021; 11:652253. [PMID: 34150621 PMCID: PMC8208079 DOI: 10.3389/fonc.2021.652253] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Circulating Tumor Cells (CTCs) are cancer cells that split away from the primary tumor and appear in the circulatory system as singular units or clusters, which was first reported by Dr. Thomas Ashworth in 1869. CTCs migrate and implantation occurs at a new site, in a process commonly known as tumor metastasis. In the case of breast cancer, the tumor cells often migrate into locations such as the lungs, brain, and bones, even during the early stages, and this is a notable characteristic of breast cancer. Survival rates have increased significantly over the past few decades because of progress made in radiology and tissue biopsy, making early detection and diagnosis of breast cancer possible. However, liquid biopsy, particularly that involving the collection of CTCs, is a non-invasive method to detect tumor cells in the circulatory system, which can be easily isolated from human plasma, serum, and other body fluids. Compared to traditional tissue biopsies, fluid sample collection has the advantages of being readily available and more acceptable to the patient. It can also detect tumor cells in blood earlier and in smaller numbers, possibly allowing for diagnosis prior to any tumor detection using imaging methods. Because of the scarcity of CTCs circulating in blood vessels (only a few CTCs among billions of erythrocytes and leukocytes), thorough but accurate detection methods are particularly important for further clinical applications.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Minghong Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chunmei Cen
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shasha Tang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Marcia R Dique
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Manuel A Luis
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jillian Smollar
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Yuan Wan
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
56
|
Fukuyama S, Kumamoto S, Nagano S, Hitotsuya S, Yasuda K, Kitamura Y, Iwatsuki M, Baba H, Ihara T, Nakanishi Y, Nakashima Y. Detection of cancer cells in whole blood using a dynamic deformable microfilter and a nucleic acid aptamer. Talanta 2021; 228:122239. [DOI: 10.1016/j.talanta.2021.122239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/22/2023]
|
57
|
Enhancing Prediction Performance by Add-On Combining Circulating Tumor Cell Count, CD45 neg EpCAM neg Cell Count on Colorectal Cancer, Advance, and Metastasis. Cancers (Basel) 2021; 13:cancers13112521. [PMID: 34063929 PMCID: PMC8196640 DOI: 10.3390/cancers13112521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Information describing circulating tumor cells (CTCs) holds promise for clinical applications. However, conventional CTCs enumeration could ignore the CTCs more relevant to cancer metastasis. Thus, negative selection CTC enumeration was proposed, by which information on the numbers of CTCs and CD45neg EpCAMneg cells can be obtained. By combining this approach with the conventional biomarker carcinoembryonic antigen (CEA), this study aimed to explore whether any combination of these biomarkers could improve the predictive performance for colorectal cancer (CRC) or its status. Results revealed that a combination of the two cell populations showed improved performance (AUROC: 0.893) for CRC prediction over the use of only one population. Compared with CEA alone, the combination of the three biomarkers increased the performance (AUROC) for advanced CRC prediction from 0.643 to 0.727. Compared with that of CEA alone for metastatic CRC prediction, the AUROC was increased from 0.780 to 0.837 when the CTC count was included. Abstract Conventional circulating tumor cell (CTC) enumeration could ignore the CTCs more relevant to cancer metastasis. Thus, negative selection CTC enumeration was proposed, by which information on two cellular biomarkers (numbers of CTCs and CD45neg EpCAMneg cells) can be obtained. By combining this approach with the conventional biomarker carcinoembryonic antigen (CEA), this study aimed to explore whether any combination of these biomarkers could improve the predictive performance for colorectal cancer (CRC) or its status. In this work, these two cell populations in healthy donors and CRC patients were quantified. Results revealed that enumeration of these two cell populations was able to discriminate healthy donors from CRC patients, even patients with non-advanced CRC. Moreover, the combination of the two cell populations showed improved performance (AUROC: 0.893) for CRC prediction over the use of only one population. Compared with CEA alone, the combination of the three biomarkers increased the performance (AUROC) for advanced CRC prediction from 0.643 to 0.727. Compared with that of CEA alone for metastatic CRC prediction, the AUROC was increased from 0.780 to 0.837 when the CTC count was included. Overall, this study demonstrated that the combination of these two cellular biomarkers with CEA improved the predictive performance for CRC and its status.
Collapse
|
58
|
Alix-Panabieres C, Magliocco A, Cortes-Hernandez LE, Eslami-S Z, Franklin D, Messina JL. Detection of cancer metastasis: past, present and future. Clin Exp Metastasis 2021; 39:21-28. [PMID: 33961169 DOI: 10.1007/s10585-021-10088-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/20/2021] [Indexed: 12/23/2022]
Abstract
The clinical importance of metastatic spread of cancer has been recognized for centuries, and melanoma has loomed large in historical descriptions of metastases, as well as the numerous mechanistic theories espoused. The "fatal black tumor" described by Hippocrates in 5000 BC that was later termed "melanose" by Rene Laennec in 1804 was recognized to have the propensity to metastasize by William Norris in 1820. And while the prognosis of melanoma was uniformly acknowledged to be dire, Samuel Cooper described surgical removal as having the potential to improve prognosis. Subsequent to this, in 1898 Herbert Snow was the first to recognize the potential clinical benefit of removing clinically normal lymph nodes at the time of initial cancer surgery. In describing "anticipatory gland excision," he noted that "it is essential to remove, whenever possible, those lymph glands which first receive the infective protoplasm, and bar its entrance into the blood, before they have undergone increase in bulk". This revolutionary concept marked the beginning of a debate that rages today: are regional lymph nodes the first stop for metastases ("incubator" hypothesis) or does their involvement serve as an indicator of aggressive disease with inherent metastatic potential ("marker" hypothesis). Is there a better way to improve prediction of disease outcome? This article attempts to address some of the resultant questions that were the subject of the session "Novel Frontiers in the Diagnosis of Cancer" at the 8th International Congress on Cancer Metastases, held in San Francisco, CA in October 2019. Some of these questions addressed include the significance of sentinel node metastasis in melanoma, and the optimal method for their pathologic analysis. The finding of circulating tumor cells in the blood may potentially supplant surgical techniques for detection of metastatic disease, and we are beginning to perfect techniques for their detection, understand how to apply the findings clinically, and develop clinical followup treatment algorithms based on these results. Finally, we will discuss the revolutionary field of machine learning and its applications in cancer diagnosis. Computer-based learning algorithms have the potential to improve efficiency and diagnostic accuracy of pathology, and can be used to develop novel predictors of prognosis, but significant challenges remain. This review will thus encompass latest concepts in the detection of cancer metastasis via the lymphatic system, the circulatory system, and the role of computers in enhancing our knowledge in this field.
Collapse
Affiliation(s)
- Catherine Alix-Panabieres
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | | | | | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | | | - Jane L Messina
- Moffitt Cancer Center, Department of Pathology, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
59
|
Balázs K, Antal L, Sáfrány G, Lumniczky K. Blood-Derived Biomarkers of Diagnosis, Prognosis and Therapy Response in Prostate Cancer Patients. J Pers Med 2021; 11:296. [PMID: 33924671 PMCID: PMC8070149 DOI: 10.3390/jpm11040296] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is among the most frequent cancers in men worldwide. Despite the fact that multiple therapeutic alternatives are available for its treatment, it is often discovered in an advanced stage as a metastatic disease. Prostate cancer screening is based on physical examination of prostate size and prostate-specific antigen (PSA) level in the blood as well as biopsy in suspect cases. However, these markers often fail to correctly identify the presence of cancer, or their positivity might lead to overdiagnosis and consequent overtreatment of an otherwise silent non-progressing disease. Moreover, these markers have very limited if any predictive value regarding therapy response or individual risk for therapy-related toxicities. Therefore, novel, optimally liquid biopsy-based (blood-derived) markers or marker panels are needed, which have better prognostic and predictive value than the ones currently used in the everyday routine. In this review the role of circulating tumour cells, extracellular vesicles and their microRNA content, as well as cellular and soluble immunological and inflammation- related blood markers for prostate cancer diagnosis, prognosis and prediction of therapy response is discussed. A special emphasis is placed on markers predicting response to radiotherapy and radiotherapy-related late side effects.
Collapse
Affiliation(s)
| | | | | | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1221 Budapest, Hungary; (K.B.); (L.A.); (G.S.)
| |
Collapse
|
60
|
Integrated approaches for precision oncology in colorectal cancer: The more you know, the better. Semin Cancer Biol 2021; 84:199-213. [PMID: 33848627 DOI: 10.1016/j.semcancer.2021.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies accounting for approximately 10 % of worldwide cancer incidence and mortality. While early-stage CRC is mainly a preventable and curable disease, metastatic colorectal cancer (mCRC) remains an unmet clinical need. Moreover, about 25 % of CRC cases are diagnosed only at the metastatic stage. Despite the extensive molecular and functional knowledge on this disease, systemic therapy for mCRC still relies on traditional 5-fluorouracil (5-FU)-based chemotherapy regimens. On the other hand, targeted therapies and immunotherapy have shown effectiveness only in a limited subset of patients. For these reasons, there is a growing need to define the molecular and biological landscape of individual patients to implement novel, rationally driven, tailored therapies. In this review, we explore current and emerging approaches for CRC management such as genomic, transcriptomic and metabolomic analysis, the use of liquid biopsies and the implementation of patients' preclinical avatars. In particular, we discuss the contribution of each of these tools in elucidating patient specific features, with the aim of improving our ability in advancing the diagnosis and treatment of colorectal tumors.
Collapse
|
61
|
Trinidad CV, Tetlow AL, Bantis LE, Godwin AK. Reducing Ovarian Cancer Mortality Through Early Detection: Approaches Using Circulating Biomarkers. Cancer Prev Res (Phila) 2021; 13:241-252. [PMID: 32132118 DOI: 10.1158/1940-6207.capr-19-0184] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
More than two-thirds of all women diagnosed with epithelial ovarian cancer (EOC) will die from the disease (>14,000 deaths annually), a fact that has not changed considerably in the last three decades. Although the 5-year survival rates for most other solid tumors have improved steadily, ovarian cancer remains an exception, making it the deadliest of all gynecologic cancers and five times deadlier than breast cancer. When diagnosed early, treatment is more effective, with a 5-year survival rate of up to 90%. Unfortunately, most cases are not detected until after the cancer has spread, resulting in a dismal 5-year survival rate of less than 30%. Current screening methods for ovarian cancer typically use a combination of a pelvic examination, transvaginal ultrasonography, and serum cancer antigen 125 (CA125), but these have made minimal impact on improving mortality. Thus, there is a compelling unmet need to develop new molecular tools that can be used to diagnose early-stage EOC and/or assist in the clinical management of the disease after a diagnosis, given that more than 220,000 women are living with ovarian cancer in the United States and are at risk of recurrence. Here, we discuss the state of advancing liquid-based approaches for improving the early detection of ovarian cancer.See all articles in this Special Collection Honoring Paul F. Engstrom, MD, Champion of Cancer Prevention.
Collapse
Affiliation(s)
- Camille V Trinidad
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ashley L Tetlow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Leonidas E Bantis
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas. .,The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
62
|
Li F, Wang M, Cai H, He Y, Xu H, Liu Y, Zhao Y. Nondestructive capture, release, and detection of circulating tumor cells with cystamine-mediated folic acid decorated magnetic nanospheres. J Mater Chem B 2021; 8:9971-9979. [PMID: 33174893 DOI: 10.1039/d0tb01091j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circulating tumor cell (CTC) detection and enumeration have been considered as a noninvasive biopsy method for the diagnosis, characterization, and monitoring of various types of cancers. However, CTCs are exceptionally rare, which makes CTC detection technologically challenging. In the past few decades, much effort has been focused on highly efficient CTC capture, while the activity of CTCs has often been ignored. Here, we develop an effective method for nondestructive CTC capture, release, and detection. Folic acid (FA), as a targeting molecule, is conjugated on magnetic nanospheres through a cleavable disulfide bond-containing linker (cystamine) and a polyethylene glycol (PEG2k) linker, forming MN@Cys@PEG2k-FA nanoprobes, which can bind with folate receptor (FR) positive CTCs specifically and efficiently, leading to the capture of CTCs with an external magnetic field. When approximately 150 and 10 model CTCs were spiked in 1 mL of lysis blood, 93.1 ± 2.9% and 80.0 ± 9.7% CTCs were recovered, respectively. In total, 81.3 ± 2.6% captured CTCs can be released from MN@Cys@PEG2k-FA magnetic nanospheres by treatment with dithiothreitol. The released CTCs are easily identified from blood cells for specific detection and enumeration combined with immunofluorescence staining with a limit of detection of 10 CTC mL-1 lysed blood. Moreover, the released cells remain healthy with high viability (98.6 ± 0.78%) and can be cultured in vitro without detectable changes in morphology or behavior compared with healthy untreated cells. The high viability of the released CTCs may provide the possibility for downstream proteomics research of CTCs; therefore, cultured CTCs were collected for proteomics. As a result, 3504 proteins were identified. In conclusion, the MN@Cys@PEG2k-FA magnetic nanospheres prepared in this study may be a promising tool for early-stage cancer diagnosis and provide the possibility for downstream analysis of CTCs.
Collapse
Affiliation(s)
- Fulai Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Minning Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Huahuan Cai
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yaohui He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Yan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315221, P. R. China
| |
Collapse
|
63
|
Cho HY, Choi JH, Lim J, Lee SN, Choi JW. Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells. Cancers (Basel) 2021; 13:1385. [PMID: 33803846 PMCID: PMC8003176 DOI: 10.3390/cancers13061385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Detecting circulating tumor cells (CTCs) has been considered one of the best biomarkers in liquid biopsy for early diagnosis and prognosis monitoring in cancer. A major challenge of using CTCs is detecting extremely low-concentrated targets in the presence of high noise factors such as serum and hematopoietic cells. This review provides a selective overview of the recent progress in the design of microfluidic devices with optical sensing tools and their application in the detection and analysis of CTCs and their small malignant subset, circulating cancer stem cells (CCSCs). Moreover, discussion of novel strategies to analyze the differentiation of circulating cancer stem cells will contribute to an understanding of metastatic cancer, which can help clinicians to make a better assessment. We believe that the topic discussed in this review can provide brief guideline for the development of microfluidic-based optical biosensors in cancer prognosis monitoring and clinical applications.
Collapse
Affiliation(s)
- Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
- Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Korea
| | - Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| |
Collapse
|
64
|
Ding P, Wang Z, Wu Z, Zhu W, Liu L, Sun N, Pei R. Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells. J Mater Chem B 2021; 8:3408-3422. [PMID: 32022083 DOI: 10.1039/c9tb02457c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Analysis of circulating tumor cells (CTCs) can provide significant clinical information for tumors, which has proven to be helpful for cancer diagnosis, prognosis monitoring, treatment efficacy, and personalized therapy. However, CTCs are an extremely rare cell population, which challenges the isolation of CTCs from patient blood. Over the last few decades, many strategies for CTC detection have been developed based on the physical and biological properties of CTCs. Among them, nanostructured interfaces have been widely applied as CTC detection platforms to overcome the current limitations associated with CTC capture. Furthermore, aptamers have attracted significant attention in the detection of CTCs due to their advantages, including good affinity, low cost, easy modification, excellent stability, and low immunogenicity. In addition, effective and nondestructive release of CTCs can be achieved by aptamer-mediated methods that are used under mild conditions. Herein, we review some progress in the detection and release of CTCs through aptamer-functionalized nanostructured interfaces.
Collapse
Affiliation(s)
- Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
65
|
Prospective Comparison of the Prognostic Relevance of Circulating Tumor Cells in Blood and Disseminated Tumor Cells in Bone Marrow of a Single Patient's Cohort With Esophageal Cancer. Ann Surg 2021; 273:299-305. [PMID: 31188197 DOI: 10.1097/sla.0000000000003406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Aim of this prospective study was to evaluate the prognostic significance of disseminated tumor cells (DTCs) and circulating tumor cells (CTCs) in 1 cohort of patients with esophageal cancer (EC). BACKGROUND Hematogenous tumor cell dissemination is a key event in tumor progression, and clinical significance of DTCs and CTCs are controversially discussed in the literature. However, evaluation of both biomarker in 1 patient's cohort has not been described before. METHODS In this prospective, single-center study, 76 patients with preoperatively nonmetastatic staged EC were included. The CellSearch system was used to enumerate CTCs. Bone marrow was aspirated from the iliac crest and cells were enriched by Ficoll density gradient centrifugation. DTCs were immunostained with the pan-keratin antibody A45-B/B3. RESULTS Fifteen of 76 patients (19.7%) harbored CTCs, whereas in 13 of 76 patients (17.1%), DTCs could be detected. In only 3 patients (3.9%), CTCs and DTCs were detected simultaneously, whereas concordant results (DTC/CTC negative and DTC/CTC positive) were found in 54 patients (71.1%). Surprisingly, only patients with CTCs showed significant shorter overall and relapse-free survival (P = 0.038 and P = 0.004, respectively). Multivariate analyses revealed that only the CTC status was an independent predictor of overall and relapse-free survival (P = 0.007 and P < 0.001, respectively). CONCLUSIONS This is the first study analyzing CTC and DTC status in 1 cohort of nonmetastatic patients with EC. In this early disease stage, only the CTC status was an independent, prognostic marker suitable and easy to use for clinical staging of patients with EC.
Collapse
|
66
|
Gao W, Chen Y, Yang J, Zhuo C, Huang S, Zhang H, Shi Y. Clinical Perspectives on Liquid Biopsy in Metastatic Colorectal Cancer. Front Genet 2021; 12:634642. [PMID: 33584829 PMCID: PMC7876389 DOI: 10.3389/fgene.2021.634642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy, which generally refers to the analysis of biological components such as circulating nuclear acids and circulating tumor cells in body fluids, particularly in peripheral blood, has shown good capacity to overcome several limitations faced by conventional tissue biopsies. Emerging evidence in recent decades has confirmed the promising role of liquid biopsy in the clinical management of various cancers, including colorectal cancer, which is one of the most prevalent cancers and the second leading cause of cancer-related deaths worldwide. Despite the challenges and poor clinical outcomes, patients with metastatic colorectal cancer can expect potential clinical benefits with liquid biopsy. Therefore, in this review, we focus on the clinical prospects of liquid biopsy in metastatic colorectal cancer, specifically with regard to the recently discovered various biomarkers identified on liquid biopsy. These biomarkers have been shown to be potentially useful in multiple aspects of metastatic colorectal cancer, such as auxiliary diagnosis of metastasis, prognosis prediction, and monitoring of therapy response.
Collapse
Affiliation(s)
- Wei Gao
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yigui Chen
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jianwei Yang
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Changhua Zhuo
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Sha Huang
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Hui Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yi Shi
- Department of Molecular Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
67
|
Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol 2021; 18:297-312. [PMID: 33473219 DOI: 10.1038/s41571-020-00457-x] [Citation(s) in RCA: 710] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Historically, studies of disseminated tumour cells in bone marrow and circulating tumour cells in peripheral blood have provided crucial insights into cancer biology and the metastatic process. More recently, advances in the detection and characterization of circulating tumour DNA (ctDNA) have finally enabled the introduction of liquid biopsy assays into clinical practice. The FDA has already approved several single-gene assays and, more recently, multigene assays to detect genetic alterations in plasma cell-free DNA (cfDNA) for use as companion diagnostics matched to specific molecularly targeted therapies for cancer. These approvals mark a tipping point for the widespread use of liquid biopsy in the clinic, and mostly in patients with advanced-stage cancer. The next frontier for the clinical application of liquid biopsy is likely to be the systemic treatment of patients with 'ctDNA relapse', a term we introduce for ctDNA detection prior to imaging-detected relapse after curative-intent therapy for early stage disease. Cancer screening and diagnosis are other potential future applications. In this Perspective, we discuss key issues and gaps in technology, clinical trial methodologies and logistics for the eventual integration of liquid biopsy into the clinical workflow.
Collapse
|
68
|
Kitz J, Goodale D, Postenka C, Lowes LE, Allan AL. EMT-independent detection of circulating tumor cells in human blood samples and pre-clinical mouse models of metastasis. Clin Exp Metastasis 2021; 38:97-108. [PMID: 33415568 PMCID: PMC7882592 DOI: 10.1007/s10585-020-10070-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/25/2020] [Indexed: 01/31/2023]
Abstract
Circulating tumor cells (CTCs) present an opportunity to detect/monitor metastasis throughout disease progression. The CellSearch® is currently the only FDA-approved technology for CTC detection in patients. The main limitation of this system is its reliance on epithelial markers for CTC isolation/enumeration, which reduces its ability to detect more aggressive mesenchymal CTCs that are generated during metastasis via epithelial-to-mesenchymal transition (EMT). This Technical Note describes and validates two EMT-independent CTC analysis protocols; one for human samples using Parsortix® and one for mouse samples using VyCap. Parsortix® identifies significantly more mesenchymal human CTCs compared to the clinical CellSearch® test, and VyCap identifies significantly more CTCs compared to our mouse CellSearch® protocol regardless of EMT status. Recovery and downstream molecular characterization of CTCs is highly feasible using both Parsortix® and VyCap. The described CTC protocols can be used by investigators to study CTC generation, EMT and metastasis in both pre-clinical models and clinical samples.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
- Department of Anatomy & Cell Biology, Western University, London, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
| | - Carl Postenka
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
| | - Lori E Lowes
- Flow Cytometry, London Health Sciences Centre, London, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, Canada.
- Department of Anatomy & Cell Biology, Western University, London, Canada.
- Department of Oncology, Western University, London, Canada.
- Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
69
|
Yu Y, Lin ZX, Li HW, Luo HQ, Yang DH, Zhou HC, Jiang DX, Zhan DC, Yang L, Liang XY, Yu ZH, Chen ZH. Circulating Tumor Cells and Fibronectin 1 in the Prognosis of Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820909911. [PMID: 32281480 PMCID: PMC7155241 DOI: 10.1177/1533033820909911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: Nasopharyngeal carcinoma is highly endemic in Southeast China. Circulating tumor cell is an important biomarker in the prognosis of variety kinds of cancers. Overexpression of fibronectin 1 was observed in variety kinds of malignancies and may contribute to progress and metastasis of the cancers. The current study was aimed to investigate phenotypes of circulating tumor cell in nasopharyngeal carcinoma blood and fibronectin 1 expression in the circulating tumor cell, and their clinical application in predicting nasopharyngeal carcinoma prognosis. Methods: Blood samples were obtained from nasopharyngeal carcinoma patients before and after treatment. CanPatrol circulating tumor cell enrichment and RNA in situ hybridization were applied to identify circulating tumor cell and its phenotypes. Fibronectin 1 messenger RNA expression in the cells of circulating tumors was examined by messenger RNA-in situ hybridization. Results: Circulating tumor cell was not associated with tumor characteristics or lymph node metastasis. Patients with >9 circulating tumor cells or >5 mesenchymal phenotype circulating tumor cell per 5-mL blood had poorer progression-free survival (P < .05). Multivariable analysis demonstrated that 2 or more mesenchymal phenotype circulating tumor cells with high fibronectin 1 messenger RNA expression predicted shorter progression-free survival (P < .05). Conclusions: Circulating tumor cells with high-level fibronectin 1 expression was associated with poor survival in patients with nasopharyngeal carcinoma and could be an independent prognostic factor for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ying Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhi-Xiu Lin
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hai-Wen Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hai-Qing Luo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dong-Hong Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - He-Chao Zhou
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dan-Xian Jiang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - De-Chao Zhan
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liu Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiao-Ye Liang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhong-Hua Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zi-Hong Chen
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
70
|
Czaplicka M, Niciński K, Nowicka A, Szymborski T, Chmielewska I, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Effect of Varying Expression of EpCAM on the Efficiency of CTCs Detection by SERS-Based Immunomagnetic Optofluidic Device. Cancers (Basel) 2020; 12:cancers12113315. [PMID: 33182636 PMCID: PMC7697545 DOI: 10.3390/cancers12113315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In this work we present a magnetically supported SERS-based immunoassay based on solid SERS-active support for the detection of circulating tumor cells. The SERS response in our optofluidic device was correlated with the level of EpCAM expression. The level of EpCAM cell expression in four cell lines with relatively high (human metastatic prostate adenocarcinoma cells (LNCaP)), medium (human metastatic prostate adenocarcinoma cells (LNCaP)), weak (human metastatic prostate adenocarcinoma cells (LNCaP)), and no EpCAM expressions (cervical cancer cells (HeLa) has been estimated using Western Blot method supported by immunochemistry and correlated with responses of immunomagnetic SERS-based analysis. The capture efficiency of developed assay was investigated in metastatic lung cancer patients. The assay demonstrates the capability to detect circulating tumor cells from blood samples over a broad linear range (from 1 to 100 cells/mL) reflecting clinically relevant amount of CTCs depending on the stage of metastasis, age, applied therapy. Abstract The circulating tumor cells (CTCs) isolation and characterization has a great potential for non-invasive biopsy. In the present research, the surface–enhanced Raman spectroscopy (SERS)-based assay utilizing magnetic nanoparticles and solid SERS-active support integrated in the external field assisted microfluidic device was designed for efficient isolation of CTCs from blood samples. Magnetic nanospheres (Fe2O3) were coated with SERS-active metal and then modified with p-mercaptobenzoic acid (p-MBA) which works simultaneously as a Raman reporter and linker to an antiepithelial-cell-adhesion-molecule (anti-EpCAM) antibodies. The newly developed laser-induced SERS-active silicon substrate with a very strong enhancement factor (up to 108) and high stability and reproducibility provide the additional extra-enhancement in the sandwich plasmonic configuration of immune assay which finally leads to increase the efficiency of detection. The sensitive immune recognition of cancer cells is assisted by the introducing of the controllable external magnetic field into the microfluidic chip. Moreover, the integration of the SERS-active platform and p-MBA-labeled immuno-Ag@Fe2O3 nanostructures with microfluidic device offers less sample and analytes demand, precise operation, increase reproducibly of spectral responses, and enables miniaturization and portability of the presented approach. In this work, we have also investigated the effect of varying expression of the EpCAM established by the Western Blot method supported by immunochemistry on the efficiency of CTCs’ detection with the developed SERS method. We used four target cancer cell lines with relatively high (human metastatic prostate adenocarcinoma cells (LNCaP)), medium (human metastatic prostate adenocarcinoma cells (LNCaP)), weak (human metastatic prostate adenocarcinoma cells (LNCaP)), and no EpCAM expressions (cervical cancer cells (HeLa)) to estimate the limits of detection based on constructed calibration curves. Finally, blood samples from lung cancer patients were used to validate the efficiency of the developed method in clinical trials.
Collapse
Affiliation(s)
- Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Krzysztof Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Ariadna Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Izabela Chmielewska
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland;
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.T.-D.); (A.G.)
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.T.-D.); (A.G.)
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
- Correspondence:
| |
Collapse
|
71
|
Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. LAB ON A CHIP 2020; 20:3854-3875. [PMID: 33107879 DOI: 10.1039/d0lc00577k] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
72
|
Avram L, Stefancu A, Crisan D, Leopold N, Donca V, Buzdugan E, Craciun R, Andras D, Coman I. Recent advances in surface-enhanced Raman spectroscopy based liquid biopsy for colorectal cancer (Review). Exp Ther Med 2020; 20:213. [PMID: 33149777 DOI: 10.3892/etm.2020.9342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
As colorectal cancer (CRC) is one of the forms of cancer with the highest prevalence globally and with a high mortality, screening and early detection remains a major issue. Colonoscopy is still the gold standard for detecting premalignant lesions, but it is burdened by some complications. For instance, it is laborious, with some difficulties of acceptance for some patients, and is ultimately an imperfect standard, given that some premalignant lesions or incipient malignancies can be missed by colonoscopic evaluation. In this context, new non-invasive approaches such as surface-enhanced Raman spectroscopy (SERS) based liquid biopsy have gained ground in recent years, showing promising results in oncological pathology diagnosis. These new methods have enabled the detection of subtle molecular profile alterations prior to any macroscopic morphological changes, thus providing a useful tool for early CRC detection. In the present review, we provide a summary of published studies applying SERS in CRC detection, along with our personal experience in using SERS in the diagnosis of different oncological pathologies, including CRC.
Collapse
Affiliation(s)
- Lucretia Avram
- Medical Specialities Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, 'Babe?-Bolyai' University, 400084 Cluj-Napoca, Romania
| | - Dana Crisan
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, 'Babe?-Bolyai' University, 400084 Cluj-Napoca, Romania.,MEDFUTURE Research Center for Advanced Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Valer Donca
- Medical Specialities Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Elena Buzdugan
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Rares Craciun
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - David Andras
- Surgery Department, 1st Surgery Clinic, 'Iuliu Hatieganu'University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioan Coman
- Urology Department,'Iuliu Hatieganu'University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
73
|
Rossi E, Zin A, Facchinetti A, Poggiana C, Tombolan L, Affinita MC, Bonvini P, Santoro L, Schiavi F, Bisogno G, Zamarchi R. Liquid Biopsy in Pediatric Renal Cancer: Stage I and Stage IV Cases Compared. Diagnostics (Basel) 2020; 10:E810. [PMID: 33053902 PMCID: PMC7599903 DOI: 10.3390/diagnostics10100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022] Open
Abstract
Pediatric renal cancer is rare, and robust evidence for treatment recommendations is lacking. In the perspective of personalized medicine, clinicians need new biomarkers to improve risk stratification and patients' follow-up. Herein, we analyzed some liquid biopsy tools, which have been never tested in pediatric renal cancer: namely, circulating tumor cells (CTCs); the expression of M30, an apoptosis marker, to test CTC metastatic potential; and c-MET expression in CTCs, because of its role in renal cancer progression and drug-resistance. Furthermore, we evaluated the Circulating Endothelial Cells (CECs), whose utility we previously demonstrated in adult metastatic renal cancer treated with anti-angiogenic therapy. We compared two renal cell carcinomas of clear-cell type, stage I and IV, which underwent surgery and surgery plus Sunitinib, respectively. Baseline CTC level and its changes during follow-up were consistent with patients' outcome. In case 2, stage IV, the analysis of CECs performed during Sunitinib revealed a late response to treatment consistent with poor outcome, as the finding of M30-negative, viable cells. Noteworthily, few CTCs were MET-positive in both cases. Our study highlights the feasibility for a change in the prognostic approach and follow-up of childhood renal cancer, with a view to guide a better treatment design.
Collapse
Affiliation(s)
- Elisabetta Rossi
- Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padua, Italy; (E.R.); (A.F.)
- Veneto Institute of Oncology IOV—IRCCS, Padua, Italy; (C.P.); (F.S.)
| | - Angelica Zin
- Institute of Pediatric Research, Fondazione Città della Speranza, Padua, Italy; (A.Z.); (L.T.); (P.B.)
| | - Antonella Facchinetti
- Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padua, Italy; (E.R.); (A.F.)
- Veneto Institute of Oncology IOV—IRCCS, Padua, Italy; (C.P.); (F.S.)
| | - Cristina Poggiana
- Veneto Institute of Oncology IOV—IRCCS, Padua, Italy; (C.P.); (F.S.)
| | - Lucia Tombolan
- Institute of Pediatric Research, Fondazione Città della Speranza, Padua, Italy; (A.Z.); (L.T.); (P.B.)
| | - Maria Carmen Affinita
- Department of Woman’s and Children’s Health, Hematology and Oncology Unit, University of Padua, Padua, Italy; (M.C.A.); (G.B.)
| | - Paolo Bonvini
- Institute of Pediatric Research, Fondazione Città della Speranza, Padua, Italy; (A.Z.); (L.T.); (P.B.)
| | - Luisa Santoro
- University Hospital of Padova, Institute of Pathology, Padua, Italy;
| | - Francesca Schiavi
- Veneto Institute of Oncology IOV—IRCCS, Padua, Italy; (C.P.); (F.S.)
| | - Gianni Bisogno
- Department of Woman’s and Children’s Health, Hematology and Oncology Unit, University of Padua, Padua, Italy; (M.C.A.); (G.B.)
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV—IRCCS, Padua, Italy; (C.P.); (F.S.)
| |
Collapse
|
74
|
Ahrens TD, Bang-Christensen SR, Jørgensen AM, Løppke C, Spliid CB, Sand NT, Clausen TM, Salanti A, Agerbæk MØ. The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Front Cell Dev Biol 2020; 8:749. [PMID: 32984308 PMCID: PMC7479181 DOI: 10.3389/fcell.2020.00749] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are accessible by liquid biopsies via an easy blood draw. They represent not only the primary tumor site, but also potential metastatic lesions, and could thus be an attractive supplement for cancer diagnostics. However, the analysis of rare CTCs in billions of normal blood cells is still technically challenging and novel specific CTC markers are needed. The formation of metastasis is a complex process supported by numerous molecular alterations, and thus novel CTC markers might be found by focusing on this process. One example of this is specific changes in the cancer cell glycocalyx, which is a network on the cell surface composed of carbohydrate structures. Proteoglycans are important glycocalyx components and consist of a protein core and covalently attached long glycosaminoglycan chains. A few CTC assays have already utilized proteoglycans for both enrichment and analysis of CTCs. Nonetheless, the biological function of proteoglycans on clinical CTCs has not been studied in detail so far. Therefore, the present review describes proteoglycan functions during the metastatic cascade to highlight their importance to CTCs. We also outline current approaches for CTC assays based on targeting proteoglycans by their protein cores or their glycosaminoglycan chains. Lastly, we briefly discuss important technical aspects, which should be considered for studying proteoglycans.
Collapse
Affiliation(s)
- Theresa D. Ahrens
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sara R. Bang-Christensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| | | | - Caroline Løppke
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte B. Spliid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Nicolai T. Sand
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas M. Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| |
Collapse
|
75
|
Circulating Tumour DNAs and Non-Coding RNAs as Liquid Biopsies for the Management of Colorectal Cancer Patients. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating tumour DNAs and non-coding RNAs present in body fluids have been under investigation as tools for cancer diagnosis, disease monitoring, and prognosis for many years. These so-called liquid biopsies offer the opportunity to obtain information about the molecular make-up of a cancer in a minimal invasive way and offer the possibility to implement theranostics for precision oncology. Furthermore, liquid biopsies could overcome the limitations of tissue biopsies in capturing the complexity of tumour heterogeneity within the primary cancer and among different metastatic sites. Liquid biopsies may also be implemented to detect early tumour formation or to monitor cancer relapse of response to therapy with greater sensitivity compared with the currently available protein-based blood biomarkers. Most colorectal cancers are often diagnosed at late stages and have a high mortality rate. Hence, biomolecules as nucleic acids present in liquid biopsies might have prognostic potential and could serve as predictive biomarkers for chemotherapeutic regimens. This review will focus on the role of circulating tumour DNAs and non-coding RNAs as diagnostic, prognostic, and predictive biomarkers in the context of colorectal cancer.
Collapse
|
76
|
Chen H, Li Y, Zhang Z, Wang S. Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications. BIOMICROFLUIDICS 2020; 14:041502. [PMID: 32849973 PMCID: PMC7440929 DOI: 10.1063/5.0005373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) are tumor cells detached from the original lesion and getting into the blood and lymphatic circulation systems. They potentially establish new tumors in remote areas, namely, metastasis. Isolation of CTCs and following biological molecular analysis facilitate investigating cancer and coming out treatment. Since CTCs carry important information on the primary tumor, they are vital in exploring the mechanism of cancer, metastasis, and diagnosis. However, CTCs are very difficult to separate due to their extreme heterogeneity and rarity in blood. Recently, advanced technologies, such as nanosurfaces, quantum dots, and Raman spectroscopy, have been integrated with microfluidic chips. These achievements enable the next generation isolation technologies and subsequent biological analysis of CTCs. In this review, we summarize CTCs' separation with microfluidic chips based on the principle of immunomagnetic isolation of CTCs. Fundamental insights, clinical applications, and potential future directions are discussed.
Collapse
Affiliation(s)
- Hongmei Chen
- School of Mathematics and Physics of Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yong Li
- School of Mathematics and Physics of Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhifeng Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
77
|
Yu H, Ma L, Zhu Y, Li W, Ding L, Gao H. Significant diagnostic value of circulating tumour cells in colorectal cancer. Oncol Lett 2020; 20:317-325. [PMID: 32565958 PMCID: PMC7285991 DOI: 10.3892/ol.2020.11537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Circulating tumour cells (CTCs) have potential utility in various clinical applications for cancer management. The present study focused on evaluating the diagnostic role of CTCs in colorectal cancer (CRC). A total of 89 blood samples from 59 patients diagnosed with CRC and 30 healthy individuals were collected for CTC detection. The Cyttel method is an improved CTC detection strategy, which combines negative enrichment with immunofluorescence and fluorescence in situ hybridization. This method effectively detected a significant increase in total CTCs in patients with CRC (49/59) compared with those in healthy controls (3/30). A cut-off value of 2 CTCs/3.2 ml blood yielded a sensitivity of 83.05% and a specificity of 100%. Additionally, three traditional serum tumour markers, namely carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9) and CA72-4, were examined by immunoassays. The diagnostic sensitivity of CTCs was much higher than that of CEA, CA19-9 and CA72-4 alone or in combination, particularly in patients with early stage CRC. The combined sensitivity of CTCs and CEA reached 91.53%, which was only slightly lower than the sensitivity of all four markers combined (CTCs + CEA + CA19-9 + CA72-4). CTCs with aneuploidy of chromosome 7 or 8 were carefully distinguished, and the associations among different types of CTCs, clinicopathological characteristics and overall survival were statistically analysed. Total CTCs were revealed to be significantly associated with tumour differentiation and nerve invasion. CTCs were more likely to be detected in poorly differentiated CRC tumours than in well- and moderately-differentiated tumours (P=0.026). Furthermore, to the best of our knowledge, the present study was the first to report that CTCs with multiploidy of chromosome 7 were significantly associated with TNM stage. These CTCs exhibited a high chance of being identified in the peripheral blood of patients with late-stage CRC (stage III-IV; P=0.031). The present study suggests that the combination of CTCs and CEA may serve as an effective potential diagnostic and prognostic indicator in patients with CRC. Detection of CTCs with aneuploidy may have increased specificity in predicting highly malignant and invasive tumours in CRC management.
Collapse
Affiliation(s)
- Haijiao Yu
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Ling Ma
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Yubing Zhu
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Wenxia Li
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Lei Ding
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Hong Gao
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
78
|
Chen F, Zhong Z, Tan HY, Wang N, Feng Y. The Significance of Circulating Tumor Cells in Patients with Hepatocellular Carcinoma: Real-Time Monitoring and Moving Targets for Cancer Therapy. Cancers (Basel) 2020; 12:1734. [PMID: 32610709 PMCID: PMC7408113 DOI: 10.3390/cancers12071734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is ranked as the sixth most common cancer around the world. With the emergence of the state-of-the-art modalities lately, such as liver transplantation, image-guided ablation, and chemoembolization, the death rate is still high due to high metastasis rate after therapy. Observation by biannual ultrasonography allows effective diagnosis at an early stage for candidates with no extrahepatic metastasis, but its effectiveness still remains unsatisfactory. Developing a new test with improved effectiveness and specificity is urgently needed for HCC diagnosis, especially for patients after first line therapy. Circulating tumor cells (CTCs) are a small sub-population of tumor cells in human peripheral blood, they release from the primary tumor and invade into the blood circulatory system, thereby residing into the distal tissues and survive. As CTCs have specific and aggressive properties, they can evade from immune defenses, induce gene alterations, and modulate signal transductions. Ultimately, CTCs can manipulate tumor behaviors and patient reactions to anti-tumor treatment. Given the fact that in HCC blood is present around the immediate vicinity of the tumor, which allows thousands of CTCs to release into the blood circulation daily, so CTCs are considered to be the main cause for HCC occurrence, and are also a pivotal factor for HCC prognosis. In this review, we highlight the characteristics and enrichment strategies of CTCs, and focus on the use of CTCs for tumor evaluation and management in patients with HCC.
Collapse
Affiliation(s)
| | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 852, China; (F.C.); (Z.Z.); (H.-Y.T.); (N.W.)
| |
Collapse
|
79
|
Batth IS, Dao L, Satelli A, Mitra A, Yi S, Noh H, Li H, Brownlee Z, Zhou S, Bond J, Wang J, Gill J, Sholler GS, Li S. Cell surface vimentin-positive circulating tumor cell-based relapse prediction in a long-term longitudinal study of postremission neuroblastoma patients. Int J Cancer 2020; 147:3550-3559. [PMID: 32506485 DOI: 10.1002/ijc.33140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is a deadly childhood disease that carries a 50% chance of relapse for anyone in remission and similar level of 5-year survival. We investigated the value of our proprietary approach-cell surface vimentin (CSV) positive circulating tumor cells (CTC) to monitor treatment response and predict relapse in NB patients under remission in a Phase II long-term preventative clinical trial. We longitudinally analyzed peripheral blood samples from 93 patients for 27 cycles (~25 months) and discovered that the presence of CSV+ CTCs in the first two sequential samples (baseline, cycle 4 [month 3-4]) was a significant indicator of earlier relapse. We observed strong correlation between relapse-free survival (RFS) and lack of CSV+ CTCs in first 4 cycles of therapy (95%). There was sensitivity reaching 100% in predicting RFS in patients who had neither CSV+ CTCs nor MycN amplification. Of note, the low number of CSV+ CTCs seems equivalent to low tumor load because the prevention therapy difluoromethylornithine yields faster reduction of relapse risk when none or only 1-2 CSV+ CTCs (every 6 mL) are present in the blood samples compared to >3 CSV+ CTCs. To the best of our knowledge, this is the first study that directly observes CTCs in under remission NB patients for relapse prediction and the first to gather sequential CSV+ CTC data in any study in a long-term longitudinal manner.
Collapse
Affiliation(s)
- Izhar S Batth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Long Dao
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arun Satelli
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhisek Mitra
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sofia Yi
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hyangsoon Noh
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heming Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zachary Brownlee
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shouhao Zhou
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey Bond
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Jing Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan Gill
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Giselle S Sholler
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
80
|
Netterberg I, Karlsson MO, Terstappen LWMM, Koopman M, Punt CJA, Friberg LE. Comparing Circulating Tumor Cell Counts with Dynamic Tumor Size Changes as Predictor of Overall Survival: A Quantitative Modeling Framework. Clin Cancer Res 2020; 26:4892-4900. [PMID: 32527941 DOI: 10.1158/1078-0432.ccr-19-2570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/04/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Quantitative relationships between treatment-induced changes in tumor size and circulating tumor cell (CTC) counts, and their links to overall survival (OS), are lacking. We present a population modeling framework identifying and quantifying such relationships, based on longitudinal data collected in patients with metastatic colorectal cancer (mCRC) to evaluate the value of tumor size and CTC counts as predictors of OS. EXPERIMENTAL DESIGN A pharmacometric approach (i.e., population pharmacodynamic modeling) was used to characterize the changes in tumor size and CTC count and evaluate them as predictors of OS in 451 patients with mCRC treated with chemotherapy and targeted therapy in a prospectively randomized phase III study (CAIRO2). RESULTS A tumor size model of tumor quiescence and drug resistance was used to characterize the tumor size time-course, and was, in addition to the total normalized dose (i.e., of all administered drugs) in a given cycle, related to the CTC counts through a negative binomial model (CTC model). Tumor size changes did not contribute additional predictive value when the mean CTC count was a predictor of OS. Treatment reduced the typical mean count from 1.43 to 0.477 (HR = 3.94). The modeling framework was applied to explore whether dose modifications (increased and reduced) would result in a CTC count below 1/7.5 mL after 1 to 2 weeks of treatment. CONCLUSIONS Time-varying CTC counts can be useful for early predicting OS in patients with mCRC, and may therefore have potential for model-based treatment individualization. Although tumor size was connected to CTC, its link to OS was weaker.
Collapse
Affiliation(s)
- Ida Netterberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mats O Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Lena E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
81
|
Zhu L, Hissa B, Győrffy B, Jann JC, Yang C, Reissfelder C, Schölch S. Characterization of Stem-like Circulating Tumor Cells in Pancreatic Cancer. Diagnostics (Basel) 2020; 10:E305. [PMID: 32429174 PMCID: PMC7278018 DOI: 10.3390/diagnostics10050305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/26/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most frequent cause of death from cancer. Circulating tumor cells (CTCs) with stem-like characteristics lead to distant metastases and thus contribute to the dismal prognosis of PDAC. Our purpose is to investigate the role of stemness in CTCs derived from a genetically engineered mouse model of PDAC and to further explore the potential molecular mechanisms. The publically available RNA sequencing dataset GSE51372 was analyzed, and CTCs with (CTC-S) or without (CTC-N) stem-like features were discriminated based on a principal component analysis (PCA). Differentially expressed genes, weighted gene co-expression network analysis (WGCNA), and further functional enrichment analyses were performed. The prognostic role of the candidate gene (CTNNB1) was assessed in a clinical PDAC patient cohort. Overexpression of the pluripotency marker Klf4 (Krüppel-like factor 4) in CTC-S cells positively correlates with Ctnnb1 (β-Catenin) expression, and their interaction presumably happens via protein-protein binding in the nucleus. As a result, the adherens junction pathway is significantly enriched in CTC-S. Furthermore, the overexpression of Ctnnb1 is a negative prognostic factor for progression-free survival (PFS) and relapse-free survival (RFS) in human PDAC cohort. Overexpression of Ctnnb1 may thus promote the metastatic capabilities of CTCs with stem-like properties via adherens junctions in murine PDAC.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
| | - Barbara Hissa
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary;
- TTK Cancer Biomarker Research Group, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Johann-Christoph Jann
- Department of Medicine III, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Cui Yang
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
- German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Schölch
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
- German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
82
|
Zhang Q, Xu K, Chen M, Miao Y, Wang N, Xu Z, Xu H. Circulating tumor cells in whole process management of gastrointestinal stromal tumor in a real-life setting. Saudi J Gastroenterol 2020; 26:160-167. [PMID: 32386192 PMCID: PMC7392290 DOI: 10.4103/sjg.sjg_24_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Liquid biopsy is changing the diagnosis and treatment strategies of various neoplasms. However, the circulating tumor cells (CTCs) of gastrointestinal stromal tumor (GIST) patients with different disease process are not clear. To better understand the dynamic change of CTCs in GIST patients, we conducted a real-life setting study. PATIENTS AND METHODS One-hundred fifty GIST patients were included. The isolation by size of tumor cell (ISET) method was employed to detect the CTCs/circulating tumor microemboli (CTM). Imatinib (IM) plasma concentration was detected by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Multivariate and univariate analysis were used to analyze the effects of clinical characteristics on the positive rate of CTC and the number of CTCs/CTM. RESULTS The positive rate of CTCs was 72%. The median number of CTCs and CTM was 4 and 0. Logistic multivariate regression analysis showed that tumor diameter was the only independent factor of the positive rate of CTCs (P < 0.05). The numbers of CTCs and CTM had intensive linear correlation (P < 0.001). Tumor diameter, Ki 67 expression and mitotic were related to the number of CTCs (P < 0.05). Patients with higher Ki 67 expression tend to have more CTM (P < 0.05). IM plasma concentration showed no influence to the CTCs/CTM (P > 0.05). CONCLUSIONS : In the current study, we assessed the CTCs and CTM of GIST patients in various disease progressions and identified clinicopathological factors influencing the detection of CTCs and CTM. These results are instructive for clinicians to understand CTCs/CTM in GIST patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Kangjing Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Ming Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nuofan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China,Address for correspondence: Dr. Hao Xu, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China. E-mail:
| |
Collapse
|
83
|
Yee-de León JF, Soto-García B, Aráiz-Hernández D, Delgado-Balderas JR, Esparza M, Aguilar-Avelar C, Wong-Campos JD, Chacón F, López-Hernández JY, González-Treviño AM, Yee-de León JR, Zamora-Mendoza JL, Alvarez MM, Trujillo-de Santiago G, Gómez-Guerra LS, Sánchez-Domínguez CN, Velarde-Calvillo LP, Abarca-Blanco A. Characterization of a novel automated microfiltration device for the efficient isolation and analysis of circulating tumor cells from clinical blood samples. Sci Rep 2020; 10:7543. [PMID: 32372001 PMCID: PMC7200708 DOI: 10.1038/s41598-020-63672-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The detection and analysis of circulating tumor cells (CTCs) may enable a broad range of cancer-related applications, including the identification of acquired drug resistance during treatments. However, the non-scalable fabrication, prolonged sample processing times, and the lack of automation, associated with most of the technologies developed to isolate these rare cells, have impeded their transition into the clinical practice. This work describes a novel membrane-based microfiltration device comprised of a fully automated sample processing unit and a machine-vision-enabled imaging system that allows the efficient isolation and rapid analysis of CTCs from blood. The device performance was characterized using four prostate cancer cell lines, including PC-3, VCaP, DU-145, and LNCaP, obtaining high assay reproducibility and capture efficiencies greater than 93% after processing 7.5 mL blood samples spiked with 100 cancer cells. Cancer cells remained viable after filtration due to the minimal shear stress exerted over cells during the procedure, while the identification of cancer cells by immunostaining was not affected by the number of non-specific events captured on the membrane. We were also able to identify the androgen receptor (AR) point mutation T878A from 7.5 mL blood samples spiked with 50 LNCaP cells using RT-PCR and Sanger sequencing. Finally, CTCs were detected in 8 out of 8 samples from patients diagnosed with metastatic prostate cancer (mean ± SEM = 21 ± 2.957 CTCs/mL, median = 21 CTCs/mL), demonstrating the potential clinical utility of this device.
Collapse
Affiliation(s)
| | | | | | - Jesús Rolando Delgado-Balderas
- Delee Corp., Mountain View, CA, 94041, USA.,Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | | | | | - J D Wong-Campos
- Delee Corp., Mountain View, CA, 94041, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | | | | | | | | | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico.,Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Lauro S Gómez-Guerra
- Servicio de Urología, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | - Celia N Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | | | | |
Collapse
|
84
|
Rivera-Báez L, Lohse I, Lin E, Raghavan S, Owen S, Harouaka R, Herman K, Mehta G, Lawrence TS, Morgan MA, Cuneo KC, Nagrath S. Expansion of Circulating Tumor Cells from Patients with Locally Advanced Pancreatic Cancer Enable Patient Derived Xenografts and Functional Studies for Personalized Medicine. Cancers (Basel) 2020; 12:cancers12041011. [PMID: 32326109 PMCID: PMC7225920 DOI: 10.3390/cancers12041011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Improvement in pancreatic cancer treatment represents an urgent medical goal that has been hampered by the lack of predictive biomarkers. Circulating Tumor Cells (CTCs) may be able to overcome this issue by allowing the monitoring of therapeutic response and tumor aggressiveness through ex vivo expansion. The successful expansion of CTCs is challenging, due to their low numbers in blood and the high abundance of blood cells. Here, we explored the utility of pancreatic CTC cultures as a preclinical model for treatment response. CTCs were isolated from ten patients with locally advanced pancreatic cancer using the Labyrinth, a biomarker independent, size based, inertial microfluidic separation device. Three patient-derived CTC samples were successfully expanded in adherent and spheroid cultures. Molecular and functional characterization was performed on the expanded CTC lines. CTC lines exhibited KRAS mutations, consistent with pancreatic cancers. Additionally, we evaluated take rate and metastatic potential in vivo and examined the utility of CTC lines for cytotoxicity assays. Patient derived expanded CTCs successfully generated patient derived xenograft (PDX) models with a 100% take rate. Our results demonstrate that CTC cultures are possible and provide a valuable resource for translational pancreatic cancer research, while also providing meaningful insight into the development of distant metastasis, as well as treatment resistance.
Collapse
Affiliation(s)
- Lianette Rivera-Báez
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; (L.R.-B.); (E.L.); (S.O.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ines Lohse
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (I.L.); (K.H.); (M.A.M.)
| | - Eric Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; (L.R.-B.); (E.L.); (S.O.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Sarah Owen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; (L.R.-B.); (E.L.); (S.O.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ramdane Harouaka
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA; (R.H.); (T.S.L.)
| | - Kirk Herman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (I.L.); (K.H.); (M.A.M.)
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA; (R.H.); (T.S.L.)
| | - Geeta Mehta
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Theodore S. Lawrence
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA; (R.H.); (T.S.L.)
| | - Meredith A. Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (I.L.); (K.H.); (M.A.M.)
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA; (R.H.); (T.S.L.)
| | - Kyle C. Cuneo
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (I.L.); (K.H.); (M.A.M.)
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA; (R.H.); (T.S.L.)
- Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Correspondence: (K.C.C.); (S.N.)
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; (L.R.-B.); (E.L.); (S.O.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA; (R.H.); (T.S.L.)
- Correspondence: (K.C.C.); (S.N.)
| |
Collapse
|
85
|
Alsohaibani F, Alquaiz M, Alkahtani K, Alashgar H, Peedikayil M, AlFadda A, Almadi M. Efficacy of a bismuth-based quadruple therapy regimen for Helicobacter pylori eradication in Saudi Arabia. Saudi J Gastroenterol 2020; 26:84-88. [PMID: 32295933 PMCID: PMC7279072 DOI: 10.4103/sjg.sjg_626_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIM The treatment efficacy of Helicobacter pylori (H. pylori) has been decreasing over time due to resistance to multiple antimicrobial therapies. The most effective treatment regimen for Saudi Arabian patients infected with H. pylori is still unknown. We aimed to study the eradication rate of 10 days of quadruple therapy; bismuth subcitrate potassium 140 mg, metronidazole 125 mg, and tetracycline 125 mg for H. pylori infection in a Saudi population. PATIENTS AND METHODS This was a prospective, open-label, non-randomized controlled trial. Patients with H. pylori infection were diagnosed by upper gastrointestinal (GI) endoscopy and rapid urease test (RUT) or histology. Patients who tested positive were recruited. Eligible patients were prescribed a 10-day course of quadruple therapy and received three capsules 4 times daily for 10 days along with omeprazole 20 mg twice daily. H. pylori was considered eradicated if the urea breath test (UBT) was negative after 6 weeks of completing the treatment. RESULTS Ninety-two patients with H. pylori infection were recruited. Three patients withdrew from the trial and another seven patients lost follow-up. We analyzed 82 patient's data as per-protocol analysis, of whom 66 (80%) were naive to H. pylori treatment. Four patients had failed previous treatment with the sequential regimen and 12 patients had treatment with clarithromycin-based triple therapy. The post-treatment UBT for H. pylori infection was negative by per-protocol analysis in 72/82 patients (87.8%), and 72/92 (78.3%) by intention-to-treat analysis. There was no correlation between previous treatment failure and treatment response to the bismuth-based quadruple therapy (P value = 0.28). CONCLUSIONS Treatment with a bismuth-based quadruple therapy was effective in eradicating H. pylori infection in 78.3% of Saudi patients with an ITT analysis and in 87.8% as per-protocol analysis.
Collapse
Affiliation(s)
- Fahad Alsohaibani
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia,Address for correspondence: Dr. Fahad Alsohaibani, Department of Medicine MBC # 46, King Faisal Specialist Hospital and Research Center, P.O Box 3354, Riyadh - 11211, Saudi Arabia. E-mail:
| | - Mohammed Alquaiz
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid Alkahtani
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alashgar
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Musthafa Peedikayil
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman AlFadda
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Majid Almadi
- Department of Medicine, Division of Gastroenterology, King Saud University Medical City, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
86
|
Optimization of rVAR2-Based Isolation of Cancer Cells in Blood for Building a Robust Assay for Clinical Detection of Circulating Tumor Cells. Int J Mol Sci 2020; 21:ijms21072401. [PMID: 32244341 PMCID: PMC7178266 DOI: 10.3390/ijms21072401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Early detection and monitoring of cancer progression is key to successful treatment. Therefore, much research is invested in developing technologies, enabling effective and valuable use of non-invasive liquid biopsies. This includes the detection and analysis of circulating tumor cells (CTCs) from blood samples. Recombinant malaria protein VAR2CSA (rVAR2) binds a unique chondroitin sulfate modification present on the vast majority of cancers and thereby holds promise as a near-universal tumor cell-targeting reagent to isolate CTCs from complex blood samples. This study describes a technical approach for optimizing the coupling of rVAR2 to magnetic beads and the development of a CTC isolation platform targeting a range of different cancer cell lines. We investigate both direct and indirect approaches for rVAR2-mediated bead retrieval of cancer cells and conclude that an indirect capture approach is most effective for rVAR2-based cancer cell retrieval.
Collapse
|
87
|
Wu S, Wang Y, Shi D. Positively Charged Magnetic Nanoparticles for Capture of Circulating Tumor Cells from Clinical Blood Samples. ACTA ACUST UNITED AC 2020. [DOI: 10.1142/s1793984419710016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Isolation of circulating tumor cells (CTCs) from cancer patients is of high value for disease monitoring and metastasis diagnosis. Although many new detection methods have emerged in recent years, the detection of CTCs is a current challenge due to lack of specific and sensitive markers. In our previous work, cancer cell surfaces, from over 20 cancer cell lines, have been shown to be negatively-charged regardless of their phenotype by using electrically-charged nanoparticles as a probe. The strong electrostatic interaction between the negative cancer cells and positively charged nanoparticles can well remain in a physiological liquid environment in the presence of serum proteins, enabling effective binding between them. As a result, the cancer cells can be magnetically separated by employing an external magnet. In this technical report, we present preliminary results on the investigation of CTC isolation from both mimetic and clinical blood samples. We show high CTC detection sensitivity by the positively-charged magnetic nanoparticles (PMNs) even at the original concentration of 10 cells per mL mimetic blood sample. The CTCs in the peripheral blood of colorectal cancer patients were isolated and identified by cellular morphology and immunofluorescence staining.
Collapse
Affiliation(s)
- Shengming Wu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Donglu Shi
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
88
|
Banys-Paluchowski M, Fehm T, Neubauer H, Paluchowski P, Krawczyk N, Meier-Stiegen F, Wallach C, Kaczerowsky A, Gebauer G. Clinical relevance of circulating tumor cells in ovarian, fallopian tube and peritoneal cancer. Arch Gynecol Obstet 2020; 301:1027-1035. [PMID: 32144573 PMCID: PMC7103005 DOI: 10.1007/s00404-020-05477-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/25/2020] [Indexed: 01/21/2023]
Abstract
Purpose Presence of circulating tumor cells (CTCs) is associated with impaired clinical outcome in several solid cancers. Limited data are available on the significance of CTCs in gynaecological malignancies. The aims of the present study were to evaluate the dynamics of CTCs in patients with ovarian, fallopian tube and peritoneal cancer during chemotherapy and to assess their clinical relevance. Methods 43 patients with ovarian, fallopian tube and peritoneal cancer were included into this prospective study. Patients received chemotherapy according to national guidelines. CTC analysis was performed using the CellSearch system prior to chemotherapy, after three and six cycles. Results In 26% of the patients, ≥ 1CTC per 7.5 ml of blood was detected at baseline (17% of patients with de novo disease, compared to 35% in recurrent patients). Presence of CTCs did not correlate with other factors. After three cycles of therapy, CTC positivity rate declined to 4.8%. After six cycles, no patient showed persistent CTCs. Patients with ≥ 1 CTC at baseline had significantly shorter overall survival and progression-free survival compared to CTC-negative patients (OS: median 3.1 months vs. not reached, p = 0.006, PFS: median 3.1 vs. 23.1 months, p = 0.005). When only the subgroup with newly diagnosed cancer was considered, the association between CTC status and survival was not significant (OS: mean 17.4 vs. 29.0 months, p = 0.192, PFS: 14.3 vs. 26.9 months, p = 0.085). Presence of ≥ 1 CTC after three cycles predicted shorter OS in the entire patient cohort (p < 0.001). Conclusions Hematogenous tumor cell dissemination is a common phenomenon in ovarian, fallopian tube and peritoneal cancer. CTC status before start of systemic therapy correlates with clinical outcome. Chemotherapy leads to a rapid decline in CTC counts; further research is needed to evaluate the clinical value of CTC monitoring after therapy.
Collapse
Affiliation(s)
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Peter Paluchowski
- Department of Gynecology and Obstetrics, Regio Klinik Pinneberg, Fahltskamp 74, 25421, Pinneberg, Germany
| | - Natalia Krawczyk
- Department of Obstetrics and Gynecology, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Franziska Meier-Stiegen
- Department of Obstetrics and Gynecology, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Charlotte Wallach
- Department of Gynecology and Obstetrics, Regio Klinik Pinneberg, Fahltskamp 74, 25421, Pinneberg, Germany
| | - Anna Kaczerowsky
- Department of Gynecology and Obstetrics, Marienkrankenhaus Hamburg, Alfredstr. 9, 22087, Hamburg, Germany
| | - Gerhard Gebauer
- Department of Gynecology and Obstetrics, Asklepios Klinik Barmbek, Rübenkamp 220, 22307, Hamburg, Germany.
| |
Collapse
|
89
|
Tada H, Takahashi H, Kuwabara-Yokobori Y, Shino M, Chikamatsu K. Molecular profiling of circulating tumor cells predicts clinical outcome in head and neck squamous cell carcinoma. Oral Oncol 2020; 102:104558. [DOI: 10.1016/j.oraloncology.2019.104558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/03/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
|
90
|
Jiang L, Feng JG, Wang G, Zhu YP, Ju HX, Li DC, Liu Y. Circulating guanylyl cyclase C (GCC) mRNA is a reliable metastatic predictor and prognostic index of colorectal cancer. Transl Cancer Res 2020; 9:1843-1850. [PMID: 35117531 PMCID: PMC8798717 DOI: 10.21037/tcr.2020.02.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022]
Abstract
Background Currently, few specific biomarkers or standard cutoff values are available for circulating tumor cells (CTCs) detection and survival prediction in patients with early stage colorectal cancer (CRC). Guanylyl cyclase C (GCC) presents as a specific expression in intestinal tumor cells and during their metastases, indicating its potential application as a metastatic predictor of CRC. Methods The circulating GCC mRNA of 160 colorectal cancer patients at stage I–III was detected via quantitative real-time (qRT)-PCR in our study, and the correlation of GCC mRNA level with tumor metastasis and long-term survival was explored. Results GCC mRNA was found to be positive in 43 out of 160 CRC patients and negative in ten healthy controls. It was found that GCC mRNA over the baseline (>100 copies/µL and 200 copies/µL) showed a significant correlation with disease-free survival (DFS) and overall survival (OS) in the stage II subgroup. It was further revealed that GCC mRNA over 300 copies/µL or higher than the median value of copy numbers was significantly correlated with reduced OS and DFS in CRC patients. A nomogram model based on variables including GCC mRNA copy number was established for predicting the OS of CRC patients (AUC =0.98). Conclusions Circulating GCC mRNA over baseline is a reliable predictor for tumor metastasis and can be a prognostic index in CRC patients.
Collapse
Affiliation(s)
- Lai Jiang
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Jian-Guo Feng
- Laboratory of Molecular Biology, Institute of Cancer Research and Basic Medical Sciences of the Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Gang Wang
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Yu-Ping Zhu
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Hai-Xing Ju
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - De-Chuan Li
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Yong Liu
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| |
Collapse
|
91
|
Aghamir SMK, Heshmat R, Ebrahimi M, Khatami F. Liquid Biopsy: The Unique Test for Chasing the Genetics of Solid Tumors. Epigenet Insights 2020; 13:2516865720904052. [PMID: 32166219 PMCID: PMC7050026 DOI: 10.1177/2516865720904052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Blood test is a kind of liquid biopsy that checks cancer cells or cancer nucleic acids circulating freely from cells in the blood. A liquid biopsy may be used to distinguish cancer at early stages and it could be a game-changer for both cancer diagnosis and prognosis strategies. Liquid biopsy tests consider several tumor components, such as DNA, RNA, proteins, and the tiny vesicles originating from tumor cells. Actually, liquid biopsy signifies the genetic alterations of tumors through nucleic acids or cells in various body fluids, including blood, urine, cerebrospinal fluid, or saliva in a noninvasive manner. In this review, we present an overall description of liquid biopsy in which circulating tumor cells, cell-free nucleic acids, exosomes, and extrachromosomal circular DNA are included.
Collapse
Affiliation(s)
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Internal Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran Iran
| | - Fatemeh Khatami
- Urology Research Center (URC), Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
92
|
Hasegawa N, Takeda Nakamura I, Ueno T, Kojima S, Kawazu M, Akaike K, Okubo T, Takagi T, Suehara Y, Hayashi T, Saito T, Kaneko K, Mano H, Kohsaka S. Detection of circulating sarcoma tumor cells using a microfluidic chip-type cell sorter. Sci Rep 2019; 9:20047. [PMID: 31882696 PMCID: PMC6934608 DOI: 10.1038/s41598-019-56377-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Analyses of circulating tumor cells have been shown to be effective for the detection of cancer relapse and prognosis prediction. However, research regarding its utility in sarcoma remains scarce. In this study, the microfluidic chip-type cell sorter On-chip Sort was used to construct a system for detecting circulating sarcoma cells (CSCs). A pilot study using normal fibroblast or sarcoma cell lines was designed to establish a reliable protocol to separate CSCs by On-chip Sort. A single CSC was separated and recovered from 10 ml of whole blood from a patient with locally advanced myxofibrosarcoma. The nonsynonymous mutation for KMT2B p.Ile2602Val identified in the formalin-fixed paraffin-embedded tumor sample was also confirmed in the CSC. Use of the developed protocol may allow CSCs to become an early predictor for metastasis and recurrence of sarcoma. Further, it may aid in optimizing post-operative therapies for patients without metastasis.
Collapse
Affiliation(s)
- Nobuhiko Hasegawa
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ikuko Takeda Nakamura
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tatsuya Takagi
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
93
|
Wu X, Bai Z, Wang L, Cui G, Yang M, Yang Q, Ma B, Song Q, Tian D, Ceyssens F, Puers R, Kraft M, Zhao W, Wen L. Magnetic Cell Centrifuge Platform Performance Study with Different Microsieve Pore Geometries. SENSORS (BASEL, SWITZERLAND) 2019; 20:E48. [PMID: 31861791 PMCID: PMC6983067 DOI: 10.3390/s20010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
The detection and analysis of circulating tumor cells (CTCs) plays a crucial role in clinical practice. However, the heterogeneity and rarity of CTCs make their capture and separation from peripheral blood very difficult while maintaining their structural integrity and viability. We previously demonstrated the effectiveness of the Magnetic Cell Centrifuge Platform (MCCP), which combined the magnetic-labeling cell separation mechanism with the size-based method. In this paper, a comparison of the effectiveness of different microsieve pore geometries toward MCCP is demonstrated to improve the yield of the target cell capture. Firstly, models of a trapped cell with rectangular and circular pore geometries are presented to compare the contact force using finite element numerical simulations. The device performance is then evaluated with both constant pressure and constant flow rate experimental conditions. In addition, the efficient isolation of magnetically labeled Hela cells with red fluorescent proteins (target cells) from Hela cells with green fluorescent protein (background cells) is validated. The experimental results show that the circular sieves yield 97% purity of the target cells from the sample with a throughput of up to 2 μL/s and 66-fold sample enrichment. This finding will pave the way for the design of a higher efficient MCCP systems.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Zhongyang Bai
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Lin Wang
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Guangchao Cui
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Mengzheng Yang
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Qing Yang
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Bo Ma
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qinglin Song
- Qingdao Goertek Microelectronics Research Institute Co., Ltd., Qingdao 266104, China
| | - Dewen Tian
- Qingdao Goertek Microelectronics Research Institute Co., Ltd., Qingdao 266104, China
| | - Frederik Ceyssens
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Robert Puers
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Michael Kraft
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Weisheng Zhao
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Lianggong Wen
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| |
Collapse
|
94
|
Christou N, Meyer J, Popeskou S, David V, Toso C, Buchs N, Liot E, Robert J, Ris F, Mathonnet M. Circulating Tumour Cells, Circulating Tumour DNA and Circulating Tumour miRNA in Blood Assays in the Different Steps of Colorectal Cancer Management, a Review of the Evidence in 2019. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5953036. [PMID: 31930130 PMCID: PMC6942724 DOI: 10.1155/2019/5953036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022]
Abstract
Despite many advances in the diagnosis and treatment of colorectal cancer (CRC), its incidence and mortality rates continue to make an impact worldwide and in some countries rates are mounting. Over the past decade, liquid biopsies have been the object of fundamental and clinical research with regard to the different steps of CRC patient care such as screening, diagnosis, prognosis, follow-up, and therapeutic response. They are attractive because they are considered to encompass both the cellular and molecular heterogeneity of tumours. They are easily accessible and can be applied to large-scale settings despite the cost. However, liquid biopsies face drawbacks in detection regardless of whether we are testing for circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), or miRNA. This review highlights the different advantages and disadvantages of each type of blood-based biopsy and underlines which specific one may be the most useful and informative for each step of CRC patient care.
Collapse
Affiliation(s)
- Niki Christou
- Endocrine, General and Digestive Surgery Department, CHU de Limoges, Limoges Cedex 87042, France
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Jeremy Meyer
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Sotirios Popeskou
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Valentin David
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| | - Christian Toso
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Nicolas Buchs
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Emilie Liot
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Joan Robert
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Frederic Ris
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Muriel Mathonnet
- Endocrine, General and Digestive Surgery Department, CHU de Limoges, Limoges Cedex 87042, France
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| |
Collapse
|
95
|
Herrera M, Galindo-Pumariño C, García-Barberán V, Peña C. A Snapshot of The Tumor Microenvironment in Colorectal Cancer: The Liquid Biopsy. Int J Mol Sci 2019; 20:ijms20236016. [PMID: 31795332 PMCID: PMC6929174 DOI: 10.3390/ijms20236016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular profile of liquid biopsies is emerging as an alternative to tissue biopsies in the clinical management of malignant diseases. In colorectal cancer, significant liquid biopsy-based biomarkers have demonstrated an ability to discriminate between asymptomatic cancer patients and healthy controls. Furthermore, this non-invasive approach appears to provide relevant information regarding the stratification of tumors with different prognoses and the monitoring of treatment responses. This review focuses on the tumor microenvironment components which are detected in blood samples of colorectal cancer patients and might represent potential biomarkers. Exosomes released by tumor and stromal cells play a major role in the modulation of cancer progression in the primary tumor microenvironment and in the formation of an inflammatory pre-metastatic niche. Stromal cells-derived exosomes are involved in driving mechanisms that promote tumor growth, migration, metastasis, and drug resistance, therefore representing substantial signaling mediators in the tumor-stroma interaction. Besides, recent findings of specifically packaged exosome cargo in Cancer-Associated Fibroblasts of colorectal cancer patients identify novel exosomal biomarkers with potential clinical applicability. Furthermore, additional different signals emitted from the tumor microenvironment and also detectable in the blood, such as soluble factors and non-tumoral circulating cells, arise as novel promising biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of these factors is still limited, and studies are in their infancy. However, innovative strategies aiming at the inhibition of tumor progression by systemic exosome depletion, exosome-mediated circulating tumor cell capturing, and exosome-drug delivery systems are currently being studied and may provide considerable advantages in the near future.
Collapse
Affiliation(s)
- Mercedes Herrera
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
| | - Vanesa García-Barberán
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| | - Cristina Peña
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| |
Collapse
|
96
|
Gupta R, Othman T, Chen C, Sandhu J, Ouyang C, Fakih M. Guardant360 Circulating Tumor DNA Assay Is Concordant with FoundationOne Next-Generation Sequencing in Detecting Actionable Driver Mutations in Anti-EGFR Naive Metastatic Colorectal Cancer. Oncologist 2019; 25:235-243. [PMID: 32162812 DOI: 10.1634/theoncologist.2019-0441] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Direct comparisons between Guardant360 (G360) circulating tumor DNA (ctDNA) and FoundationOne (F1) tumor biopsy genomic profiling in metastatic colorectal cancer (mCRC) are limited. We aim to assess the concordance across overlapping genes tested in both F1 and G360 in patients with mCRC. MATERIALS AND METHODS We retrospectively analyzed 75 patients with mCRC who underwent G360 and F1 testing. We evaluated the concordance among gene mutations tested by both G360 and F1 among three categories of patients: untreated, treated without, and treated with EGFR inhibitors, while considering the clonal and/or subclonal nature of each genomic alteration. RESULTS There was a high rate of concordance in APC, TP53, KRAS, NRAS, and BRAF mutations in the treatment-naive and non-anti-EGFR-treated cohorts. There was increased discordance in the anti-EGFR treated patients in three drivers of anti-EGFR resistance: KRAS, NRAS, and EGFR somatic mutations. Based on percentage of ctDNA, discordant somatic mutations were mostly subclonal instead of clonal and may have limited clinical significance. Most discordant amplifications noted on G360 showed the magnitude below the top decile, occurred in all three cohorts of patients, and were of unknown clinical significance. Serial ctDNA in anti-EGFR treated patients showed the emergence of multiple new alterations that affected the EGFR pathway: EGFR and RAS mutations and MET, RAS, and BRAF amplifications. CONCLUSION G360 Next-Generation Sequencing platform may be used as an alternative to F1 to detect targetable somatic alterations in non-anti-EGFR treated mCRC, but larger prospective studies are needed to further validate our findings. IMPLICATIONS FOR PRACTICE Genomic analysis of tissue biopsy is currently the optimal method for identifying DNA genomic alterations to help physicians target specific genes but has many disadvantages that may be mitigated by a circulating free tumor DNA (ctDNA) assay. This study showed a high concordance rate in certain gene mutations in patients who were treatment naive and treated with non-anti-EGFR therapy prior to ctDNA testing. This suggests that ctDNA genomic analysis may potentially be used as an alternative to tumor biopsy to identify appropriate patients for treatment selection in mCRC, but larger prospective studies are needed to further validate concordance among tissue and ctDNA tumor profiling.
Collapse
Affiliation(s)
- Rohan Gupta
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Tamer Othman
- Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Chen Chen
- Center for Informatics, City of Hope National Medical Center, Duarte, California, USA
| | - Jaideep Sandhu
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ching Ouyang
- Center for Informatics, City of Hope National Medical Center, Duarte, California, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, USA
| | - Marwan Fakih
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
97
|
Arrazubi V. ASO Author Reflections: Circulating Tumor Cell Count is a Prognostic Factor in Patients with Resected Colorectal Cancer Liver Metastases. Ann Surg Oncol 2019; 26:842. [DOI: 10.1245/s10434-019-08005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 11/18/2022]
|
98
|
Rikkert LG, van der Pol E, van Leeuwen TG, Nieuwland R, Coumans FAW. Centrifugation affects the purity of liquid biopsy-based tumor biomarkers. Cytometry A 2019; 93:1207-1212. [PMID: 30551256 PMCID: PMC6590195 DOI: 10.1002/cyto.a.23641] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023]
Abstract
Biomarkers in the blood of cancer patients include circulating tumor cells (CTCs), tumor-educated platelets (TEPs), tumor-derived extracellular vesicles (tdEVs), EV-associated miRNA (EV-miRNA), and circulating cell-free DNA (ccfDNA). Because the size and density of biomarkers differ, blood is centrifuged to isolate or concentrate the biomarker of interest. Here, we applied a model to estimate the effect of centrifugation on the purity of a biomarker according to published protocols. The model is based on the Stokes equation and was validated using polystyrene beads in buffer and plasma. Next, the model was applied to predict the biomarker behavior during centrifugation. The result was expressed as the recovery of CTCs, TEPs, tdEVs in three size ranges (1-8, 0.2-1, and 0.05-0.2 μm), EV-miRNA, and ccfDNA. Bead recovery was predicted with errors <18%. Most notable cofounders are the 22% contamination of 1-8 μm tdEVs for TEPs and the 8-82% contamination of <1 μm tdEVs for ccfDNA. A Stokes model can predict biomarker behavior in blood. None of the evaluated protocols produces a pure biomarker. Thus, care should be taken in the interpretation of obtained results, as, for example, results from TEPs may originate from co-isolated large tdEVs and ccfDNA may originate from DNA enclosed in <1 μm tdEVs. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Linda G Rikkert
- Medical Cell BioPhysics, University of Twente, Enschede, the Netherlands.,Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Clinical Chemistry, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands
| | - Edwin van der Pol
- Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, the Netherlands
| | - Ton G van Leeuwen
- Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Clinical Chemistry, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands
| | - Frank A W Coumans
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Clinical Chemistry, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands
| |
Collapse
|
99
|
Batth IS, Mitra A, Rood S, Kopetz S, Menter D, Li S. CTC analysis: an update on technological progress. Transl Res 2019; 212:14-25. [PMID: 31348892 PMCID: PMC6755047 DOI: 10.1016/j.trsl.2019.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
There is a growing need for a more accurate, real-time assessment of tumor status and the probability of metastasis, relapse, or response to treatment. Conventional means of assessment include imaging and tissue biopsies that can be highly invasive, may not provide complete information of the disease's heterogeneity, and not ideal for repeat analysis. Therefore, a less-invasive means of acquiring similar information at greater time points is necessary. Liquid biopsies are samples of a patients' peripheral blood and hold potential of addressing these criteria. Ongoing research has revealed that a tumor can release circulating cells, genetic materials (DNA or RNA), and exosomes into circulation. These potential biomarkers can be captured in a liquid biopsy and analyzed to determine disease status. To achieve these goals, numerous technologies have been developed. In this review, we discuss both prominent and newly developed technologies for circulating tumor cell capture and analysis and their clinical impact.
Collapse
Affiliation(s)
- Izhar S Batth
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhisek Mitra
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Scott Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - David Menter
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shulin Li
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
100
|
[Circulating tumor cells in pancreatic cancer : Results of morphological and molecular analyses and comparisons with the primary tumor]. DER PATHOLOGE 2019; 39:311-314. [PMID: 30483865 DOI: 10.1007/s00292-018-0550-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a disease with a poor prognosis. PDAC shows characteristic mutations within codon 12/13. Circulating tumor cells (CTC) detected in blood samples of patients with cancer are hypothesized as the means of systemic tumor spread. But less is known about morphological/molecular characteristics or the pathophysiological meaning of PDAC CTC. OBJECTIVES The aim of the study was a cytomorphological and genetic analysis of CTC from patients with PDAC followed by the correlation of the results with those of the corresponding tumor in the pancreas. MATERIAL AND METHODS Blood samples of 58 patients with PDAC and 10 "normal" control donors were processed through a size-based CTC isolation. KRAS-mutation analyses were performed for CTC and the primary tumor and the results were compared. Furthermore, their potential as a prognostic marker was evaluated. RESULTS In patients with different UICC stages CTC were detected, but not in normal control patients. There was a trend for a worse median overall survival (OS) for patients with >3 CTC/ml. Patients with a KRASG12V mutation showed a trend for a better median OS compared to those with other KRAS mutations (10 months) or even without KRAS mutation. Fifty-eight percent of the patients presented concordant KRAS mutations in the primary tumor and corresponding CTC, while 42% were discordant. The median OS for both groups was similar. CONCLUSIONS Detection and characterization of CTC (for example by KRAS mutation analysis) may be useful for prognosis. Furthermore, it expands our knowledge of tumor biology and may detect possible tumor heterogeneity regarding the mutation profile of some cancer types.
Collapse
|