51
|
Marino A, Sinaimeri B, Tronci E, Calamoneri T. STARGATE-X: a Python package for statistical analysis on the REACTOME network. J Integr Bioinform 2023; 20:jib-2022-0029. [PMID: 37732505 PMCID: PMC10757075 DOI: 10.1515/jib-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/24/2023] [Indexed: 09/22/2023] Open
Abstract
Many important aspects of biological knowledge at the molecular level can be represented by pathways. Through their analysis, we gain mechanistic insights and interpret lists of interesting genes from experiments (usually omics and functional genomic experiments). As a result, pathways play a central role in the development of bioinformatics methods and tools for computing predictions from known molecular-level mechanisms. Qualitative as well as quantitative knowledge about pathways can be effectively represented through biochemical networks linking the biochemical reactions and the compounds (e.g., proteins) occurring in the considered pathways. So, repositories providing biochemical networks for known pathways play a central role in bioinformatics and in systems biology. Here we focus on Reactome, a free, comprehensive, and widely used repository for biochemical networks and pathways. In this paper, we: (1) introduce a tool StARGate-X (STatistical Analysis of the Reactome multi-GrAph Through nEtworkX) to carry out an automated analysis of the connectivity properties of Reactome biochemical reaction network and of its biological hierarchy (i.e., cell compartments, namely, the closed parts within the cytosol, usually surrounded by a membrane); the code is freely available at https://github.com/marinoandrea/stargate-x; (2) show the effectiveness of our tool by providing an analysis of the Reactome network, in terms of centrality measures, with respect to in- and out-degree. As an example of usage of StARGate-X, we provide a detailed automated analysis of the Reactome network, in terms of centrality measures. We focus both on the subgraphs induced by single compartments and on the graph whose nodes are the strongly connected components. To the best of our knowledge, this is the first freely available tool that enables automatic analysis of the large biochemical network within Reactome through easy-to-use APIs (Application Programming Interfaces).
Collapse
Affiliation(s)
- Andrea Marino
- Computer Science Department, Sapienza University of Rome, Rome, Italy
| | | | - Enrico Tronci
- Computer Science Department, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
52
|
Baroukh C, Cottret L, Pires E, Peyraud R, Guidot A, Genin S. Insights into the metabolic specificities of pathogenic strains from the Ralstonia solanacearum species complex. mSystems 2023; 8:e0008323. [PMID: 37341493 PMCID: PMC10470067 DOI: 10.1128/msystems.00083-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/14/2023] [Indexed: 06/22/2023] Open
Abstract
All the strains grouped under the species Ralstonia solanacearum represent a species complex responsible for many diseases on agricultural crops throughout the world. The strains have different lifestyles and host range. Here, we investigated whether specific metabolic pathways contribute to strain diversification. To this end, we carried out systematic comparisons on 11 strains representing the diversity of the species complex. We reconstructed the metabolic network of each strain from its genome sequence and looked for the metabolic pathways differentiating the different reconstructed networks and, by extension, the different strains. Finally, we conducted an experimental validation by determining the metabolic profile of each strain with the Biolog technology. Results revealed that the metabolism is conserved between strains, with a core metabolism composed of 82% of the pan-reactome. The three species composing the species complex could be distinguished according to the presence/absence of some metabolic pathways, in particular, one involving salicylic acid degradation. Phenotypic assays revealed that the trophic preferences on organic acids and several amino acids such as glutamine, glutamate, aspartate, and asparagine are conserved between strains. Finally, we generated mutants lacking the quorum-sensing-dependent regulator PhcA in four diverse strains, and we showed that the phcA-dependent trade-off between growth and production of virulence factors is conserved across the R. solanacearum species complex. IMPORTANCE Ralstonia solanacearum is one of the most important threats to plant health worldwide, causing disease on a very large range of agricultural crops such as tomato or potato. Behind the R. solanacearum name are hundreds of strains with different host range and lifestyle, classified into three species. Studying the differences between strains allows to better apprehend the biology of the pathogens and the specificity of some strains. None of the published genomic comparative studies have focused on the metabolism of the strains so far. We developed a new bioinformatic pipeline to build high-quality metabolic networks and used a combination of metabolic modeling and high-throughput phenotypic Biolog microplates to look for the metabolic differences between 11 strains across the three species. Our study revealed that genes encoding enzymes are overall conserved, with few variations between strains. However, more variations were observed when considering substrate usage. These variations probably result from regulation rather than the presence or absence of enzymes in the genome.
Collapse
Affiliation(s)
- Caroline Baroukh
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Emma Pires
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Rémi Peyraud
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Alice Guidot
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
53
|
Davies C, Morgan AE, Mc Auley MT. Computationally Modelling Cholesterol Metabolism and Atherosclerosis. BIOLOGY 2023; 12:1133. [PMID: 37627017 PMCID: PMC10452179 DOI: 10.3390/biology12081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. The underlying pathological driver of CVD is atherosclerosis. The primary risk factor for atherosclerosis is elevated low-density lipoprotein cholesterol (LDL-C). Dysregulation of cholesterol metabolism is synonymous with a rise in LDL-C. Due to the complexity of cholesterol metabolism and atherosclerosis mathematical models are routinely used to explore their non-trivial dynamics. Mathematical modelling has generated a wealth of useful biological insights, which have deepened our understanding of these processes. To date however, no model has been developed which fully captures how whole-body cholesterol metabolism intersects with atherosclerosis. The main reason for this is one of scale. Whole body cholesterol metabolism is defined by macroscale physiological processes, while atherosclerosis operates mainly at a microscale. This work describes how a model of cholesterol metabolism was combined with a model of atherosclerotic plaque formation. This new model is capable of reproducing the output from its parent models. Using the new model, we demonstrate how this system can be utilized to identify interventions that lower LDL-C and abrogate plaque formation.
Collapse
Affiliation(s)
- Callum Davies
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester CH1 4BJ, UK;
| | - Amy E. Morgan
- School of Health & Sport Sciences, Liverpool Hope University, Liverpool L16 9JD, UK;
| | - Mark T. Mc Auley
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester CH1 4BJ, UK;
| |
Collapse
|
54
|
Bekiaris PS, Klamt S. Network-wide thermodynamic constraints shape NAD(P)H cofactor specificity of biochemical reactions. Nat Commun 2023; 14:4660. [PMID: 37537166 PMCID: PMC10400544 DOI: 10.1038/s41467-023-40297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
The ubiquitous coexistence of the redox cofactors NADH and NADPH is widely considered to facilitate an efficient operation of cellular redox metabolism. However, it remains unclear what shapes the NAD(P)H specificity of specific redox reactions. Here, we present a computational framework to analyze the effect of redox cofactor swaps on the maximal thermodynamic potential of a metabolic network and use it to investigate key aspects of redox cofactor redundancy in Escherichia coli. As one major result, our analysis suggests that evolved NAD(P)H specificities are largely shaped by metabolic network structure and associated thermodynamic constraints enabling thermodynamic driving forces that are close or even identical to the theoretical optimum and significantly higher compared to random specificities. Furthermore, while redundancy of NAD(P)H is clearly beneficial for thermodynamic driving forces, a third redox cofactor would require a low standard redox potential to be advantageous. Our approach also predicts trends of redox-cofactor concentration ratios and could facilitate the design of optimal redox cofactor specificities.
Collapse
Affiliation(s)
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany.
| |
Collapse
|
55
|
Jadebeck JF, Wiechert W, Nöh K. Practical sampling of constraint-based models: Optimized thinning boosts CHRR performance. PLoS Comput Biol 2023; 19:e1011378. [PMID: 37566638 PMCID: PMC10446239 DOI: 10.1371/journal.pcbi.1011378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/23/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Thinning is a sub-sampling technique to reduce the memory footprint of Markov chain Monte Carlo. Despite being commonly used, thinning is rarely considered efficient. For sampling constraint-based models, a highly relevant use-case in systems biology, we here demonstrate that thinning boosts computational and, thereby, sampling efficiencies of the widely used Coordinate Hit-and-Run with Rounding (CHRR) algorithm. By benchmarking CHRR with thinning with simplices and genome-scale metabolic networks of up to thousands of dimensions, we find a substantial increase in computational efficiency compared to unthinned CHRR, in our examples by orders of magnitude, as measured by the effective sample size per time (ESS/t), with performance gains growing with polytope (effective network) dimension. Using a set of benchmark models we derive a ready-to-apply guideline for tuning thinning to efficient and effective use of compute resources without requiring additional coding effort. Our guideline is validated using three (out-of-sample) large-scale networks and we show that it allows sampling convex polytopes uniformly to convergence in a fraction of time, thereby unlocking the rigorous investigation of hitherto intractable models. The derivation of our guideline is explained in detail, allowing future researchers to update it as needed as new model classes and more training data becomes available. CHRR with deliberate utilization of thinning thereby paves the way to keep pace with progressing model sizes derived with the constraint-based reconstruction and analysis (COBRA) tool set. Sampling and evaluation pipelines are available at https://jugit.fz-juelich.de/IBG-1/ModSim/fluxomics/chrrt.
Collapse
Affiliation(s)
- Johann F. Jadebeck
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
56
|
Tatka LT, Smith LP, Hellerstein JL, Sauro HM. Adapting modeling and simulation credibility standards to computational systems biology. J Transl Med 2023; 21:501. [PMID: 37496031 PMCID: PMC10369698 DOI: 10.1186/s12967-023-04290-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Computational models are increasingly used in high-impact decision making in science, engineering, and medicine. The National Aeronautics and Space Administration (NASA) uses computational models to perform complex experiments that are otherwise prohibitively expensive or require a microgravity environment. Similarly, the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have began accepting models and simulations as forms of evidence for pharmaceutical and medical device approval. It is crucial that computational models meet a standard of credibility when using them in high-stakes decision making. For this reason, institutes including NASA, the FDA, and the EMA have developed standards to promote and assess the credibility of computational models and simulations. However, due to the breadth of models these institutes assess, these credibility standards are mostly qualitative and avoid making specific recommendations. On the other hand, modeling and simulation in systems biology is a narrower domain and several standards are already in place. As systems biology models increase in complexity and influence, the development of a credibility assessment system is crucial. Here we review existing standards in systems biology, credibility standards in other science, engineering, and medical fields, and propose the development of a credibility standard for systems biology models.
Collapse
Affiliation(s)
- Lillian T Tatka
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Lucian P Smith
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
57
|
Mirveis Z, Howe O, Cahill P, Patil N, Byrne HJ. Monitoring and modelling the glutamine metabolic pathway: a review and future perspectives. Metabolomics 2023; 19:67. [PMID: 37482587 PMCID: PMC10363518 DOI: 10.1007/s11306-023-02031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Analysis of the glutamine metabolic pathway has taken a special place in metabolomics research in recent years, given its important role in cell biosynthesis and bioenergetics across several disorders, especially in cancer cell survival. The science of metabolomics addresses the intricate intracellular metabolic network by exploring and understanding how cells function and respond to external or internal perturbations to identify potential therapeutic targets. However, despite recent advances in metabolomics, monitoring the kinetics of a metabolic pathway in a living cell in situ, real-time and holistically remains a significant challenge. AIM This review paper explores the range of analytical approaches for monitoring metabolic pathways, as well as physicochemical modeling techniques, with a focus on glutamine metabolism. We discuss the advantages and disadvantages of each method and explore the potential of label-free Raman microspectroscopy, in conjunction with kinetic modeling, to enable real-time and in situ monitoring of the cellular kinetics of the glutamine metabolic pathway. KEY SCIENTIFIC CONCEPTS Given its important role in cell metabolism, the ability to monitor and model the glutamine metabolic pathways are highlighted. Novel, label free approaches have the potential to revolutionise metabolic biosensing, laying the foundation for a new paradigm in metabolomics research and addressing the challenges in monitoring metabolic pathways in living cells.
Collapse
Affiliation(s)
- Zohreh Mirveis
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland.
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological, Health and Sport Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
58
|
Belcour A, Got J, Aite M, Delage L, Collén J, Frioux C, Leblanc C, Dittami SM, Blanquart S, Markov GV, Siegel A. Inferring and comparing metabolism across heterogeneous sets of annotated genomes using AuCoMe. Genome Res 2023; 33:972-987. [PMID: 37468308 PMCID: PMC10629481 DOI: 10.1101/gr.277056.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/23/2023] [Indexed: 07/21/2023]
Abstract
Comparative analysis of genome-scale metabolic networks (GSMNs) may yield important information on the biology, evolution, and adaptation of species. However, it is impeded by the high heterogeneity of the quality and completeness of structural and functional genome annotations, which may bias the results of such comparisons. To address this issue, we developed AuCoMe, a pipeline to automatically reconstruct homogeneous GSMNs from a heterogeneous set of annotated genomes without discarding available manual annotations. We tested AuCoMe with three data sets, one bacterial, one fungal, and one algal, and showed that it successfully reduces technical biases while capturing the metabolic specificities of each organism. Our results also point out shared and divergent metabolic traits among evolutionarily distant algae, underlining the potential of AuCoMe to accelerate the broad exploration of metabolic evolution across the tree of life.
Collapse
Affiliation(s)
- Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France;
| | - Jeanne Got
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
| | - Méziane Aite
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France;
| |
Collapse
|
59
|
Mendes P. Reproducibility and FAIR principles: the case of a segment polarity network model. Front Cell Dev Biol 2023; 11:1201673. [PMID: 37346177 PMCID: PMC10279958 DOI: 10.3389/fcell.2023.1201673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
The issue of reproducibility of computational models and the related FAIR principles (findable, accessible, interoperable, and reusable) are examined in a specific test case. I analyze a computational model of the segment polarity network in Drosophila embryos published in 2000. Despite the high number of citations to this publication, 23 years later the model is barely accessible, and consequently not interoperable. Following the text of the original publication allowed successfully encoding the model for the open source software COPASI. Subsequently saving the model in the SBML format allowed it to be reused in other open source software packages. Submission of this SBML encoding of the model to the BioModels database enables its findability and accessibility. This demonstrates how the FAIR principles can be successfully enabled by using open source software, widely adopted standards, and public repositories, facilitating reproducibility and reuse of computational cell biology models that will outlive the specific software used.
Collapse
Affiliation(s)
- Pedro Mendes
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
60
|
Shin J, Porubsky V, Carothers J, Sauro HM. Standards, dissemination, and best practices in systems biology. Curr Opin Biotechnol 2023; 81:102922. [PMID: 37004298 PMCID: PMC10435326 DOI: 10.1016/j.copbio.2023.102922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
The reproducibility of scientific research is crucial to the success of the scientific method. Here, we review the current best practices when publishing mechanistic models in systems biology. We recommend, where possible, to use software engineering strategies such as testing, verification, validation, documentation, versioning, iterative development, and continuous integration. In addition, adhering to the Findable, Accessible, Interoperable, and Reusable modeling principles allows other scientists to collaborate and build off of each other's work. Existing standards such as Systems Biology Markup Language, CellML, or Simulation Experiment Description Markup Language can greatly improve the likelihood that a published model is reproducible, especially if such models are deposited in well-established model repositories. Where models are published in executable programming languages, the source code and their data should be published as open-source in public code repositories together with any documentation and testing code. For complex models, we recommend container-based solutions where any software dependencies and the run-time context can be easily replicated.
Collapse
Affiliation(s)
- Janis Shin
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Veronica Porubsky
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - James Carothers
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
61
|
Jenior ML, Glass EM, Papin JA. Reconstructor: a COBRApy compatible tool for automated genome-scale metabolic network reconstruction with parsimonious flux-based gap-filling. Bioinformatics 2023; 39:btad367. [PMID: 37279743 PMCID: PMC10275916 DOI: 10.1093/bioinformatics/btad367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
MOTIVATION Genome-scale metabolic network reconstructions (GENREs) are valuable for understanding cellular metabolism in silico. Several tools exist for automatic GENRE generation. However, these tools frequently (i) do not readily integrate with some of the widely-used suites of packaged methods available for network analysis, (ii) lack effective network curation tools, (iii) are not sufficiently user-friendly, and (iv) often produce low-quality draft reconstructions. RESULTS Here, we present Reconstructor, a user-friendly, COBRApy-compatible tool that produces high-quality draft reconstructions with reaction and metabolite naming conventions that are consistent with the ModelSEED biochemistry database and includes a gap-filling technique based on the principles of parsimony. Reconstructor can generate SBML GENREs from three input types: annotated protein .fasta sequences (Type 1 input), a BLASTp output (Type 2), or an existing SBML GENRE that can be further gap-filled (Type 3). While Reconstructor can be used to create GENREs of any species, we demonstrate the utility of Reconstructor with bacterial reconstructions. We demonstrate how Reconstructor readily generates high-quality GENRES that capture strain, species, and higher taxonomic differences in functional metabolism of bacteria and are useful for further biological discovery. AVAILABILITY AND IMPLEMENTATION The Reconstructor Python package is freely available for download. Complete installation and usage instructions and benchmarking data are available at http://github.com/emmamglass/reconstructor.
Collapse
Affiliation(s)
- Matthew L Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Emma M Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, United States
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
62
|
Contento L, Castelletti N, Raimúndez E, Le Gleut R, Schälte Y, Stapor P, Hinske LC, Hoelscher M, Wieser A, Radon K, Fuchs C, Hasenauer J. Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts. Epidemics 2023; 43:100681. [PMID: 36931114 PMCID: PMC10008049 DOI: 10.1016/j.epidem.2023.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors renders interpretation difficult and might even result in estimation biases. Here, we present a computational modelling framework that allows for the integration of reported case numbers with seroprevalence estimates obtained from representative population cohorts. To account for the time dependence of infection and testing rates, we embed flexible splines in an epidemiological model. The parameters of these splines are estimated, along with the other parameters, from the available data using a Bayesian approach. The application of this approach to the official case numbers reported for Munich (Germany) and the seroprevalence reported by the prospective COVID-19 Cohort Munich (KoCo19) provides first estimates for the time dependence of the under-reporting factor. Furthermore, we estimate how the effectiveness of non-pharmaceutical interventions and of the testing strategy evolves over time. Overall, our results show that the integration of temporally highly resolved and representative data is beneficial for accurate epidemiological analyses.
Collapse
Affiliation(s)
- Lorenzo Contento
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany.
| | - Noemi Castelletti
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Elba Raimúndez
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany; Center for Mathematics, Technische Universität München, Garching, Germany
| | - Ronan Le Gleut
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Core Facility Statistical Consulting, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Yannik Schälte
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Center for Mathematics, Technische Universität München, Garching, Germany
| | - Paul Stapor
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Center for Mathematics, Technische Universität München, Garching, Germany
| | - Ludwig Christian Hinske
- Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany; Center for International Health (CIH), University Hospital, LMU Munich, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Katja Radon
- German Center for Infection Research (DZIF), partner site Munich, Germany; Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center (CPC) Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Christiane Fuchs
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Core Facility Statistical Consulting, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Center for Mathematics, Technische Universität München, Garching, Germany; Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Jan Hasenauer
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany; Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Center for Mathematics, Technische Universität München, Garching, Germany
| |
Collapse
|
63
|
Bachman JA, Gyori BM, Sorger PK. Automated assembly of molecular mechanisms at scale from text mining and curated databases. Mol Syst Biol 2023; 19:e11325. [PMID: 36938926 PMCID: PMC10167483 DOI: 10.15252/msb.202211325] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
The analysis of omic data depends on machine-readable information about protein interactions, modifications, and activities as found in protein interaction networks, databases of post-translational modifications, and curated models of gene and protein function. These resources typically depend heavily on human curation. Natural language processing systems that read the primary literature have the potential to substantially extend knowledge resources while reducing the burden on human curators. However, machine-reading systems are limited by high error rates and commonly generate fragmentary and redundant information. Here, we describe an approach to precisely assemble molecular mechanisms at scale using multiple natural language processing systems and the Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA identifies full and partial overlaps in information extracted from published papers and pathway databases, uses predictive models to improve the reliability of machine reading, and thereby assembles individual pieces of information into non-redundant and broadly usable mechanistic knowledge. Using INDRA to create high-quality corpora of causal knowledge we show it is possible to extend protein-protein interaction databases and explain co-dependencies in the Cancer Dependency Map.
Collapse
Affiliation(s)
- John A Bachman
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonMAUSA
| | - Benjamin M Gyori
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonMAUSA
| | - Peter K Sorger
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonMAUSA
- Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
64
|
Sopic M, Robinson EL, Emanueli C, Srivastava P, Angione C, Gaetano C, Condorelli G, Martelli F, Pedrazzini T, Devaux Y. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res Cardiol 2023; 118:16. [PMID: 37140699 PMCID: PMC10158703 DOI: 10.1007/s00395-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.
Collapse
Affiliation(s)
- Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
- Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Darlington, DL1 1HG, UK
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Gianluigi Condorelli
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Arnold-Heller-Str.3, 24105, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097, Milan, Italy
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011, Lausanne, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.
| |
Collapse
|
65
|
Maeda K, Kurata H. Automatic Generation of SBML Kinetic Models from Natural Language Texts Using GPT. Int J Mol Sci 2023; 24:7296. [PMID: 37108453 PMCID: PMC10138937 DOI: 10.3390/ijms24087296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Kinetic modeling is an essential tool in systems biology research, enabling the quantitative analysis of biological systems and predicting their behavior. However, the development of kinetic models is a complex and time-consuming process. In this article, we propose a novel approach called KinModGPT, which generates kinetic models directly from natural language text. KinModGPT employs GPT as a natural language interpreter and Tellurium as an SBML generator. We demonstrate the effectiveness of KinModGPT in creating SBML kinetic models from complex natural language descriptions of biochemical reactions. KinModGPT successfully generates valid SBML models from a range of natural language model descriptions of metabolic pathways, protein-protein interaction networks, and heat shock response. This article demonstrates the potential of KinModGPT in kinetic modeling automation.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
| | | |
Collapse
|
66
|
Egert J, Kreutz C. Realistic simulation of time-course measurements in systems biology. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10570-10589. [PMID: 37322949 DOI: 10.3934/mbe.2023467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In systems biology, the analysis of complex nonlinear systems faces many methodological challenges. For the evaluation and comparison of the performances of novel and competing computational methods, one major bottleneck is the availability of realistic test problems. We present an approach for performing realistic simulation studies for analyses of time course data as they are typically measured in systems biology. Since the design of experiments in practice depends on the process of interest, our approach considers the size and the dynamics of the mathematical model which is intended to be used for the simulation study. To this end, we used 19 published systems biology models with experimental data and evaluated the relationship between model features (e.g., the size and the dynamics) and features of the measurements such as the number and type of observed quantities, the number and the selection of measurement times, and the magnitude of measurement errors. Based on these typical relationships, our novel approach enables suggestions of realistic simulation study designs in the systems biology context and the realistic generation of simulated data for any dynamic model. The approach is demonstrated on three models in detail and its performance is validated on nine models by comparing ODE integration, parameter optimization, and parameter identifiability. The presented approach enables more realistic and less biased benchmark studies and thereby constitutes an important tool for the development of novel methods for dynamic modeling.
Collapse
Affiliation(s)
- Janine Egert
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center - University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center - University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Data Analysis and Modelling (FDM), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
67
|
Aldulijan I, Beal J, Billerbeck S, Bouffard J, Chambonnier G, Ntelkis N, Guerreiro I, Holub M, Ross P, Selvarajah V, Sprent N, Vidal G, Vignoni A. Functional Synthetic Biology. Synth Biol (Oxf) 2023; 8:ysad006. [PMID: 37073284 PMCID: PMC10105873 DOI: 10.1093/synbio/ysad006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Synthetic biologists have made great progress over the past decade in developing methods for modular assembly of genetic sequences and in engineering biological systems with a wide variety of functions in various contexts and organisms. However, current paradigms in the field entangle sequence and functionality in a manner that makes abstraction difficult, reduces engineering flexibility and impairs predictability and design reuse. Functional Synthetic Biology aims to overcome these impediments by focusing the design of biological systems on function, rather than on sequence. This reorientation will decouple the engineering of biological devices from the specifics of how those devices are put to use, requiring both conceptual and organizational change, as well as supporting software tooling. Realizing this vision of Functional Synthetic Biology will allow more flexibility in how devices are used, more opportunity for reuse of devices and data, improvements in predictability and reductions in technical risk and cost.
Collapse
Affiliation(s)
- Ibrahim Aldulijan
- Systems Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, 07030, NJ, USA
| | - Jacob Beal
- Intelligent Software & Systems, Raytheon BBN Technologies, 10 Moulton Street, Cambridge, 02138, MA, USA
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jeff Bouffard
- Centre for Applied Synthetic Biology, and Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, H4B 1R6, Québec, Canada
| | - Gaël Chambonnier
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Nikolaos Ntelkis
- Specialized Metabolism research group, Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 71, Zwijnaarde, 9052, Belgium
| | - Isaac Guerreiro
- iGEM Foundation, 45 Prospect Street, Cambridge, 02139, MA, USA
| | - Martin Holub
- Delft University of Technology, Van der Maasweg 9, 2629 HZ, The Netherlands
| | - Paul Ross
- BioStrat Marketing, 9965 Harbour Lake Circle, Boynton Beach, FL, 33437, USA
| | | | - Noah Sprent
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ, UK
| | - Gonzalo Vidal
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing, Newcastle University, Devonshire Building, Devonshire Terrace, NE1 7RU, Newcastle Upon Tyne, UK
| | - Alejandro Vignoni
- Synthetic Biology and Biosystems Control Lab, Instituto de Automatica e Informatica Industrial, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
68
|
Erdem C, Birtwistle MR. MEMMAL: A tool for expanding large-scale mechanistic models with machine learned associations and big datasets. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1099413. [PMID: 38269333 PMCID: PMC10807051 DOI: 10.3389/fsysb.2023.1099413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Computational models that can explain and predict complex sub-cellular, cellular, and tissue-level drug response mechanisms could speed drug discovery and prioritize patient-specific treatments (i.e., precision medicine). Some models are mechanistic with detailed equations describing known (or supposed) physicochemical processes, while some are statistical or machine learning-based approaches, that explain datasets but have no mechanistic or causal guarantees. These two types of modeling are rarely combined, missing the opportunity to explore possibly causal but data-driven new knowledge while explaining what is already known. Here, we explore combining machine learned associations with mechanistic models to develop computational models that could more fully represent cellular behavior. In this proposed MEMMAL (MEchanistic Modeling with MAchine Learning) framework, machine learning/statistical models built using omics datasets provide predictions for new interactions between genes and proteins where there is physicochemical uncertainty. These interactions are used as a basis for new reactions in mechanistic models. As a test case, we focused on incorporating novel IFNγ/PD-L1 related associations into a large-scale mechanistic model for cell proliferation and death to better recapitulate the recently released NIH LINCS Consortium MCF10A dataset and enable description of the cellular response to checkpoint inhibitor immunotherapies. This work is a template for combining big-data-inferred interactions with mechanistic models, which could be more broadly applicable for building multi-scale precision medicine and whole cell models.
Collapse
Affiliation(s)
- Cemal Erdem
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
69
|
Ildefonso GV, Oliver Metzig M, Hoffmann A, Harris LA, Lopez CF. A biochemical necroptosis model explains cell-type-specific responses to cell death cues. Biophys J 2023; 122:817-834. [PMID: 36710493 PMCID: PMC10027451 DOI: 10.1016/j.bpj.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a form of regulated cell death associated with degenerative disorders, autoimmune and inflammatory diseases, and cancer. To better understand the biochemical mechanisms regulating necroptosis, we constructed a detailed computational model of tumor necrosis factor-induced necroptosis based on known molecular interactions from the literature. Intracellular protein levels, used as model inputs, were quantified using label-free mass spectrometry, and the model was calibrated using Bayesian parameter inference to experimental protein time course data from a well-established necroptosis-executing cell line. The calibrated model reproduced the dynamics of phosphorylated mixed lineage kinase domain-like protein, an established necroptosis reporter. A subsequent dynamical systems analysis identified four distinct modes of necroptosis signal execution, distinguished by rate constant values and the roles of the RIP1 deubiquitinating enzymes A20 and CYLD. In one case, A20 and CYLD both contribute to RIP1 deubiquitination, in another RIP1 deubiquitination is driven exclusively by CYLD, and in two modes either A20 or CYLD acts as the driver with the other enzyme, counterintuitively, inhibiting necroptosis. We also performed sensitivity analyses of initial protein concentrations and rate constants to identify potential targets for modulating necroptosis sensitivity within each mode. We conclude by associating numerous contrasting and, in some cases, counterintuitive experimental results reported in the literature with one or more of the model-predicted modes of necroptosis execution. In all, we demonstrate that a consensus pathway model of tumor necrosis factor-induced necroptosis can provide insights into unresolved controversies regarding the molecular mechanisms driving necroptosis execution in numerous cell types under different experimental conditions.
Collapse
Affiliation(s)
- Geena V Ildefonso
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas; Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
70
|
Kundu P, Ghosh A. Genome-scale community modeling for deciphering the inter-microbial metabolic interactions in fungus-farming termite gut microbiome. Comput Biol Med 2023; 154:106600. [PMID: 36739820 DOI: 10.1016/j.compbiomed.2023.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Specialized microbial communities in the fungus-farming termite gut and fungal comb microbiome help maintain host nutrition through interactive biochemical activities of complex carbohydrate degradation. Numerous research studies have been focused on identifying the microbial species in the termite gut and fungal comb microbiota, but the community-wide metabolic interaction patterns remain obscure. The inter-microbial metabolic interactions in the community environment are essential for executing biochemical processes like complex carbohydrate degradation and maintaining the host's physicochemical homeostasis. Recent progress in high-throughput sequencing techniques and mathematical modeling provides suitable platforms for constructing multispecies genome-scale community metabolic models that can render sound knowledge about microbial metabolic interaction patterns. Here, we have implemented the genome-scale metabolic modeling strategy to map the relationship between genes, proteins, and reactions of 12 key bacterial species from fungal cultivating termite gut and fungal comb microbiota. The resulting individual genome-scale metabolic models (GEMs) have been analyzed using flux balance analysis (FBA) to optimize the metabolic flux distribution pattern. Further, these individual GEMs have been integrated into genome-scale community metabolic models where a heuristics-based computational procedure has been employed to track the inter-microbial metabolic interactions. Two separate genome-scale community metabolic models were reconstructed for the O. badius gut and fungal comb microbiome. Analysis of the community models showed up to ∼167% increased flux range in lignocellulose degradation, amino acid biosynthesis, and nucleotide metabolism pathways. The inter-microbial metabolic exchange of amino acids, SCFAs, and small sugars was also upregulated in the multispecies community for maximum biomass formation. The flux variability analysis (FVA) has also been performed to calculate the feasible flux range of metabolic reactions. Furthermore, based on the calculated metabolic flux values, newly defined parameters, i.e., pairwise metabolic assistance (PMA) and community metabolic assistance (CMA) showed that the microbial species are getting up to 15% higher metabolic benefits in the multispecies community compared to pairwise growth. Assessment of the inter-microbial metabolic interaction patterns through pairwise growth support index (PGSI) indicated an increased mutualistic interaction in the termite gut environment compared to the fungal comb. Thus, this genome-scale community modeling study provides a systematic methodology to understand the inter-microbial interaction patterns with several newly defined parameters like PMA, CMA, and PGSI. The microbial metabolic assistance and interaction patterns derived from this computational approach will enhance the understanding of combinatorial microbial activities and may help develop effective synergistic microcosms to utilize complex plant polymers.
Collapse
Affiliation(s)
- Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
71
|
A General Hybrid Modeling Framework for Systems Biology Applications: Combining Mechanistic Knowledge with Deep Neural Networks under the SBML Standard. AI 2023. [DOI: 10.3390/ai4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
In this paper, a computational framework is proposed that merges mechanistic modeling with deep neural networks obeying the Systems Biology Markup Language (SBML) standard. Over the last 20 years, the systems biology community has developed a large number of mechanistic models that are currently stored in public databases in SBML. With the proposed framework, existing SBML models may be redesigned into hybrid systems through the incorporation of deep neural networks into the model core, using a freely available python tool. The so-formed hybrid mechanistic/neural network models are trained with a deep learning algorithm based on the adaptive moment estimation method (ADAM), stochastic regularization and semidirect sensitivity equations. The trained hybrid models are encoded in SBML and uploaded in model databases, where they may be further analyzed as regular SBML models. This approach is illustrated with three well-known case studies: the Escherichia coli threonine synthesis model, the P58IPK signal transduction model, and the Yeast glycolytic oscillations model. The proposed framework is expected to greatly facilitate the widespread use of hybrid modeling techniques for systems biology applications.
Collapse
|
72
|
Shimizu Y, Tanimura N, Matsuura T. ePURE_JSBML: A Tool for Constructing a Deterministic Model of a Reconstituted Escherichia coli Protein Translation System with a User-Specified Nucleic Acid Sequence. Adv Biol (Weinh) 2023; 7:e2200177. [PMID: 36574482 DOI: 10.1002/adbi.202200177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/30/2022] [Indexed: 12/28/2022]
Abstract
A protein synthesis system is one of the most important and complex biological networks, which translates DNA-encoded information into specific functions. Here, ePURE_JSBML, a tool for constructing biologically relevant large-scale and detailed computational models based on a reconstituted cell-free protein synthesis system, is presented; the user can specify the mRNA sequence, initial component concentration, and decoding rule. Model construction is based on Systems Biology Markup Language (SBML) using JSBML, a pure Java programming library. The tool generates simulation files, executable with Matlab, that enable a variety of simulation experiments including the synthesis of proteins of a few hundred residues.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Naoki Tanimura
- Science Solutions Division, Mizuho Research & Technologies, Ltd., 2-3 Kanda-Nishikicho, Chiyoda-ku, Tokyo, 101-8443, Japan
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro, Tokyo, 152-8550, Japan
| |
Collapse
|
73
|
Li D, Wu P, Dong Y, Gu J, Qian L, Zhou G. Joint learning-based causal relation extraction from biomedical literature. J Biomed Inform 2023; 139:104318. [PMID: 36781035 DOI: 10.1016/j.jbi.2023.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Causal relation extraction of biomedical entities is one of the most complex tasks in biomedical text mining, which involves two kinds of information: entity relations and entity functions. One feasible approach is to take relation extraction and function detection as two independent sub-tasks. However, this separate learning method ignores the intrinsic correlation between them and leads to unsatisfactory performance. In this paper, we propose a joint learning model, which combines entity relation extraction and entity function detection to exploit their commonality and capture their inter-relationship, so as to improve the performance of biomedical causal relation extraction. Experimental results on the BioCreative-V Track 4 corpus show that our joint learning model outperforms the separate models in BEL statement extraction, achieving the F1 scores of 57.0% and 37.3% on the test set in Stage 2 and Stage 1 evaluations, respectively. This demonstrates that our joint learning system reaches the state-of-the-art performance in Stage 2 compared with other systems.
Collapse
Affiliation(s)
- Dongling Li
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Pengchao Wu
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Yuehu Dong
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Jinghang Gu
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Longhua Qian
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Guodong Zhou
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu Province 215006, China.
| |
Collapse
|
74
|
Troják M, Šafránek D, Pastva S, Brim L. Rule-based modelling of biological systems using regulated rewriting. Biosystems 2023; 225:104843. [PMID: 36736686 DOI: 10.1016/j.biosystems.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
In systems biology, models play a crucial role in understanding studied systems. There are many modelling approaches, among which rewriting systems provide a framework for describing systems on a mechanistic level. Describing biochemical processes often requires incorporating knowledge on an abstract level to simplify the system description or substitute the missing details. For this purpose, we present regulation mechanisms, an extension of this formalism with additional controls on the rewriting process. We introduce several regulation mechanisms and apply them to a rule-based language, a notation suitable for modelling biological phenomena. Finally, we demonstrate the usage of such regulations on several case studies from the biochemical domain.
Collapse
Affiliation(s)
- Matej Troják
- Systems Biology Laboratory, Masaryk University, Brno, Czech Republic.
| | - David Šafránek
- Systems Biology Laboratory, Masaryk University, Brno, Czech Republic
| | - Samuel Pastva
- Systems Biology Laboratory, Masaryk University, Brno, Czech Republic
| | - Luboš Brim
- Systems Biology Laboratory, Masaryk University, Brno, Czech Republic
| |
Collapse
|
75
|
Lauterbach S, Dienhart H, Range J, Malzacher S, Spöring JD, Rother D, Pinto MF, Martins P, Lagerman CE, Bommarius AS, Høst AV, Woodley JM, Ngubane S, Kudanga T, Bergmann FT, Rohwer JM, Iglezakis D, Weidemann A, Wittig U, Kettner C, Swainston N, Schnell S, Pleiss J. EnzymeML: seamless data flow and modeling of enzymatic data. Nat Methods 2023; 20:400-402. [PMID: 36759590 DOI: 10.1038/s41592-022-01763-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
The design of biocatalytic reaction systems is highly complex owing to the dependency of the estimated kinetic parameters on the enzyme, the reaction conditions, and the modeling method. Consequently, reproducibility of enzymatic experiments and reusability of enzymatic data are challenging. We developed the XML-based markup language EnzymeML to enable storage and exchange of enzymatic data such as reaction conditions, the time course of the substrate and the product, kinetic parameters and the kinetic model, thus making enzymatic data findable, accessible, interoperable and reusable (FAIR). The feasibility and usefulness of the EnzymeML toolbox is demonstrated in six scenarios, for which data and metadata of different enzymatic reactions are collected and analyzed. EnzymeML serves as a seamless communication channel between experimental platforms, electronic lab notebooks, tools for modeling of enzyme kinetics, publication platforms and enzymatic reaction databases. EnzymeML is open and transparent, and invites the community to contribute. All documents and codes are freely available at https://enzymeml.org .
Collapse
Affiliation(s)
- Simone Lauterbach
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Hannah Dienhart
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jan Range
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Stephan Malzacher
- Institute of Bio- and Geosciences 1, Forschungszentrum Jülich, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jan-Dirk Spöring
- Institute of Bio- and Geosciences 1, Forschungszentrum Jülich, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Dörte Rother
- Institute of Bio- and Geosciences 1, Forschungszentrum Jülich, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Maria Filipa Pinto
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, University of Porto, Porto, Portugal
| | - Pedro Martins
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, University of Porto, Porto, Portugal
| | - Colton E Lagerman
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andreas S Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Amalie Vang Høst
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Sandile Ngubane
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | | | - Johann M Rohwer
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Dorothea Iglezakis
- Information and Communication Center, University of Stuttgart, Stuttgart, Germany
| | | | - Ulrike Wittig
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Neil Swainston
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Santiago Schnell
- Department of Biological Sciences and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
76
|
Ho H, Means S, Safaei S, Hunter PJ. In silico modeling for the hepatic circulation and transport: From the liver organ to lobules. WIREs Mech Dis 2023; 15:e1586. [PMID: 36131627 DOI: 10.1002/wsbm.1586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
The function of the liver depends critically on its blood supply. Numerous in silico models have been developed to study various aspects of the hepatic circulation, including not only the macro-hemodynamics at the organ level, but also the microcirculation at the lobular level. In addition, computational models of blood flow and bile flow have been used to study the transport, metabolism, and clearance of drugs in pharmacokinetic studies. These in silico models aim to provide insights into the liver organ function under both healthy and diseased states, and to assist quantitative analysis for surgical planning and postsurgery treatment. The purpose of this review is to provide an update on state-of-the-art in silico models of the hepatic circulation and transport processes. We introduce the numerical methods and the physiological background of these models. We also discuss multiscale frameworks that have been proposed for the liver, and their linkage with the large context of systems biology, systems pharmacology, and the Physiome project. This article is categorized under: Metabolic Diseases > Computational Models Metabolic Diseases > Biomedical Engineering Cardiovascular Diseases > Computational Models.
Collapse
Affiliation(s)
- Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shawn Means
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peter John Hunter
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
77
|
Pandey A, Rodriguez ML, Poole W, Murray RM. Characterization of Integrase and Excisionase Activity in a Cell-Free Protein Expression System Using a Modeling and Analysis Pipeline. ACS Synth Biol 2023; 12:511-523. [PMID: 36715625 DOI: 10.1021/acssynbio.2c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present a full-stack modeling, analysis, and parameter identification pipeline to guide the modeling and design of biological systems starting from specifications to circuit implementations and parametrizations. We demonstrate this pipeline by characterizing the integrase and excisionase activity in a cell-free protein expression system. We build on existing Python tools─BioCRNpyler, AutoReduce, and Bioscrape─to create this pipeline. For enzyme-mediated DNA recombination in a cell-free system, we create detailed chemical reaction network models from simple high-level descriptions of the biological circuits and their context using BioCRNpyler. We use Bioscrape to show that the output of the detailed model is sensitive to many parameters. However, parameter identification is infeasible for this high-dimensional model; hence, we use AutoReduce to automatically obtain reduced models that have fewer parameters. This results in a hierarchy of reduced models under different assumptions to finally arrive at a minimal ODE model for each circuit. Then, we run sensitivity analysis-guided Bayesian inference using Bioscrape for each circuit to identify the model parameters. This process allows us to quantify integrase and excisionase activity in cell extracts enabling complex-circuit designs that depend on accurate control over protein expression levels through DNA recombination. The automated pipeline presented in this paper opens up a new approach to complex circuit design, modeling, reduction, and parametrization.
Collapse
Affiliation(s)
- Ayush Pandey
- Control and Dynamical Systems, California Institute of Technology, Pasadena, California91125, United States
| | - Makena L Rodriguez
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - William Poole
- Altos Laboratories, Redwood City, California94065, United States
| | - Richard M Murray
- Control and Dynamical Systems, California Institute of Technology, Pasadena, California91125, United States.,Biology and Biological Engineering, California Institute of Technology, Pasadena, California91125, United States
| |
Collapse
|
78
|
Höpfl S, Pleiss J, Radde NE. Bayesian estimation reveals that reproducible models in Systems Biology get more citations. Sci Rep 2023; 13:2695. [PMID: 36792648 PMCID: PMC9931699 DOI: 10.1038/s41598-023-29340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
The Systems Biology community has taken numerous actions to develop data and modeling standards towards FAIR data and model handling. Nevertheless, the debate about incentives and rewards for individual researchers to make their results reproducible is ongoing. Here, we pose the specific question of whether reproducible models have a higher impact in terms of citations. Therefore, we statistically analyze 328 published models recently classified by Tiwari et al. based on their reproducibility. For hypothesis testing, we use a flexible Bayesian approach that provides complete distributional information for all quantities of interest and can handle outliers. The results show that in the period from 2013, i.e., 10 years after the introduction of SBML, to 2020, the group of reproducible models is significantly more cited than the non-reproducible group. We show that differences in journal impact factors do not explain this effect and that this effect increases with additional standardization of data and error model integration via PEtab. Overall, our statistical analysis demonstrates the long-term merits of reproducible modeling for the individual researcher in terms of citations. Moreover, it provides evidence for the increased use of reproducible models in the scientific community.
Collapse
Affiliation(s)
- Sebastian Höpfl
- Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Nicole E Radde
- Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany.
| |
Collapse
|
79
|
Munarko Y, Rampadarath A, Nickerson DP. CASBERT: BERT-based retrieval for compositely annotated biosimulation model entities. FRONTIERS IN BIOINFORMATICS 2023; 3:1107467. [PMID: 36865672 PMCID: PMC9971925 DOI: 10.3389/fbinf.2023.1107467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Maximising FAIRness of biosimulation models requires a comprehensive description of model entities such as reactions, variables, and components. The COmputational Modeling in BIology NEtwork (COMBINE) community encourages the use of Resource Description Framework with composite annotations that semantically involve ontologies to ensure completeness and accuracy. These annotations facilitate scientists to find models or detailed information to inform further reuse, such as model composition, reproduction, and curation. SPARQL has been recommended as a key standard to access semantic annotation with RDF, which helps get entities precisely. However, SPARQL is unsuitable for most repository users who explore biosimulation models freely without adequate knowledge of ontologies, RDF structure, and SPARQL syntax. We propose here a text-based information retrieval approach, CASBERT, that is easy to use and can present candidates of relevant entities from models across a repository's contents. CASBERT adapts Bidirectional Encoder Representations from Transformers (BERT), where each composite annotation about an entity is converted into an entity embedding for subsequent storage in a list of entity embeddings. For entity lookup, a query is transformed to a query embedding and compared to the entity embeddings, and then the entities are displayed in order based on their similarity. The list structure makes it possible to implement CASBERT as an efficient search engine product, with inexpensive addition, modification, and insertion of entity embedding. To demonstrate and test CASBERT, we created a dataset for testing from the Physiome Model Repository and a static export of the BioModels database consisting of query-entities pairs. Measured using Mean Average Precision and Mean Reciprocal Rank, we found that our approach can perform better than the traditional bag-of-words method.
Collapse
Affiliation(s)
- Yuda Munarko
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,*Correspondence: Yuda Munarko,
| | - Anand Rampadarath
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,The New Zealand Institute for Plant & Food Research Ltd., Auckland, New Zealand
| | - David P. Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
80
|
Khan R, Kulasiri D, Samarasinghe S. Methodology for development of single cell dendritic spine (SCDS) synaptic tagging and capture model using Virtual Cell (VCell). MethodsX 2023; 10:102070. [PMID: 36879764 PMCID: PMC9984673 DOI: 10.1016/j.mex.2023.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Single cell dendritic spine modelling methodology has been adopted to explain structural plasticity and respective change in the neuronal volume previously. However, the single cell dendrite methodology has not been employed previously to explain one of the important aspects of memory allocation i.e., Synaptic tagging and Capture (STC) hypothesis. It is difficult to relate the physical properties of STC pathways to structural changes and synaptic strength. We create a mathematical model based on earlier reported synaptic tagging networks. We built the model using Virtual Cell (VCell) software and used it to interpret experimental data and investigate the behavior and characteristics of known Synaptic tagging candidates.•We investigate processes associated with synaptic tagging candidates and compare them to the assumptions based on the STC hypothesis.•We assess the behavior of several reported synaptic tagging candidates against the requirements outlined in the synaptic tagging hypothesis.
Collapse
Affiliation(s)
- Raheel Khan
- Centre for Advanced Computational Solutions (C-fACS), RFH066, Lincoln University, Christchurch, New Zealand
| | - D. Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), RFH066, Lincoln University, Christchurch, New Zealand
| | - S. Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), RFH066, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
81
|
Munarko Y, Rampadarath A, Nickerson D. Building a search tool for compositely annotated entities using Transformer-based approach: Case study in Biosimulation Model Search Engine (BMSE). F1000Res 2023; 12:162. [PMID: 37842339 PMCID: PMC10570691 DOI: 10.12688/f1000research.128982.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 10/17/2023] Open
Abstract
The Transformer-based approaches to solving natural language processing (NLP) tasks such as BERT and GPT are gaining popularity due to their ability to achieve high performance. These approaches benefit from using enormous data sizes to create pre-trained models and the ability to understand the context of words in a sentence. Their use in the information retrieval domain is thought to increase effectiveness and efficiency. This paper demonstrates a BERT-based method (CASBERT) implementation to build a search tool over data annotated compositely using ontologies. The data was a collection of biosimulation models written using the CellML standard in the Physiome Model Repository (PMR). A biosimulation model structurally consists of basic entities of constants and variables that construct higher-level entities such as components, reactions, and the model. Finding these entities specific to their level is beneficial for various purposes regarding variable reuse, experiment setup, and model audit. Initially, we created embeddings representing compositely-annotated entities for constant and variable search (lowest level entity). Then, these low-level entity embeddings were vertically and efficiently combined to create higher-level entity embeddings to search components, models, images, and simulation setups. Our approach was general, so it can be used to create search tools with other data semantically annotated with ontologies - biosimulation models encoded in the SBML format, for example. Our tool is named Biosimulation Model Search Engine (BMSE).
Collapse
Affiliation(s)
- Yuda Munarko
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| | - Anand Rampadarath
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - David Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
82
|
Masison J, Mendes P. Modeling the iron storage protein ferritin reveals how residual ferrihydrite iron determines initial ferritin iron sequestration kinetics. PLoS One 2023; 18:e0281401. [PMID: 36745660 PMCID: PMC9901743 DOI: 10.1371/journal.pone.0281401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Computational models can be created more efficiently by composing them from smaller, well-defined sub-models that represent specific cellular structures that appear often in different contexts. Cellular iron metabolism is a prime example of this as multiple cell types tend to rely on a similar set of components (proteins and regulatory mechanisms) to ensure iron balance. One recurrent component, ferritin, is the primary iron storage protein in mammalian cells and is necessary for cellular iron homeostasis. Its ability to sequester iron protects cells from rising concentrations of ferrous iron limiting oxidative cell damage. The focus of the present work is establishing a model that tractably represents the ferritin iron sequestration kinetics such that it can be incorporated into larger cell models, in addition to contributing to the understanding of general ferritin iron sequestration dynamics within cells. The model's parameter values were determined from published kinetic and binding experiments and the model was validated against independent data not used in its construction. Simulation results indicate that FT concentration is the most impactful on overall sequestration dynamics, while the FT iron saturation (number of iron atoms sequestered per FT cage) fine tunes the initial rates. Finally, because this model has a small number of reactions and species, was built to represent important details of FT kinetics, and has flexibility to include subtle changes in subunit composition, we propose it to be used as a building block in a variety of specific cell type models of iron metabolism.
Collapse
Affiliation(s)
- Joseph Masison
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Pedro Mendes
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
83
|
Vidya Muthulakshmi M, Srinivasan A, Srivastava S. Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant In Vitro Cultures. ACS OMEGA 2023; 8:3586-3605. [PMID: 36743063 PMCID: PMC9893489 DOI: 10.1021/acsomega.2c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Vitamin E is a dietary supplement synthesized only by photosynthetic organisms and, hence, is an essential vitamin for human well-being. Because of the ever-increasing demand for natural vitamin E and limitations in existing synthesis modes, attempts to improve its yield using plant in vitro cultures have gained traction in recent years. With inflating industrial production costs, integrative approaches to conventional bioprocess optimization is the need of the hour for multifold vitamin E productivity enhancement. In this review, we briefly discuss the structure, isomers, and important metabolic routes of biosynthesis for vitamin E in plants. We then emphasize its vital role in human health and its industrial applications and highlight the market demand and supply. We illustrate the advantages of in vitro plant cell/tissue culture cultivation as an alternative to current commercial production platforms for natural vitamin E. We touch upon the conventional vitamin E metabolic pathway engineering strategies, such as single/multigene overexpression and chloroplast engineering. We highlight the recent progress in plant systems biology to rationally identify metabolic bottlenecks and knockout targets in the vitamin E biosynthetic pathway. We then discuss bioprocess optimization strategies for sustainable vitamin E production, including media/process optimization, precursor/elicitor addition, and scale-up to bioreactors. We culminate the review with a short discussion on kinetic modeling to predict vitamin E production in plant cell cultures and suggestions on sustainable green extraction methods of vitamin E for reduced environmental impact. This review will be of interest to a wider research fraternity, including those from industry and academia working in the field of plant cell biology, plant biotechnology, and bioprocess engineering for phytochemical enhancement.
Collapse
Affiliation(s)
- M. Vidya Muthulakshmi
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Aparajitha Srinivasan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Smita Srivastava
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| |
Collapse
|
84
|
Pinto J, Costa RS, Alexandre L, Ramos J, Oliveira R. SBML2HYB: a Python interface for SBML compatible hybrid modeling. Bioinformatics 2023; 39:6994184. [PMID: 36661327 PMCID: PMC9889961 DOI: 10.1093/bioinformatics/btad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
SUMMARY Here, we present sbml2hyb, an easy-to-use standalone Python tool that facilitates the conversion of existing mechanistic models of biological systems in Systems Biology Markup Language (SBML) into hybrid semiparametric models that combine mechanistic functions with machine learning (ML). The so-formed hybrid models can be trained and stored back in databases in SBML format. The tool supports a user-friendly export interface with an internal format validator. Two case studies illustrate the use of the sbml2hyb tool. Additionally, we describe HMOD, a new model format designed to support and facilitate hybrid models building. It aggregates the mechanistic model information with the ML information and follows as close as possible the SBML rules. We expect the sbml2hyb tool and HMOD to greatly facilitate the widespread usage of hybrid modeling techniques for biological systems analysis. AVAILABILITY AND IMPLEMENTATION The Python interface, source code and the example models used for the case studies are accessible at: https://github.com/r-costa/sbml2hyb. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Leonardo Alexandre
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal,INESC-ID, Lisboa, Portugal
| | - João Ramos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Rui Oliveira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| |
Collapse
|
85
|
Mante J, Abam J, Samineni SP, Pötzsch IM, Beal J, Myers CJ. Excel-SBOL Converter: Creating SBOL from Excel Templates and Vice Versa. ACS Synth Biol 2023; 12:340-346. [PMID: 36595709 DOI: 10.1021/acssynbio.2c00521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Standards support synthetic biology research by enabling the exchange of component information. However, using formal representations, such as the Synthetic Biology Open Language (SBOL), typically requires either a thorough understanding of these standards or a suite of tools developed in concurrence with the ontologies. Since these tools may be a barrier for use by many practitioners, the Excel-SBOL Converter was developed to facilitate the use of SBOL and integration into existing workflows. The converter consists of two Python libraries: one that converts Excel templates to SBOL and another that converts SBOL to an Excel workbook. Both libraries can be used either directly or via a SynBioHub plugin.
Collapse
Affiliation(s)
- Jeanet Mante
- University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Julian Abam
- University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sai P Samineni
- University of Colorado Boulder, Boulder, Colorado 80309, United States
| | | | - Jacob Beal
- Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Chris J Myers
- University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
86
|
Welsh C, Xu J, Smith L, König M, Choi K, Sauro HM. libRoadRunner 2.0: a high performance SBML simulation and analysis library. Bioinformatics 2023; 39:6883908. [PMID: 36478036 PMCID: PMC9825722 DOI: 10.1093/bioinformatics/btac770] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION This article presents libRoadRunner 2.0, an extensible, high-performance, cross-platform, open-source software library for the simulation and analysis of models expressed using the systems biology markup language (SBML). RESULTS libRoadRunner is a self-contained library, able to run either as a component inside other tools via its C++, C and Python APIs, or interactively through its Python or Julia interface. libRoadRunner uses a custom just-in-time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly into native machine code for a large variety of processors, making it fast enough to simulate extremely large models or repeated runs in reasonable timeframes. libRoadRunner is flexible, supporting the bulk of the SBML specification (except for delay and non-linear algebraic equations) as well as several SBML extensions such as hierarchical composition and probability distributions. It offers multiple deterministic and stochastic integrators, as well as tools for steady-state, sensitivity, stability and structural analyses. AVAILABILITY AND IMPLEMENTATION libRoadRunner binary distributions for Windows, Mac OS and Linux, Julia and Python bindings, source code and documentation are all available at https://github.com/sys-bio/roadrunner, and Python bindings are also available via pip. The source code can be compiled for the supported systems as well as in principle any system supported by LLVM-13, such as ARM-based computers like the Raspberry Pi. The library is licensed under the Apache License Version 2.0.
Collapse
Affiliation(s)
- Ciaran Welsh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jin Xu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Lucian Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Matthias König
- Institute of Biology, Institute of Theoretical Biology, Humboldt-University Berlin, Berlin 10115, Germany
| | - Kiri Choi
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | | |
Collapse
|
87
|
Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput Biol Med 2023; 152:106364. [PMID: 36525832 DOI: 10.1016/j.compbiomed.2022.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos T Skenteris
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
88
|
Porubsky VL, Sauro HM. A Practical Guide to Reproducible Modeling for Biochemical Networks. Methods Mol Biol 2023; 2634:107-138. [PMID: 37074576 DOI: 10.1007/978-1-0716-3008-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
While scientific disciplines revere reproducibility, many studies - experimental and computational alike - fall short of this ideal and cannot be reproduced or even repeated when the model is shared. For computational modeling of biochemical networks, there is a dearth of formal training and resources available describing how to practically implement reproducible methods, despite a wealth of existing tools and formats which could be used to support reproducibility. This chapter points the reader to useful software tools and standardized formats that support reproducible modeling of biochemical networks and provides suggestions on how to implement reproducible methods in practice. Many of the suggestions encourage readers to use best practices from the software development community in order to automate, test, and version control their model components. A Jupyter Notebook demonstrating several of the key steps in building a reproducible biochemical network model is included to supplement the recommendations in the text.
Collapse
Affiliation(s)
| | - Herbert M Sauro
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| |
Collapse
|
89
|
Albadry M, Höpfl S, Ehteshamzad N, König M, Böttcher M, Neumann J, Lupp A, Dirsch O, Radde N, Christ B, Christ M, Schwen LO, Laue H, Klopfleisch R, Dahmen U. Periportal steatosis in mice affects distinct parameters of pericentral drug metabolism. Sci Rep 2022; 12:21825. [PMID: 36528753 PMCID: PMC9759570 DOI: 10.1038/s41598-022-26483-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Little is known about the impact of morphological disorders in distinct zones on metabolic zonation. It was described recently that periportal fibrosis did affect the expression of CYP proteins, a set of pericentrally located drug-metabolizing enzymes. Here, we investigated whether periportal steatosis might have a similar effect. Periportal steatosis was induced in C57BL6/J mice by feeding a high-fat diet with low methionine/choline content for either two or four weeks. Steatosis severity was quantified using image analysis. Triglycerides and CYP activity were quantified in photometric or fluorometric assay. The distribution of CYP3A4, CYP1A2, CYP2D6, and CYP2E1 was visualized by immunohistochemistry. Pharmacokinetic parameters of test drugs were determined after injecting a drug cocktail (caffeine, codeine, and midazolam). The dietary model resulted in moderate to severe mixed steatosis confined to periportal and midzonal areas. Periportal steatosis did not affect the zonal distribution of CYP expression but the activity of selected CYPs was associated with steatosis severity. Caffeine elimination was accelerated by microvesicular steatosis, whereas midazolam elimination was delayed in macrovesicular steatosis. In summary, periportal steatosis affected parameters of pericentrally located drug metabolism. This observation calls for further investigations of the highly complex interrelationship between steatosis and drug metabolism and underlying signaling mechanisms.
Collapse
Affiliation(s)
- Mohamed Albadry
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany ,grid.411775.10000 0004 0621 4712Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Sebastian Höpfl
- grid.5719.a0000 0004 1936 9713Institute for Systems Theory and Automatic Control, Faculty of Engineering Design, Production Engineering and Automotive Engineering, University of Stuttgart, Stuttgart, Germany
| | - Nadia Ehteshamzad
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Matthias König
- grid.7468.d0000 0001 2248 7639Institute for Theoretical Biology, Institute of Biology, Humboldt-University, Berlin, Germany
| | - Michael Böttcher
- MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstraße 6, 06847 Dessau-Roßlau, Germany
| | - Jasna Neumann
- MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstraße 6, 06847 Dessau-Roßlau, Germany
| | - Amelie Lupp
- grid.275559.90000 0000 8517 6224Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Olaf Dirsch
- grid.459629.50000 0004 0389 4214Institute of Pathology, Klinikum Chemnitz, Chemnitz, Germany
| | - Nicole Radde
- grid.5719.a0000 0004 1936 9713Institute for Systems Theory and Automatic Control, Faculty of Engineering Design, Production Engineering and Automotive Engineering, University of Stuttgart, Stuttgart, Germany
| | - Bruno Christ
- grid.9647.c0000 0004 7669 9786Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Madlen Christ
- grid.9647.c0000 0004 7669 9786Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Lars Ole Schwen
- grid.428590.20000 0004 0496 8246Fraunhofer MEVIS, Max-Von-Laue-Str. 2, 28359 Bremen, Germany
| | - Hendrik Laue
- grid.428590.20000 0004 0496 8246Fraunhofer MEVIS, Max-Von-Laue-Str. 2, 28359 Bremen, Germany
| | - Robert Klopfleisch
- grid.14095.390000 0000 9116 4836Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Uta Dahmen
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| |
Collapse
|
90
|
Rahmim A, Brosch-Lenz J, Fele-Paranj A, Yousefirizi F, Soltani M, Uribe C, Saboury B. Theranostic digital twins for personalized radiopharmaceutical therapies: Reimagining theranostics via computational nuclear oncology. Front Oncol 2022; 12:1062592. [PMID: 36591527 PMCID: PMC9797662 DOI: 10.3389/fonc.2022.1062592] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
This work emphasizes that patient data, including images, are not operable (clinically), but that digital twins are. Based on the former, the latter can be created. Subsequently, virtual clinical operations can be performed towards selection of optimal therapies. Digital twins are beginning to emerge in the field of medicine. We suggest that theranostic digital twins (TDTs) are amongst the most natural and feasible flavors of digitals twins. We elaborate on the importance of TDTs in a future where 'one-size-fits-all' therapeutic schemes, as prevalent nowadays, are transcended in radiopharmaceutical therapies (RPTs). Personalized RPTs will be deployed, including optimized intervention parameters. Examples include optimization of injected radioactivities, sites of injection, injection intervals and profiles, and combination therapies. Multi-modal multi-scale images, combined with other data and aided by artificial intelligence (AI) techniques, will be utilized towards routine digital twinning of our patients, and will enable improved deliveries of RPTs and overall healthcare.
Collapse
Affiliation(s)
- Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada,Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Arman Rahmim,
| | - Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ali Fele-Paranj
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Madjid Soltani
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada,Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada
| | - Babak Saboury
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
91
|
Patil N, Howe O, Cahill P, Byrne HJ. Monitoring and modelling the dynamics of the cellular glycolysis pathway: A review and future perspectives. Mol Metab 2022; 66:101635. [PMID: 36379354 PMCID: PMC9703637 DOI: 10.1016/j.molmet.2022.101635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dynamics of the cellular glycolysis pathway underpin cellular function and dysfunction, and therefore ultimately health, disease, diagnostic and therapeutic strategies. Evolving our understanding of this fundamental process and its dynamics remains critical. SCOPE OF REVIEW This paper reviews the medical relevance of glycolytic pathway in depth and explores the current state of the art for monitoring and modelling the dynamics of the process. The future perspectives of label free, vibrational microspectroscopic techniques to overcome the limitations of the current approaches are considered. MAJOR CONCLUSIONS Vibrational microspectroscopic techniques can potentially operate in the niche area of limitations of other omics technologies for non-destructive, real-time, in vivo label-free monitoring of glycolysis dynamics at a cellular and subcellular level.
Collapse
Affiliation(s)
- Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
92
|
Balaur I, Roy L, Touré V, Mazein A, Auffray C. GraphML-SBGN bidirectional converter for metabolic networks. J Integr Bioinform 2022; 19:jib-2022-0030. [PMID: 36563404 PMCID: PMC9800040 DOI: 10.1515/jib-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Systems biology researchers need feasible solutions for editing and visualisation of large biological diagrams. Here, we present the ySBGN bidirectional converter that translates metabolic pathways, developed in the general-purpose yEd Graph Editor (using the GraphML format) into the Systems Biology Graphical Notation Markup Language (SBGN-ML) standard format and vice versa. We illustrate the functionality of this converter by applying it to the translation of the ReconMap resource (available in the SBGN-ML format) to the yEd-specific GraphML and back. The ySBGN tool makes possible to draw extensive metabolic diagrams in a powerful general-purpose graph editor while providing results in the standard SBGN format.
Collapse
Affiliation(s)
- Irina Balaur
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007Lyon, France
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367Belvaux, Luxembourg
| | - Ludovic Roy
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007Lyon, France
| | - Vasundra Touré
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007Lyon, France
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget, 7491Trondheim, Norway
| | - Alexander Mazein
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007Lyon, France
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367Belvaux, Luxembourg
- Russian Academy of Sciences, Institute of Cell Biophysics, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007Lyon, France
| |
Collapse
|
93
|
Kochen MA, Wiley HS, Feng S, Sauro HM. SBbadger: biochemical reaction networks with definable degree distributions. Bioinformatics 2022; 38:5064-5072. [PMID: 36111865 PMCID: PMC9665861 DOI: 10.1093/bioinformatics/btac630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/24/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION An essential step in developing computational tools for the inference, optimization and simulation of biochemical reaction networks is gauging tool performance against earlier efforts using an appropriate set of benchmarks. General strategies for the assembly of benchmark models include collection from the literature, creation via subnetwork extraction and de novo generation. However, with respect to biochemical reaction networks, these approaches and their associated tools are either poorly suited to generate models that reflect the wide range of properties found in natural biochemical networks or to do so in numbers that enable rigorous statistical analysis. RESULTS In this work, we present SBbadger, a python-based software tool for the generation of synthetic biochemical reaction or metabolic networks with user-defined degree distributions, multiple available kinetic formalisms and a host of other definable properties. SBbadger thus enables the creation of benchmark model sets that reflect properties of biological systems and generate the kinetics and model structures typically targeted by computational analysis and inference software. Here, we detail the computational and algorithmic workflow of SBbadger, demonstrate its performance under various settings, provide sample outputs and compare it to currently available biochemical reaction network generation software. AVAILABILITY AND IMPLEMENTATION SBbadger is implemented in Python and is freely available at https://github.com/sys-bio/SBbadger and via PyPI at https://pypi.org/project/SBbadger/. Documentation can be found at https://SBbadger.readthedocs.io. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michael A Kochen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Song Feng
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
94
|
SyBLaRS: A web service for laying out, rendering and mining biological maps in SBGN, SBML and more. PLoS Comput Biol 2022; 18:e1010635. [DOI: 10.1371/journal.pcbi.1010635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/28/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022] Open
Abstract
Visualization is a key recurring requirement for effective analysis of relational data. Biology is no exception. It is imperative to annotate and render biological models in standard, widely accepted formats. Finding graph-theoretical properties of pathways as well as identifying certain paths or subgraphs of interest in a pathway are also essential for effective analysis of pathway data. Given the size of available biological pathway data nowadays, automatic layout is crucial in understanding the graphical representations of such data. Even though there are many available software tools that support graphical display of biological pathways in various formats, there is none available as a service for on-demand or batch processing of biological pathways for automatic layout, customized rendering and mining paths or subgraphs of interest. In addition, there are many tools with fine rendering capabilities lacking decent automatic layout support.
To fill this void, we developed a web service named SyBLaRS (Systems Biology Layout and Rendering Service) for automatic layout of biological data in various standard formats as well as construction of customized images in both raster image and scalable vector formats of these maps. Some of the supported standards are more generic such as GraphML and JSON, whereas others are specialized to biology such as SBGNML (The Systems Biology Graphical Notation Markup Language) and SBML (The Systems Biology Markup Language). In addition, SyBLaRS supports calculation and highlighting of a number of well-known graph-theoretical properties as well as some novel graph algorithms turning a specified set of objects of interest to a minimal pathway of interest.
We demonstrate that SyBLaRS can be used both as an offline layout and rendering service to construct customized and annotated pictures of pathway models and as an online service to provide layout and rendering capabilities for systems biology software tools.
SyBLaRS is open source and publicly available on GitHub and freely distributed under the MIT license. In addition, a sample deployment is available here for public consumption.
Collapse
|
95
|
Xu J, Jiang J, Sauro HM. SBMLDiagrams: a python package to process and visualize SBML layout and render. Bioinformatics 2022; 39:6825309. [PMID: 36370074 PMCID: PMC9805581 DOI: 10.1093/bioinformatics/btac730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/28/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
SUMMARY The systems biology markup language (SBML) is an extensible standard format for exchanging biochemical models. One of the extensions for SBML is the SBML Layout and Render package. This allows modelers to describe a biochemical model as a pathway diagram. However, up to now, there has been little support to help users easily add and retrieve such information from SBML. In this application note, we describe a new Python package called SBMLDiagrams. This package allows a user to add a layout and render information or retrieve it using a straightforward Python API. The package uses skia-python to support the rendering of the diagrams, allowing export to commons formats such as PNG or PDF. AVAILABILITY AND IMPLEMENTATION SBMLDiagrams is publicly available and licensed under the liberal MIT open-source license. The package is available for all major platforms. The source code has been deposited at GitHub (github.com/sys-bio/SBMLDiagrams). Users can install the package using the standard pip installation mechanism: pip install SBMLDiagrams. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jin Xu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jessie Jiang
- Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
96
|
Hoch M, Ehlers L, Bannert K, Stanke C, Brauer D, Caton V, Lamprecht G, Wolkenhauer O, Jaster R, Wolfien M. In silico investigation of molecular networks linking gastrointestinal diseases, malnutrition, and sarcopenia. Front Nutr 2022; 9:989453. [DOI: 10.3389/fnut.2022.989453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Malnutrition (MN) is a common primary or secondary complication in gastrointestinal diseases. The patient’s nutritional status also influences muscle mass and function, which can be impaired up to the degree of sarcopenia. The molecular interactions in diseases leading to sarcopenia are complex and multifaceted, affecting muscle physiology, the intestine (nutrition), and the liver at different levels. Although extensive knowledge of individual molecular factors is available, their regulatory interplay is not yet fully understood. A comprehensive overall picture of pathological mechanisms and resulting phenotypes is lacking. In silico approaches that convert existing knowledge into computationally readable formats can help unravel mechanisms, underlying such complex molecular processes. From public literature, we manually compiled experimental evidence for molecular interactions involved in the development of sarcopenia into a knowledge base, referred to as the Sarcopenia Map. We integrated two diseases, namely liver cirrhosis (LC), and intestinal dysfunction, by considering their effects on nutrition and blood secretome. We demonstrate the performance of our model by successfully simulating the impact of changing dietary frequency, glycogen storage capacity, and disease severity on the carbohydrate and muscle systems. We present the Sarcopenia Map as a publicly available, open-source, and interactive online resource, that links gastrointestinal diseases, MN, and sarcopenia. The map provides tools that allow users to explore the information on the map and perform in silico simulations.
Collapse
|
97
|
Abstract
Despite an ever-growing number of data sets that catalog and characterize interactions between microbes in different environments and conditions, many of these data are neither easily accessible nor intercompatible. These limitations present a major challenge to microbiome research by hindering the streamlined drawing of inferences across studies. Here, we propose guiding principles to make microbial interaction data more findable, accessible, interoperable, and reusable (FAIR). We outline specific use cases for interaction data that span the diverse space of microbiome research, and discuss the untapped potential for new insights that can be fulfilled through broader integration of microbial interaction data. These include, among others, the design of intercompatible synthetic communities for environmental, industrial, or medical applications, and the inference of novel interactions from disparate studies. Lastly, we envision potential trajectories for the deployment of FAIR microbial interaction data based on existing resources, reporting standards, and current momentum within the community.
Collapse
Affiliation(s)
| | - Charlie Pauvert
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | - Dileep Kishore
- Bioinformatics Program and Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel Segrè
- Bioinformatics Program and Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biology, Department of Biomedical Engineering, Department of Physics, Boston University, Boston Massachusetts, USA
| |
Collapse
|
98
|
Ko SC, Cho M, Lee HJ, Woo HM. Biofoundry Palette: Planning-Assistant Software for Liquid Handler-Based Experimentation and Operation in the Biofoundry Workflow. ACS Synth Biol 2022; 11:3538-3543. [PMID: 36173735 DOI: 10.1021/acssynbio.2c00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lab automation has facilitated synthetic biology applications in an automated workflow, and biofoundry facilities have enabled automated high-throughput experiments of gene cloning and genome engineering to be conducted following a precise experimental design and protocol. However, before-experiment procedures in biofoundry applications have been underdetermined. We aimed to develop a Python-based planning-assistant software, namely Biofoundry Palette, for liquid handler-based experimentation and operation in the biofoundry workflow. Depending on the synthetic biology project, variable information and content information may vary; the Biofoundry Palette provides precise information for the before-experiment units for each process module in the biofoundry workflow. As a demonstration, more than 200 unique information sets, generated by Biofoundry Palette, were used in automated gene cloning or pathway construction. The information on planning and management can potentially help the operator faithfully execute the biofoundry workflow after securing the before-experiment unit, thereby lowering the risk of human errors and performing successful biofoundry operations for synthetic biology applications.
Collapse
Affiliation(s)
- Sung Cheon Ko
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Mingu Cho
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
99
|
Granata I, Manipur I, Giordano M, Maddalena L, Guarracino MR. TumorMet: A repository of tumor metabolic networks derived from context-specific Genome-Scale Metabolic Models. Sci Data 2022; 9:607. [PMID: 36207341 PMCID: PMC9547001 DOI: 10.1038/s41597-022-01702-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Studies about the metabolic alterations during tumorigenesis have increased our knowledge of the underlying mechanisms and consequences, which are important for diagnostic and therapeutic investigations. In this scenario and in the era of systems biology, metabolic networks have become a powerful tool to unravel the complexity of the cancer metabolic machinery and the heterogeneity of this disease. Here, we present TumorMet, a repository of tumor metabolic networks extracted from context-specific Genome-Scale Metabolic Models, as a benchmark for graph machine learning algorithms and network analyses. This repository has an extended scope for use in graph classification, clustering, community detection, and graph embedding studies. Along with the data, we developed and provided Met2Graph, an R package for creating three different types of metabolic graphs, depending on the desired nodes and edges: Metabolites-, Enzymes-, and Reactions-based graphs. This package allows the easy generation of datasets for downstream analysis. Measurement(s) | gene expression, metabolic relationships | Technology Type(s) | Genome Scale Metabolic Models; Computational network biology | Sample Characteristic - Organism | Homo sapiens |
Collapse
|
100
|
Waites W, Cavaliere M, Danos V, Datta R, Eggo RM, Hallett TB, Manheim D, Panovska-Griffiths J, Russell TW, Zarnitsyna VI. Compositional modelling of immune response and virus transmission dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210307. [PMID: 35965463 PMCID: PMC9376723 DOI: 10.1098/rsta.2021.0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Transmission models for infectious diseases are typically formulated in terms of dynamics between individuals or groups with processes such as disease progression or recovery for each individual captured phenomenologically, without reference to underlying biological processes. Furthermore, the construction of these models is often monolithic: they do not allow one to readily modify the processes involved or include the new ones, or to combine models at different scales. We show how to construct a simple model of immune response to a respiratory virus and a model of transmission using an easily modifiable set of rules allowing further refining and merging the two models together. The immune response model reproduces the expected response curve of PCR testing for COVID-19 and implies a long-tailed distribution of infectiousness reflective of individual heterogeneity. This immune response model, when combined with a transmission model, reproduces the previously reported shift in the population distribution of viral loads along an epidemic trajectory. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
- W. Waites
- Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
- Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, UK
| | - M. Cavaliere
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, UK
| | - V. Danos
- Département d’Informatique, École Normale Supérieure, Paris, France
| | - R. Datta
- Datta Enterprises LLC, San Francisco, CA, USA
| | - R. M. Eggo
- Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| | - T. B. Hallett
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - D. Manheim
- Technion, Israel Institute of Technology, Haifa, Israel
| | - J. Panovska-Griffiths
- The Big Data Institute and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Queen’s College, University of Oxford, Oxford, UK
| | - T. W. Russell
- Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| | - V. I. Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|