51
|
Monk IR, Shaikh N, Begg SL, Gajdiss M, Sharkey LKR, Lee JYH, Pidot SJ, Seemann T, Kuiper M, Winnen B, Hvorup R, Collins BM, Bierbaum G, Udagedara SR, Morey JR, Pulyani N, Howden BP, Maher MJ, McDevitt CA, King GF, Stinear TP. Zinc-binding to the cytoplasmic PAS domain regulates the essential WalK histidine kinase of Staphylococcus aureus. Nat Commun 2019; 10:3067. [PMID: 31296851 PMCID: PMC6624279 DOI: 10.1038/s41467-019-10932-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/05/2019] [Indexed: 01/23/2023] Open
Abstract
WalKR (YycFG) is the only essential two-component regulator in the human pathogen Staphylococcus aureus. WalKR regulates peptidoglycan synthesis, but this function alone does not explain its essentiality. Here, to further understand WalKR function, we investigate a suppressor mutant that arose when WalKR activity was impaired; a histidine to tyrosine substitution (H271Y) in the cytoplasmic Per-Arnt-Sim (PASCYT) domain of the histidine kinase WalK. Introducing the WalKH271Y mutation into wild-type S. aureus activates the WalKR regulon. Structural analyses of the WalK PASCYT domain reveal a metal-binding site, in which a zinc ion (Zn2+) is tetrahedrally-coordinated by four amino acids including H271. The WalKH271Y mutation abrogates metal binding, increasing WalK kinase activity and WalR phosphorylation. Thus, Zn2+-binding negatively regulates WalKR. Promoter-reporter experiments using S. aureus confirm Zn2+ sensing by this system. Identification of a metal ligand recognized by the WalKR system broadens our understanding of this critical S. aureus regulon.
Collapse
Affiliation(s)
- Ian R Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.
| | - Nausad Shaikh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Stephanie L Begg
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Mike Gajdiss
- University Clinics of Bonn, Institute of Medical Microbiology, Immunology and Parasitology, 53127, Bonn, Germany
| | - Liam K R Sharkey
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,Melbourne Bioinformatics, University of Melbourne, Melbourne, VIC, 3000, Australia
| | | | | | - Rikki Hvorup
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Gabriele Bierbaum
- University Clinics of Bonn, Institute of Medical Microbiology, Immunology and Parasitology, 53127, Bonn, Germany
| | - Saumya R Udagedara
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jacqueline R Morey
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Neha Pulyani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
52
|
Park JK, Kim KY, Sim YW, Kim YI, Kim JK, Lee C, Han J, Kim CU, Lee JE, Park S. Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder. IUCRJ 2019; 6:729-739. [PMID: 31316816 PMCID: PMC6608618 DOI: 10.1107/s2052252519007668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.
Collapse
Affiliation(s)
- Jeong Kuk Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Keon Young Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yeo Won Sim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jin Kyun Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Cheol Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeongran Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - J. Eugene Lee
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
53
|
Czapinska H, Kowalska M, Zagorskaite E, Manakova E, Slyvka A, Xu SY, Siksnys V, Sasnauskas G, Bochtler M. Activity and structure of EcoKMcrA. Nucleic Acids Res 2019; 46:9829-9841. [PMID: 30107581 PMCID: PMC6182155 DOI: 10.1093/nar/gky731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli McrA (EcoKMcrA) acts as a methylcytosine and hydroxymethylcytosine dependent restriction endonuclease. We present a biochemical characterization of EcoKMcrA that includes the first demonstration of its endonuclease activity, small angle X-ray scattering (SAXS) data, and a crystal structure of the enzyme in the absence of DNA. Our data indicate that EcoKMcrA dimerizes via the anticipated C-terminal HNH domains, which together form a single DNA binding site. The N-terminal domains are not homologous to SRA domains, do not interact with each other, and have separate DNA binding sites. Electrophoretic mobility shift assay (EMSA) and footprinting experiments suggest that the N-terminal domains can sense the presence and sequence context of modified cytosines. Pyrrolocytosine fluorescence data indicate no base flipping. In vitro, EcoKMcrA DNA endonuclease activity requires Mn2+ ions, is not strictly methyl dependent, and is not observed when active site variants of the enzyme are used. In cells, EcoKMcrA specifically restricts DNA that is modified in the correct sequence context. This activity is impaired by mutations of the nuclease active site, unless the enzyme is highly overexpressed.
Collapse
Affiliation(s)
- Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Monika Kowalska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Evelina Zagorskaite
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Anton Slyvka
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
54
|
Dulcey CE, López de Los Santos Y, Létourneau M, Déziel E, Doucet N. Semi-rational evolution of the 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA to improve rhamnolipid production in Pseudomonas aeruginosa and Burkholderia glumae. FEBS J 2019; 286:4036-4059. [PMID: 31177633 DOI: 10.1111/febs.14954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
The 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA is an essential enzyme involved in the biosynthesis of HAAs in Pseudomonas and Burkholderia species. RhlA modulates the aliphatic chain length in rhamnolipids, conferring distinct physicochemical properties to these biosurfactants exhibiting promising industrial and pharmaceutical value. A detailed molecular understanding of substrate specificity and catalytic performance in RhlA could offer protein engineering tools to develop designer variants involved in the synthesis of novel rhamnolipid mixtures for tailored eco-friendly products. However, current directed evolution progress remains limited due to the absence of high-throughput screening methodologies and lack of an experimentally resolved RhlA structure. In the present work, we used comparative modeling and chimeric-based approaches to perform a comprehensive semi-rational mutagenesis of RhlA from Pseudomonas aeruginosa. Our extensive RhlA mutational variants and chimeric hybrids between the Pseudomonas and Burkholderia homologs illustrate selective modulation of rhamnolipid alkyl chain length in both Pseudomonas aeruginosa and Burkholderia glumae. Our results also demonstrate the implication of a putative cap-domain motif that covers the catalytic site of the enzyme and provides substrate specificity to RhlA. This semi-rational mutant-based survey reveals promising 'hot-spots' for the modulation of RL congener patterns and potential control of enzyme activity, in addition to uncovering residue positions that modulate substrate selectivity between the Pseudomonas and Burkholderia functional homologs. DATABASE: Model data are available in the PMDB database under the accession number PM0081867.
Collapse
Affiliation(s)
- Carlos Eduardo Dulcey
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada.,PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Canada
| |
Collapse
|
55
|
Linkous RO, Sestok AE, Smith AT. The crystal structure of Klebsiella pneumoniae FeoA reveals a site for protein-protein interactions. Proteins 2019; 87:897-903. [PMID: 31162843 DOI: 10.1002/prot.25755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022]
Abstract
In order to establish infection, pathogenic bacteria must obtain essential nutrients such as iron. Under acidic and/or anaerobic conditions, most bacteria utilize the Feo system in order to acquire ferrous iron (Fe2+ ) from their host environment. The mechanism of this process, including its regulation, remains poorly understood. In this work, we have determined the crystal structure of FeoA from the nosocomial agent Klebsiella pneumoniae (KpFeoA). Our structure reveals an SH3-like domain that mediates interactions between neighboring polypeptides via hydrophobic intercalations into a Leu-rich surface ridge. Using docking of a small peptide corresponding to a postulated FeoB partner binding site, we demonstrate that KpFeoA can assume both "open" and "closed" conformations, controlled by binding at this Leu-rich ridge. We propose a model in which a "C-shaped" clamp along the FeoA surface mediates interactions with its partner protein, FeoB. These findings are the first to demonstrate atomic-level details of FeoA-based protein-protein interactions and provide a framework for testing FeoA-FeoB interactions, which could be exploited for future antibiotic developments.
Collapse
Affiliation(s)
- Richard O Linkous
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland
| | - Alexandrea E Sestok
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland
| |
Collapse
|
56
|
Wierzbicka-Woś A, Henneberger R, Batista-García RA, Martínez-Ávila L, Jackson SA, Kennedy J, Dobson ADW. Biochemical Characterization of a Novel Monospecific Endo-β-1,4-Glucanase Belonging to GH Family 5 From a Rhizosphere Metagenomic Library. Front Microbiol 2019; 10:1342. [PMID: 31258522 PMCID: PMC6587912 DOI: 10.3389/fmicb.2019.01342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
Cellulases have a broad range of different industrial applications, ranging from food and beverages to pulp and paper and the biofuels area. Here a metagenomics based strategy was used to identify the cellulolytic enzyme CelRH5 from the rhizosphere. CelRH5 is a novel monospecific endo-β-1,4-glucanase belonging to the glycosyl hydrolase family 5 (GH5). Structural based modeling analysis indicated that CelRH5 is related to endo-β-1,4-glucanases derived from thermophilic microorganisms such as Thermotoga maritima, Fervidobacterium nodosum, and Ruminiclostridium thermocellum sharing 30-40% amino acid sequence identity. The molecular weight of the enzyme was determined as 40.5 kDa. Biochemical analyses revealed that the enzyme displayed good activity with soluble forms of cellulose as a substrate such as ostazin brilliant red hydroxyethyl cellulose (OBR-HEC), carboxymethylcellulose (CMC), hydroxyethyl cellulose (HEC), and insoluble azurine cross-linked hydroxyethylcellulose (AZCL-HEC). The enzyme shows highest enzymatic activity at pH 6.5 with high pH tolerance, remaining stable in the pH range 4.5–8.5. Highest activity was observed at 40°C, but CelRH5 is psychrotolerant being active and stable at temperatures below 30°C. The presence of the final products of cellulose hydrolysis (glucose and cellobiose) or metal ions such as Na+, K+, Li+, and Mg2+, as well as ethylenediaminetetraacetic acid (EDTA), urea, dithiothreitol (DTT), dimethyl sulfoxide (DMSO), 2-mercaptoethanol (2-ME) or glycerol, did not have a marked effect on CelRH5 activity. However, the enzyme is quite sensitive to the presence of 10 mM ions Zn2+, Ni2+, Co2+, Fe3+ and reagents such as 1 M guanidine HCl, 0.1% sodium dodecyl sulfate (SDS) and 20% ethanol. Given that it is psychrotolerant and retains activity in the presence of final cellulose degradation products, metal ions and various reagents, which are common in many technological processes; CelRH5 may be potential suitability for a variety of different biotechnological applications.
Collapse
Affiliation(s)
- Anna Wierzbicka-Woś
- Environmental Research Institute, University College Cork, Cork, Ireland.,Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Ruth Henneberger
- Environmental Research Institute, University College Cork, Cork, Ireland.,Institute for Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Stephen A Jackson
- Environmental Research Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Alan D W Dobson
- Environmental Research Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
57
|
Bonome EL, Cecconi F, Chinappi M. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications. NANOSCALE 2019; 11:9920-9930. [PMID: 31069350 DOI: 10.1039/c8nr10492a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanopore based sensors constitute a promising approach to single molecule protein characterization being able, in principle, to detect sequences, structural elements and folding states of proteins and polypeptide chains. In narrow nanopores, one of the open issues concerns the coupling between unfolding and translocation. Here, we studied the ubiquitin translocation in an α-hemolysin nanopore, the most widely used pore for nanopore sensing, via all-atom molecular dynamics simulations. We completely characterize the co-translocational unfolding pathway finding that robust translocation intermediates are associated with the rearrangement of secondary structural elements, as also confirmed by coarse grained simulations. An interesting recurrent pattern is the clogging of the α-hemolysin constriction by an N-terminal β-hairpin. This region of ubiquitin is the target of several post-translational modifications. We propose a strategy to detect post-translational modifications at the N-terminal using the α-hemolysin nanopore based on the comparison of the co-translocational unfolding signals associated with modified and unmodified proteins.
Collapse
Affiliation(s)
- Emma Letizia Bonome
- Dipartimento di Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma, Roma, 00185, Italy
| | - Fabio Cecconi
- CNR-Istituto dei Sistemi Complessi UoS Sapienza, Via dei Taurini 19, Roma, 00185, Italy
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, 00133, Italy.
| |
Collapse
|
58
|
Tu J, Chen R, Yang Y, Cao W, Xie W. Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation. Nat Chem Biol 2019; 15:615-622. [PMID: 31101915 DOI: 10.1038/s41589-019-0290-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
A uracil DNA glycosylase (UDG) from Mycobacterium smegmatis (MsmUdgX) shares sequence similarity with family 4 UDGs and forms exceedingly stable complexes with single-stranded uracil-containing DNAs (ssDNA-Us) that are resistant to denaturants. However, MsmUdgX has been reported to be inactive in excising uracil from ssDNA-Us and the underlying structural basis is unclear. Here, we report high-resolution crystal structures of MsmUdgX in the free, uracil- and DNA-bound forms, respectively. The structural information, supported by mutational and biochemical analyses, indicates that the conserved residue His109 located on a characteristic loop forms an irreversible covalent linkage with the deoxyribose at the apyrimidinic site of ssDNA-U, thus rendering the enzyme unable to regenerate. By proposing the catalytic pathway and molecular mechanism for MsmUdgX, our studies provide an insight into family 4 UDGs and UDGs in general.
Collapse
Affiliation(s)
- Jie Tu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
59
|
Beraki T, Hu X, Broncel M, Young JC, O'Shaughnessy WJ, Borek D, Treeck M, Reese ML. Divergent kinase regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole. Proc Natl Acad Sci U S A 2019; 116:6361-6370. [PMID: 30850550 PMCID: PMC6442604 DOI: 10.1073/pnas.1816161116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apicomplexan parasites replicate within a protective organelle, called the parasitophorous vacuole (PV). The Toxoplasma gondii PV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network's functions. Here, we identify the parasite-secreted kinase WNG1 (With-No-Gly-loop) as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family of Toxoplasma kinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV development during parasite infection.
Collapse
Affiliation(s)
- Tsebaot Beraki
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Xiaoyu Hu
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - William J O'Shaughnessy
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - Michael L Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390;
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
60
|
Liu L, Zhou Y, Qu M, Qiu Y, Guo X, Zhang Y, Liu T, Yang J, Yang Q. Structural and biochemical insights into the catalytic mechanisms of two insect chitin deacetylases of the carbohydrate esterase 4 family. J Biol Chem 2019; 294:5774-5783. [PMID: 30755482 PMCID: PMC6463723 DOI: 10.1074/jbc.ra119.007597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
Insect chitin deacetylases (CDAs) catalyze the removal of acetyl groups from chitin and modify this polymer during its synthesis and reorganization. CDAs are essential for insect survival and therefore represent promising targets for insecticide development. However, the structural and biochemical characteristics of insect CDAs have remained elusive. Here, we report the crystal structures of two insect CDAs from the silk moth Bombyx mori: BmCDA1, which may function in cuticle modification, and BmCDA8, which may act in modifying peritrophic membranes in the midgut. Both enzymes belong to the carbohydrate esterase 4 (CE4) family. Comparing their overall structures at 1.98–2.4 Å resolution with those from well-studied microbial CDAs, we found that two unique loop regions in BmCDA1 and BmCDA8 contribute to the distinct architecture of their substrate-binding clefts. These comparisons revealed that both BmCDA1 and BmCDA8 possess a much longer and wider substrate-binding cleft with a very open active site in the center than the microbial CDAs, including VcCDA from Vibrio cholerae and ArCE4A from Arthrobacter species AW19M34-1. Biochemical analyses indicated that BmCDA8 is an active enzyme that requires its substrates to occupy subsites 0, +1, and +2 for catalysis. In contrast, BmCDA1 also required accessory proteins for catalysis. To the best of our knowledge, our work is the first to unveil the structural and biochemical features of insect proteins belonging to the CE4 family.
Collapse
Affiliation(s)
- Lin Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhou
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Mingbo Qu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yu Qiu
- Department of Protein Engineering, Biologics Research, Sanofi, Bridgewater, New Jersey 08807
| | - Xingming Guo
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yuebin Zhang
- the Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116024, China
| | - Tian Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Jun Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China; the State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
61
|
Ball SR, Kwan AH, Sunde M. Hydrophobin Rodlets on the Fungal Cell Wall. Curr Top Microbiol Immunol 2019; 425:29-51. [DOI: 10.1007/82_2019_186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Youkharibache P. Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity. Methods Mol Biol 2019; 1958:187-219. [PMID: 30945220 PMCID: PMC8323591 DOI: 10.1007/978-1-4939-9161-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We will consider in this chapter supersecondary structures (SSS) as a set of secondary structure elements (SSEs) found in protein domains. Some SSS arrangements/topologies have been consistently observed within known tertiary structural domains. We use them in the context of repeating supersecondary structures that self-assemble in a symmetric arrangement to form a domain. We call them protodomains (or protofolds). Protodomains are some of the most interesting and insightful SSSs. Within a given 3D protein domain/fold, recognizing such sets may give insights into a possible evolutionary process of duplication, fusion, and coevolution of these protodomains, pointing to possible original protogenes. On protein folding itself, pseudosymmetric domains may point to a "directed" assembly of pseudosymmetric protodomains, directed by the only fact that they are tethered together in a protein chain. On function, tertiary functional sites often occur at protodomain interfaces, as they often occur at domain-domain interfaces in quaternary arrangements.First, we will briefly review some lessons learned from a previously published census of pseudosymmetry in protein domains (Myers-Turnbull, D. et al., J Mol Biol. 426:2255-2268, 2014) to introduce protodomains/protofolds. We will observe that the most abundant and diversified folds, or superfolds, in the currently known protein structure universe are indeed pseudosymmetric. Then, we will learn by example and select a few domain representatives of important pseudosymmetric folds and chief among them the immunoglobulin (Ig) fold and go over a pseudosymmetry supersecondary structure (protodomain) analysis in tertiary and quaternary structures. We will point to currently available software tools to help in identifying pseudosymmetry, delineating protodomains, and see how the study of pseudosymmetry and the underlying supersecondary structures can enrich a structural analysis. This should potentially help in protein engineering, especially in the development of biologics and immunoengineering.
Collapse
|
63
|
Midlik A, Hutařová Vařeková I, Hutař J, Moturu TR, Navrátilová V, Koča J, Berka K, Svobodová Vařeková R. Automated Family-Wide Annotation of Secondary Structure Elements. Methods Mol Biol 2019; 1958:47-71. [PMID: 30945213 DOI: 10.1007/978-1-4939-9161-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Secondary structure elements (SSEs) are inherent parts of protein structures, and their arrangement is characteristic for each protein family. Therefore, annotation of SSEs can facilitate orientation in the vast number of homologous structures which is now available for many protein families. It also provides a way to identify and annotate the key regions, like active sites and channels, and subsequently answer the key research questions, such as understanding of molecular function and its variability.This chapter introduces the concept of SSE annotation and describes the workflow for obtaining SSE annotation for the members of a selected protein family using program SecStrAnnotator.
Collapse
Affiliation(s)
- Adam Midlik
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
| | - Ivana Hutařová Vařeková
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Jan Hutař
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Taraka Ramji Moturu
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Veronika Navrátilová
- Faculty of Science, Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Karel Berka
- Faculty of Science, Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, Czech Republic
| | - Radka Svobodová Vařeková
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
64
|
Giordano D, Facchiano A. Classification of microbial transglutaminases by evaluation of evolution trees, sequence motifs, secondary structure topology and conservation of potential catalytic residues. Biochem Biophys Res Commun 2018; 509:506-513. [PMID: 30595384 DOI: 10.1016/j.bbrc.2018.12.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 01/03/2023]
Abstract
Despite the growing interest for microbial transglutaminases (TGases), and the large number of genome sequencing data, there is no deep investigation about structural properties within this family of enzymes in bacteria. We performed a classification of microbial TGases, starting from large-scale analysis of all protein sequences annotated as TGase (more than 8000) in database PFAM. We developed a reiterative procedure based on the construction of several phylogenetic trees and manual selection, and detected five main groups of microbial TGases. Searches for sequence motifs evidenced strong conservation in regions containing potential catalytic residues for some groups. Protein structure modelling has been possible for three of the five groups. Analyses of motifs, structural topologies and potential catalytic sites suggest possible interpretations for function similarities and divergences among groups.
Collapse
Affiliation(s)
- Deborah Giordano
- Istituto di Scienze dell'Alimentazione, CNR, via Roma 64, 83100, Avellino, Italy; Dottorato di Ricerca in "Innovazione e management di alimenti ad elevata valenza salutistica", Università degli Studi di Foggia, Italy
| | - Angelo Facchiano
- Istituto di Scienze dell'Alimentazione, CNR, via Roma 64, 83100, Avellino, Italy.
| |
Collapse
|
65
|
Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis. J Mol Biol 2018; 430:5120-5136. [DOI: 10.1016/j.jmb.2018.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 01/25/2023]
|
66
|
Son J, Kim S, Kim SE, Lee H, Lee MR, Hwang KY. Structural Analysis of an Epitope Candidate of Triosephosphate Isomerase in Opisthorchis viverrini. Sci Rep 2018; 8:15075. [PMID: 30305716 PMCID: PMC6180082 DOI: 10.1038/s41598-018-33479-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
Opisthorchis viverrini, a parasitic trematode, was recategorized as a group 1 biological carcinogen because it causes opisthorchiasis, which may result in cholangiocarcinoma. A new strategy for controlling opisthorchiasis is needed because of issues such as drug resistance and reinfection. Triosephosphate isomerase (TIM), a key enzyme in energy metabolism, is regarded as a potential drug target and vaccine candidate against various pathogens. Here, we determined the crystal structures of wild-type and 3 variants of TIMs from O. viverrini (OvTIM) at high resolution. The unique tripeptide of parasite trematodes, the SAD motif, was located on the surface of OvTIM and contributed to forming a 310-helix of the following loop in a sequence-independent manner. Through thermal stability and structural analyses of OvTIM variants, we found that the SAD motif induced local structural alterations of the surface and was involved in the overall stability of OvTIM in a complementary manner with another parasite-specific residue, N115. Comparison of the surface characteristics between OvTIM and Homo sapiens TIM (HsTIM) and structure-based epitope prediction suggested that the SAD motif functions as an epitope.
Collapse
Affiliation(s)
- Jonghyeon Son
- 0000 0001 0840 2678grid.222754.4Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-701 South Korea
| | - Sulhee Kim
- 0000 0001 0840 2678grid.222754.4Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-701 South Korea
| | - So Eun Kim
- 0000 0001 0840 2678grid.222754.4Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-701 South Korea
| | - Haemin Lee
- 0000 0001 0840 2678grid.222754.4Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-701 South Korea
| | - Myoung-Ro Lee
- 0000 0004 0647 4899grid.415482.eDivision of Malaria & Parasitic Disease, Korea National Institute of Health, Osong, 28159 Republic of Korea
| | - Kwang Yeon Hwang
- 0000 0001 0840 2678grid.222754.4Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-701 South Korea
| |
Collapse
|
67
|
Kovacs NA, Penev PI, Venapally A, Petrov AS, Williams LD. Circular Permutation Obscures Universality of a Ribosomal Protein. J Mol Evol 2018; 86:581-592. [PMID: 30306205 DOI: 10.1007/s00239-018-9869-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022]
Abstract
Functions, origins, and evolution of the translation system are best understood in the context of unambiguous and phylogenetically based taxonomy and nomenclature. Here, we map ribosomal proteins onto the tree of life and provide a nomenclature for ribosomal proteins that is consistent with phylogenetic relationships. We have increased the accuracy of homology relationships among ribosomal proteins, providing a more informative picture of their lineages. We demonstrate that bL33 (bacteria) and eL42 (archaea/eukarya) are homologs with common ancestry and acute similarities in sequence and structure. Their similarities were previously obscured by circular permutation. The most likely mechanism of permutation between bL33 and eL42 is duplication followed by fusion and deletion of both the first and last β-hairpins. bL33 and eL42 are composed of zinc ribbon protein folds, one of the most common zinc finger fold-groups of, and most frequently observed in translation-related domains. Bacterial-specific ribosomal protein bL33 and archaeal/eukaryotic-specific ribosomal protein eL42 are now both assigned the name of uL33, indicating a universal ribosomal protein. We provide a phylogenetic naming scheme for all ribosomal proteins that is based on phylogenetic relationships to be used as a tool for studying the systemics, evolution, and origins of the ribosome.
Collapse
Affiliation(s)
- Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Amitej Venapally
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
68
|
Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, Tan WS, Bhella D. Structure of the Macrobrachium rosenbergii nodavirus: A new genus within the Nodaviridae? PLoS Biol 2018; 16:e3000038. [PMID: 30346944 PMCID: PMC6211762 DOI: 10.1371/journal.pbio.3000038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022] Open
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
Collapse
Affiliation(s)
- Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mads Gabrielsen
- CRUK Beatson Institute, Garscube Campus, Glasgow, Scotland United Kingdom
| | - Poay Ling Beh
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Chare Li Kueh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Qiu Xian Thong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - James Streetley
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, Scotland, United Kingdom
| |
Collapse
|
69
|
Zhu J, Li Y, Wang J, Yu Z, Liu Y, Tong Y, Han W. Adaptive Steered Molecular Dynamics Combined With Protein Structure Networks Revealing the Mechanism of Y68I/G109P Mutations That Enhance the Catalytic Activity of D-psicose 3-Epimerase From Clostridium Bolteae. Front Chem 2018; 6:437. [PMID: 30320068 PMCID: PMC6166005 DOI: 10.3389/fchem.2018.00437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
The scarcity, richness, and other important physiological functions of D-psicose make it crucial to increase the yield of D-psicose. The production of D-psicose can be accomplished by D-psicose 3-epimerase (DPEase) from Clostridium bolteae (CbDPEase) catalyzing the substrate D-fructose. Although the catalytic efficiency of the CbDPEase has been raised via using the site-directed mutagenesis (Y68I/G109P) technique, structure-activity relationship in the wild-type CbDPEase and Y68I/G109P mutant is currently poorly understood. In our study, a battery of molecular modeling methods [homology modeling, adaptive steered molecular dynamics (ASMD) simulations, and Molecular Mechanics/Generalized Born Surface Area (MM-GB/SA)], combined with protein structure networks, were employed to theoretically characterize the reasons for the differences in the abilities of the D-fructose catalyzed by the wild-type CbDPEase and Y68I/G109P mutant. Protein structure networks demonstrated that site-directed mutagenesis enhanced the connectivity between D-fructose and CbDPEase, leading to the increased catalytic efficiency mediated by the functional residues with high betweenness. During the dissociation of the D-fructose from the Y68I/G109P mutant, planes of benzene rings of F248 and W114 could be continuously parallel to the stretching direction of D-fructose. It made the tunnel have an open state and resulted in the stable donor-π interactions between D-fructose and the benzene rings around 18Å. The stronger substrate-protein interactions were detected in the Y68I/G109P mutant, instead of in the wild-type CbDPEase, which were consistent with the binding free energy and Potential Mean of Force (PMF) results. The theoretical results illustrated the reasons that Y68I/G109P mutations increased the catalytic efficiency of CbDPEase and could be provided the new clue for further DPEase engineering.
Collapse
Affiliation(s)
- Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Yi Li
- COFCO (Jilin) Bio-Chemical Technology Co., Ltd, Changchun, China
| | - Jinzhi Wang
- COFCO (Jilin) Bio-Chemical Technology Co., Ltd, Changchun, China
| | - Zhengfei Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Ye Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Yi Tong
- COFCO (Jilin) Bio-Chemical Technology Co., Ltd, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
70
|
Cheng Z, VanPelt J, Bergstrom A, Bethel C, Katko A, Miller C, Mason K, Cumming E, Zhang H, Kimble RL, Fullington S, Bretz SL, Nix JC, Bonomo RA, Tierney DL, Page RC, Crowder MW. A Noncanonical Metal Center Drives the Activity of the Sediminispirochaeta smaragdinae Metallo-β-lactamase SPS-1. Biochemistry 2018; 57:5218-5229. [PMID: 30106565 PMCID: PMC6314204 DOI: 10.1021/acs.biochem.8b00728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In an effort to evaluate whether a recently reported putative metallo-β-lactamase (MβL) contains a novel MβL active site, SPS-1 from Sediminispirochaeta smaragdinae was overexpressed, purified, and characterized using spectroscopic and crystallographic studies. Metal analyses demonstrate that recombinant SPS-1 binds nearly 2 equiv of Zn(II), and steady-state kinetic studies show that the enzyme hydrolyzes carbapenems and certain cephalosporins but not β-lactam substrates with bulky substituents at the 6/7 position. Spectroscopic studies of Co(II)-substituted SPS-1 suggest a novel metal center in SPS-1, with a reduced level of spin coupling between the metal ions and a novel Zn1 metal binding site. This site was confirmed with a crystal structure of the enzyme. The structure shows a Zn2 site that is similar to that in NDM-1 and other subclass B1 MβLs; however, the Zn1 metal ion is coordinated by two histidine residues and a water molecule, which is held in position by a hydrogen bond network. The Zn1 metal is displaced nearly 1 Å from the position reported in other MβLs. The structure also shows extended helices above the active site, which create a binding pocket that precludes the binding of substrates with large, bulky substituents at the 6/7 position of β-lactam antibiotics. This study reveals a novel metal binding site in MβLs and suggests that the targeting of metal binding sites in MβLs with inhibitors is now more challenging with the identification of this new MβL.
Collapse
Affiliation(s)
- Zishuo Cheng
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Jamie VanPelt
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Alexander Bergstrom
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Christopher Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Andrew Katko
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Callie Miller
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Kelly Mason
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Erin Cumming
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Huan Zhang
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Robert L. Kimble
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Sarah Fullington
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Stacey Lowery Bretz
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Jay C. Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, and the CWRU-Cleveland VAMC Center of Antimicrobial Resistance and Epidemiology, Cleveland, OH 44106
| | - David L. Tierney
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Richard C. Page
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| |
Collapse
|
71
|
Noby N, Saeed H, Embaby AM, Pavlidis IV, Hussein A. Cloning, expression and characterization of cold active esterase (EstN7) from Bacillus cohnii strain N1: A novel member of family IV. Int J Biol Macromol 2018; 120:1247-1255. [PMID: 30063933 DOI: 10.1016/j.ijbiomac.2018.07.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/11/2023]
Abstract
Esterases and lipases from extremophiles have attracted great attention due to their unique characteristics and wide applications. In the present study, an open reading frame (ORF) encoding a novel cold active esterase (EstN7) from Bacillus cohnii strain N1 was cloned and expressed in Escherichia coli. The full-length esterase gene encoding a protein of 320 amino acids with estimated molecular weight of 37.0 kDa. Amino acid sequence analysis revealed that the EstN7 belongs to family IV lipases with a characteristic penta-peptide motif (GXSXG), the catalytic triad Ser, Asp, His and the conserved HGGG motif of the family IV. The recombinant enzyme was purified to apparent homogeneity using nickel-affinity chromatography with a purification fold of 5 and recovery 94.5%. The specific activity of the purified enzyme was 336.89 U/mg. The recombinant EstN7 showed optimal activity at 5 °C moreover, EstN7 displayed full robust stability in the presence of wide range of organic solvents. The purified enzyme had Km and Vmax of 45 ± 0.019 μM and 1113 μmol min-1 mg-1, respectively on p-NP-acetate. These promising characteristics of the recombinant EstN7 would underpin its possible usage with high potential in the synthesis of fragile compounds in pharmaceutical industries.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
72
|
Koch I, Schäfer T. Protein super-secondary structure and quaternary structure topology: theoretical description and application. Curr Opin Struct Biol 2018; 50:134-143. [DOI: 10.1016/j.sbi.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/26/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
|
73
|
Jia Q, Lin Y, Gou X, He L, Shen D, Chen D, Xie W, Lu Y. Legionella pneumophila effector WipA, a bacterial PPP protein phosphatase with PTP activity. Acta Biochim Biophys Sin (Shanghai) 2018; 50:547-554. [PMID: 29701815 DOI: 10.1093/abbs/gmy042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 11/12/2022] Open
Abstract
The gram-negative bacterium Legionella pneumophila invades human's lung and causes Legionnaires' disease. To benefit its survival and replication in cellular milieu, L. pneumophila secrets at least 330 effector proteins into host cells. We found that the effector WipA has the protein tyrosine phosphatase (PTP) activity but does not depend on the classical CX5R motif for activity, suggesting that WipA is an unconventional PTP. Meanwhile, the presence of three other highly conserved motifs typically seen in protein serine/threonine phosphatases and the poor inhibition of WipA activity by okadaic acid led us to propose that WipA is a bacterial protein phosphatase. In addition, the determination of the 2.55-Å crystal structure of WipA revealed that WipA resembles cold-active protein tyrosine phosphatase (CAPTPase), and therefore very likely shares the same catalytic mechanism.
Collapse
Affiliation(s)
- Qian Jia
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yun Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Biomedical Center of Sun Yat-sen University, Guangzhou 510275, China
| | - Xuejing Gou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Biomedical Center of Sun Yat-sen University, Guangzhou 510275, China
| | - Lei He
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Biomedical Center of Sun Yat-sen University, Guangzhou 510275, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Biomedical Center of Sun Yat-sen University, Guangzhou 510275, China
| | - Dongni Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Biomedical Center of Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Xie
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Biomedical Center of Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
74
|
Gordo V, Aparicio D, Pérez-Luque R, Benito A, Vilanova M, Usón I, Fita I, Ribó M. Structural Insights into Subunits Assembly and the Oxyester Splicing Mechanism of Neq pol Split Intein. Cell Chem Biol 2018; 25:871-879.e2. [PMID: 29754955 DOI: 10.1016/j.chembiol.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/28/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022]
Abstract
Split inteins are expressed as two separated subunits (N-intein and C-intein) fused to the corresponding exteins. The specific association of both intein subunits precedes protein splicing, which results in excision of the intein subunits and in ligation, by a peptide bond, of the concomitant exteins. Catalytically active intein precursors are typically too reactive for crystallization or even isolation. Neq pol is the trans-intein of the B-type DNA polymerase I split gene from hyperthermophile Nanoarchaeum equitans. We have determined the crystal structures of both the isolated NeqN and the complex of NeqN and NeqC subunits carrying the wild-type sequences, including the essential catalytic residues Ser1 and Thr+1, in addition to seven and three residues of the N- and C-exteins, respectively. These structures provide detailed information on the unique oxyester chemistry of the splicing mechanism of Neq pol and of the extensive rearrangements that occur in NeqN during the association step.
Collapse
Affiliation(s)
- Verónica Gordo
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 40, 17003 Girona, Spain; IdIBGi Hospital Universitari Josep Trueta, Girona, Spain
| | - David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Rosa Pérez-Luque
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 40, 17003 Girona, Spain; IdIBGi Hospital Universitari Josep Trueta, Girona, Spain
| | - Maria Vilanova
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 40, 17003 Girona, Spain; IdIBGi Hospital Universitari Josep Trueta, Girona, Spain
| | - Isabel Usón
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Baldiri i Reixac 10, 08028 Barcelona, Spain; ICREA Lluís Companys 23, 08003 Barcelona, Spain
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Baldiri i Reixac 10, 08028 Barcelona, Spain.
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 40, 17003 Girona, Spain; IdIBGi Hospital Universitari Josep Trueta, Girona, Spain.
| |
Collapse
|
75
|
Khan T, Panday SK, Ghosh I. ProLego: tool for extracting and visualizing topological modules in protein structures. BMC Bioinformatics 2018; 19:167. [PMID: 29728050 PMCID: PMC5935970 DOI: 10.1186/s12859-018-2171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background In protein design, correct use of topology is among the initial and most critical feature. Meticulous selection of backbone topology aids in drastically reducing the structure search space. With ProLego, we present a server application to explore the component aspect of protein structures and provide an intuitive and efficient way to scan the protein topology space. Result We have implemented in-house developed “topological representation” in an automated-pipeline to extract protein topology from given protein structure. Using the topology string, ProLego, compares topology against a non-redundant extensive topology database (ProLegoDB) as well as extracts constituent topological modules. The platform offers interactive topology visualization graphs. Conclusion ProLego, provides an alternative but comprehensive way to scan and visualize protein topology along with an extensive database of protein topology. ProLego can be found at http://www.proteinlego.com Electronic supplementary material The online version of this article (10.1186/s12859-018-2171-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taushif Khan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shailesh Kumar Panday
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Indira Ghosh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
76
|
Samelson AJ, Bolin E, Costello SM, Sharma AK, O’Brien EP, Marqusee S. Kinetic and structural comparison of a protein's cotranslational folding and refolding pathways. SCIENCE ADVANCES 2018; 4:eaas9098. [PMID: 29854950 PMCID: PMC5976279 DOI: 10.1126/sciadv.aas9098] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Precise protein folding is essential for the survival of all cells, and protein misfolding causes a number of diseases that lack effective therapies, yet the general principles governing protein folding in the cell remain poorly understood. In vivo, folding can begin cotranslationally and protein quality control at the ribosome is essential for cellular proteostasis. We directly characterize and compare the refolding and cotranslational folding trajectories of the protein HaloTag. We introduce new techniques for both measuring folding kinetics and detecting the conformations of partially folded intermediates during translation in real time. We find that, although translation does not affect the rate-limiting step of HaloTag folding, a key aggregation-prone intermediate observed during in vitro refolding experiments is no longer detectable. This rerouting of the folding pathway increases HaloTag's folding efficiency and may serve as a general chaperone-independent mechanism of quality control by the ribosome.
Collapse
Affiliation(s)
- Avi J. Samelson
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720–3220, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720–3220, USA
| | - Eric Bolin
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720–3220, USA
- Biophysics Graduate Program, University of California Berkeley, Berkeley, CA 94720–3220, USA
| | - Shawn M. Costello
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720–3220, USA
- Biophysics Graduate Program, University of California Berkeley, Berkeley, CA 94720–3220, USA
| | - Ajeet K. Sharma
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Edward P. O’Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720–3220, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720–3220, USA
| |
Collapse
|
77
|
Chan CW, Kiesel BR, Mondragón A. Crystal Structure of Human Rpp20/Rpp25 Reveals Quaternary Level Adaptation of the Alba Scaffold as Structural Basis for Single-stranded RNA Binding. J Mol Biol 2018; 430:1403-1416. [PMID: 29625199 DOI: 10.1016/j.jmb.2018.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
Abstract
Ribonuclease P (RNase P) catalyzes the removal of 5' leaders of tRNA precursors and its central catalytic RNA subunit is highly conserved across all domains of life. In eukaryotes, RNase P and RNase MRP, a closely related ribonucleoprotein enzyme, share several of the same protein subunits, contain a similar catalytic RNA core, and exhibit structural features that do not exist in their bacterial or archaeal counterparts. A unique feature of eukaryotic RNase P/MRP is the presence of two relatively long and unpaired internal loops within the P3 region of their RNA subunit bound by a heterodimeric protein complex, Rpp20/Rpp25. Here we present a crystal structure of the human Rpp20/Rpp25 heterodimer and we propose, using comparative structural analyses, that the evolutionary divergence of the single-stranded and helical nucleic acid binding specificities of eukaryotic Rpp20/Rpp25 and their related archaeal Alba chromatin protein dimers, respectively, originate primarily from quaternary level differences observed in their heterodimerization interface. Our work provides structural insights into how the archaeal Alba protein scaffold was adapted evolutionarily for incorporation into several functionally-independent eukaryotic ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Clarence W Chan
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States
| | - Benjamin R Kiesel
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States.
| |
Collapse
|
78
|
Zegarra FC, Homouz D, Eliaz Y, Gasic AG, Cheung MS. Impact of hydrodynamic interactions on protein folding rates depends on temperature. Phys Rev E 2018; 97:032402. [PMID: 29776093 PMCID: PMC6080349 DOI: 10.1103/physreve.97.032402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 01/04/2023]
Abstract
We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α/β chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue β-barrel α-spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.
Collapse
Affiliation(s)
- Fabio C. Zegarra
- Department of Physics, University of Houston, Houston, Texas 77204, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Dirar Homouz
- Department of Physics, University of Houston, Houston, Texas 77204, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Khalifa University of Science and Technology, Department of Physics, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yossi Eliaz
- Department of Physics, University of Houston, Houston, Texas 77204, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Andrei G. Gasic
- Department of Physics, University of Houston, Houston, Texas 77204, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Margaret S. Cheung
- Department of Physics, University of Houston, Houston, Texas 77204, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
79
|
Bohl HO, Shi K, Lee JK, Aihara H. Crystal structure of lipid A disaccharide synthase LpxB from Escherichia coli. Nat Commun 2018; 9:377. [PMID: 29371662 PMCID: PMC5785501 DOI: 10.1038/s41467-017-02712-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
Most Gram-negative bacteria are surrounded by a glycolipid called lipopolysaccharide (LPS), which forms a barrier to hydrophobic toxins and, in pathogenic bacteria, is a virulence factor. During LPS biosynthesis, a membrane-associated glycosyltransferase (LpxB) forms a tetra-acylated disaccharide that is further acylated to form the membrane anchor moiety of LPS. Here we solve the structure of a soluble and catalytically competent LpxB by X-ray crystallography. The structure reveals that LpxB has a glycosyltransferase-B family fold but with a highly intertwined, C-terminally swapped dimer comprising four domains. We identify key catalytic residues with a product, UDP, bound in the active site, as well as clusters of hydrophobic residues that likely mediate productive membrane association or capture of lipidic substrates. These studies provide the basis for rational design of antibiotics targeting a crucial step in LPS biosynthesis.
Collapse
Affiliation(s)
- Heather O Bohl
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - John K Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
- Bristol-Myers Squibb, Redwood City, CA, 94063, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
80
|
Green CM, Novikova O, Belfort M. The dynamic intein landscape of eukaryotes. Mob DNA 2018; 9:4. [PMID: 29416568 PMCID: PMC5784728 DOI: 10.1186/s13100-018-0111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Inteins are mobile, self-splicing sequences that interrupt proteins and occur across all three domains of life. Scrutiny of the intein landscape in prokaryotes led to the hypothesis that some inteins are functionally important. Our focus shifts to eukaryotic inteins to assess their diversity, distribution, and dissemination, with the aim to comprehensively evaluate the eukaryotic intein landscape, understand intein maintenance, and dissect evolutionary relationships. RESULTS This bioinformatics study reveals that eukaryotic inteins are scarce, but present in nuclear genomes of fungi, chloroplast genomes of algae, and within some eukaryotic viruses. There is a preponderance of inteins in several fungal pathogens of humans and plants. Inteins are pervasive in certain proteins, including the nuclear RNA splicing factor, Prp8, and the chloroplast DNA helicase, DnaB. We find that eukaryotic inteins frequently localize to unstructured loops of the host protein, often at highly conserved sites. More broadly, a sequence similarity network analysis of all eukaryotic inteins uncovered several routes of intein mobility. Some eukaryotic inteins appear to have been acquired through horizontal transfer with dsDNA viruses, yet other inteins are spread through intragenomic transfer. Remarkably, endosymbiosis can explain patterns of DnaB intein inheritance across several algal phyla, a novel mechanism for intein acquisition and distribution. CONCLUSIONS Overall, an intriguing picture emerges for how the eukaryotic intein landscape arose, with many evolutionary forces having contributed to its current state. Our collective results provide a framework for exploring inteins as novel regulatory elements and innovative drug targets.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| |
Collapse
|
81
|
Information Visualization for Biological Data. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1526:403-415. [PMID: 27896753 DOI: 10.1007/978-1-4939-6613-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Visualization is a powerful method to present and explore a large amount of data. It is increasingly important in the life sciences and is used for analyzing different types of biological data, such as structural information, high-throughput data, and biochemical networks. This chapter gives a brief introduction to visualization methods for bioinformatics, presents two commonly used techniques in detail, and discusses a graphical standard for biological networks and cellular processes.
Collapse
|
82
|
Gokey T, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-l-rhamnose biosynthetic pathway enzyme: dTDP-α-d-glucose 4,6-dehydratase, RfbB. J Struct Biol 2018; 202:175-181. [PMID: 29331609 DOI: 10.1016/j.jsb.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/27/2022]
Abstract
Many bacteria require l-rhamnose as a key cell wall component. This sugar is transferred to the cell wall using an activated donor dTDP-l-rhamnose, which is produced by the dTDP-l-rhamnose biosynthetic pathway. We determined the crystal structure of the second enzyme of this pathway dTDP-α-d-glucose 4,6-dehydratase (RfbB) from Bacillus anthracis. Interestingly, RfbB only crystallized in the presence of the third enzyme of the pathway RfbC; however, RfbC was not present in the crystal. Our work represents the first complete structural characterization of the four proteins of this pathway in a single Gram-positive bacterium.
Collapse
Affiliation(s)
- Trevor Gokey
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA.
| |
Collapse
|
83
|
Wang F, He Q, Su K, Gao F, Huang Y, Lin Z, Zhu D, Gu L. The PilZ domain of MrkH represents a novel DNA binding motif. Protein Cell 2018; 7:766-772. [PMID: 27650952 PMCID: PMC5055493 DOI: 10.1007/s13238-016-0317-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Feng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Qing He
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Kaixuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Fei Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Yan Huang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Zong Lin
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, China
| | - Deyu Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China.
| |
Collapse
|
84
|
Abid H, Harigua-Souiai E, Mejri T, Barhoumi M, Guizani I. Leishmania infantum 5'-Methylthioadenosine Phosphorylase presents relevant structural divergence to constitute a potential drug target. BMC STRUCTURAL BIOLOGY 2017; 17:9. [PMID: 29258562 PMCID: PMC5738077 DOI: 10.1186/s12900-017-0079-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND The 5'-methylthioadenosine phosphorylase (MTAP), an enzyme involved in purine and polyamine metabolism and in the methionine salvage pathway, is considered as a potential drug target against cancer and trypanosomiasis. In fact, Trypanosoma and Leishmania parasites lack de novo purine pathways and rely on purine salvage pathways to meet their requirements. Herein, we propose the first comprehensive bioinformatic and structural characterization of the putative Leishmania infantum MTAP (LiMTAP), using a comparative computational approach. RESULTS Sequence analysis showed that LiMTAP shared higher identity rates with the Trypanosoma brucei (TbMTAP) and the human (huMTAP) homologs as compared to the human purine nucleoside phosphorylase (huPNP). Motifs search using MEME identified more common patterns and higher relatedness of the parasite proteins to the huMTAP than to the huPNP. The 3D structures of LiMTAP and TbMTAP were predicted by homology modeling and compared to the crystal structure of the huMTAP. These models presented conserved secondary structures compared to the huMTAP, with a similar topology corresponding to the Rossmann fold. This confirmed that both LiMTAP and TbMTAP are members of the NP-I family. In comparison to the huMTAP, the 3D model of LiMTAP showed an additional α-helix, at the C terminal extremity. One peptide located in this specific region was used to generate a specific antibody to LiMTAP. In comparison with the active site (AS) of huMTAP, the parasite ASs presented significant differences in the shape and the electrostatic potentials (EPs). Molecular docking of 5'-methylthioadenosine (MTA) and 5'-hydroxyethylthio-adenosine (HETA) on the ASs on the three proteins predicted differential binding modes and interactions when comparing the parasite proteins to the human orthologue. CONCLUSIONS This study highlighted significant structural peculiarities, corresponding to functionally relevant sequence divergence in LiMTAP, making of it a potential drug target against Leishmania.
Collapse
Affiliation(s)
- Hela Abid
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.,Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Thouraya Mejri
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
85
|
Shornikov A, Tran H, Macias J, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RfbC). Acta Crystallogr F Struct Biol Commun 2017; 73:664-671. [PMID: 29199987 PMCID: PMC5713671 DOI: 10.1107/s2053230x17015849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
The exosporium layer of Bacillus anthracis spores is rich in L-rhamnose, a common bacterial cell-wall component, which often contributes to the virulence of pathogens by increasing their adherence and immune evasion. The biosynthetic pathway used to form the activated L-rhamnose donor dTDP-L-rhamnose consists of four enzymes (RfbA, RfbB, RfbC and RfbD) and is an attractive drug target because there are no homologs in mammals. It was found that co-purifying and screening RfbC (dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase) from B. anthracis in the presence of the other three B. anthracis enzymes of the biosynthetic pathway yielded crystals that were suitable for data collection. RfbC crystallized as a dimer and its structure was determined at 1.63 Å resolution. Two different ligands were bound in the protein structure: pyrophosphate in the active site of one monomer and dTDP in the other monomer. A structural comparison with RfbC homologs showed that the key active-site residues are conserved across kingdoms.
Collapse
Affiliation(s)
| | - Ha Tran
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Jennifer Macias
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| |
Collapse
|
86
|
Liu X, Wu J, Sun Y, Xie W. Substrate Recognition Mechanism of the Putative Yeast Carnosine N-methyltransferase. ACS Chem Biol 2017; 12:2164-2171. [PMID: 28654751 DOI: 10.1021/acschembio.7b00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anserine (β-alanyl-N(Pi)-methyl-l-histidine) is a natural metabolite present in skeletal muscle and the central nervous system of vertebrates and plays important physiological roles in living organisms. The production of anserine is catalyzed by carnosine N-methyltransferases, which transfer a methyl group to carnosine (β-alanyl-l-histidine). However, the structural basis of the substrate recognition for the enzymes is unknown. We present the crystal structure of the putative carnosine N-methyltransferase from yeast named YNL092W in complex with SAH, solved by the single-wavelength anomalous dispersion (SAD) method. The protein contains a typical Rossmann domain and a characteristic N-terminal helical domain. At the cofactor-binding site, SAH forms an extensive interaction network with the enzyme. The individual contribution of each residue to ligand affinity and enzyme activity was assessed by ITC and methyltransferase assays after mutagenesis of the key residues. Additionally, docking studies and activity assays were conducted in order to identify the binding site for carnosine, and a plausible complex model was proposed. Furthermore, we discovered that two disulfide bridges might be functionally important to the enzyme. By comparison to structure- and sequence-similar methyltransferases, we deduce that the enzyme most likely acts on a protein substrate. Our structural analyses shed light on the catalytic mechanism and substrate recognition by YNL092W.
Collapse
Affiliation(s)
- Xiwen Liu
- Key Laboratory of Gene Engineering
of the Ministry of Education, State Key Laboratory for Biocontrol,
School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang
Rd., Guangzhou 510275, People’s Republic of China
| | - Jialiang Wu
- Key Laboratory of Gene Engineering
of the Ministry of Education, State Key Laboratory for Biocontrol,
School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang
Rd., Guangzhou 510275, People’s Republic of China
| | - Yujie Sun
- Key Laboratory of Gene Engineering
of the Ministry of Education, State Key Laboratory for Biocontrol,
School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang
Rd., Guangzhou 510275, People’s Republic of China
| | - Wei Xie
- Key Laboratory of Gene Engineering
of the Ministry of Education, State Key Laboratory for Biocontrol,
School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang
Rd., Guangzhou 510275, People’s Republic of China
| |
Collapse
|
87
|
Nozawa RS, Boteva L, Soares DC, Naughton C, Dun AR, Buckle A, Ramsahoye B, Bruton PC, Saleeb RS, Arnedo M, Hill B, Duncan RR, Maciver SK, Gilbert N. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell 2017. [PMID: 28622508 PMCID: PMC5473940 DOI: 10.1016/j.cell.2017.05.029] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A's AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.
Collapse
Affiliation(s)
- Ryu-Suke Nozawa
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lora Boteva
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dinesh C Soares
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alison R Dun
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Bernard Ramsahoye
- Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Peter C Bruton
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Rebecca S Saleeb
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Maria Arnedo
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Bill Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Rory R Duncan
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Sutherland K Maciver
- Centre for Integrative Physiology, Edinburgh Medical School, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
88
|
Pang P, Deng X, Wang Z, Xie W. Structural and biochemical insights into the 2′-O
-methylation of pyrimidines 34 in tRNA. FEBS J 2017; 284:2251-2263. [DOI: 10.1111/febs.14120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Panjiao Pang
- School of Pharmaceutical Sciences; The Sun Yat-Sen University; Guangzhou China
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
| | - Xiangyu Deng
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
- State Key Laboratory for Biocontrol; School of Life Sciences; The Sun Yat-Sen University; Guangzhou China
| | - Zhong Wang
- School of Pharmaceutical Sciences; The Sun Yat-Sen University; Guangzhou China
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
| | - Wei Xie
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
- State Key Laboratory for Biocontrol; School of Life Sciences; The Sun Yat-Sen University; Guangzhou China
| |
Collapse
|
89
|
Kocincová L, Jarešová M, Byška J, Parulek J, Hauser H, Kozlíková B. Comparative visualization of protein secondary structures. BMC Bioinformatics 2017; 18:23. [PMID: 28251875 PMCID: PMC5333176 DOI: 10.1186/s12859-016-1449-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Protein function is determined by many factors, namely by its constitution, spatial arrangement, and dynamic behavior. Studying these factors helps the biochemists and biologists to better understand the protein behavior and to design proteins with modified properties. One of the most common approaches to these studies is to compare the protein structure with other molecules and to reveal similarities and differences in their polypeptide chains. Results We support the comparison process by proposing a new visualization technique that bridges the gap between traditionally used 1D and 3D representations. By introducing the information about mutual positions of protein chains into the 1D sequential representation the users are able to observe the spatial differences between the proteins without any occlusion commonly present in 3D view. Our representation is designed to serve namely for comparison of multiple proteins or a set of time steps of molecular dynamics simulation. Conclusions The novel representation is demonstrated on two usage scenarios. The first scenario aims to compare a set of proteins from the family of cytochromes P450 where the position of the secondary structures has a significant impact on the substrate channeling. The second scenario focuses on the protein flexibility when by comparing a set of time steps our representation helps to reveal the most dynamically changing parts of the protein chain.
Collapse
Affiliation(s)
| | | | - Jan Byška
- Masaryk University, Brno, Czech Republic. .,University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
90
|
Ossa F, Schnell JR, Ortega-Roldan JL. A Review of the Human Sigma-1 Receptor Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:15-29. [PMID: 28315262 DOI: 10.1007/978-3-319-50174-1_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Sigma-1 Receptor (S1R) is a small, ligand-regulated integral membrane protein involved in cell homeostasis and the cellular stress response. The receptor has a multitude of protein and small molecule interaction partners with therapeutic potential. Newly reported structures of the human S1R in ligand-bound states provides essential insights into small molecule binding in the context of the overall protein structure. The structure also raises many interesting questions and provides an excellent starting point for understanding the molecular tricks employed by this small membrane receptor to modulate a large number of signaling events. Here, we review insights from the structures of ligand-bound S1R in the context of previous biochemical studies and propose, from a structural viewpoint, a set of important future directions.
Collapse
Affiliation(s)
- Felipe Ossa
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jason R Schnell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - José Luis Ortega-Roldan
- School of Biosciences, University of Kent, Stacey Building, Room 215B, Canterbury, CT2 7NJ, UK
| |
Collapse
|
91
|
A Recombinant Fungal Chitin Deacetylase Produces Fully Defined Chitosan Oligomers with Novel Patterns of Acetylation. Appl Environ Microbiol 2016; 82:6645-6655. [PMID: 27590819 DOI: 10.1128/aem.01961-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/27/2016] [Indexed: 11/20/2022] Open
Abstract
Partially acetylated chitosan oligosaccharides (paCOS) are potent biologics with many potential applications, and their bioactivities are believed to be dependent on their structure, i.e., their degrees of polymerization and acetylation, as well as their pattern of acetylation. However, paCOS generated via chemical N-acetylation or de-N-acetylation of GlcN or GlcNAc oligomers, respectively, typically display random patterns of acetylation, making it difficult to control and predict their bioactivities. In contrast, paCOS produced from chitin deacetylases (CDAs) acting on chitin oligomer substrates may have specific patterns of acetylation, as shown for some bacterial CDAs. However, compared to what we know about bacterial CDAs, we know little about the ability of fungal CDAs to produce defined paCOS with known patterns of acetylation. Therefore, we optimized the expression of a chitin deacetylase from the fungus Puccinia graminis f. sp. tritici in Escherichia coli The best yield of functional enzyme was obtained as a fusion protein with the maltose-binding protein (MBP) secreted into the periplasmic space of the bacterial host. We characterized the MBP fusion protein from P. graminis (PgtCDA) and tested its activity on different chitinous substrates. Mass spectrometric sequencing of the products obtained by enzymatic deacetylation of chitin oligomers, i.e., tetramers to hexamers, revealed that PgtCDA generated paCOS with specific acetylation patterns of A-A-D-D, A-A-D-D-D, and A-A-D-D-D-D, respectively (A, GlcNAc; D, GlcN), indicating that PgtCDA cannot deacetylate the two GlcNAc units closest to the oligomer's nonreducing end. This unique property of PgtCDA significantly expands the so far very limited library of well-defined paCOS available to test their bioactivities for a wide variety of potential applications. IMPORTANCE We successfully achieved heterologous expression of a fungal chitin deacetylase gene from the basidiomycete Puccinia graminis f. sp. tritici in the periplasm of E. coli as a fusion protein with the maltose-binding protein; this strategy allows the production of these difficult-to-express enzymes in sufficient quantities for them to be characterized and optimized through protein engineering. Here, the recombinant enzyme was used to produce partially acetylated chitosan oligosaccharides from chitin oligomers, whereby the pronounced regioselectivity of the enzyme led to the production of defined products with novel patterns of acetylation. This approach widens the scope for both the production and functional analysis of chitosan oligomers and thus will eventually allow the detailed molecular structure-function relationships of biologically active chitosans to be studied, which is essential for developing applications for these functional biopolymers for a circular bioeconomy, e.g., in agriculture, medicine, cosmetics, and food sciences.
Collapse
|
92
|
Zachman-Brockmeyer TR, Thoden JB, Holden HM. Structures of KdnB and KdnA from Shewanella oneidensis: Key Enzymes in the Formation of 8-Amino-3,8-Dideoxy-d-Manno-Octulosonic Acid. Biochemistry 2016; 55:4485-94. [PMID: 27275764 DOI: 10.1021/acs.biochem.6b00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N) is a unique amino sugar that has thus far only been observed on the lipopolysaccharides of marine bacteria belonging to the genus Shewanella. Although its biological function is still unclear, it is thought that the sugar is important for the integrity of the bacterial cell outer membrane. A three-gene cluster required for the biosynthesis of Kdo8N was first identified in Shewanella oneidensis. Here we describe the three-dimensional structures of two of the enzymes required for Kdo8N biosynthesis in S. oneidensis, namely, KdnB and KdnA. The structure of KdnB was solved to 1.85-Å resolution, and its overall three-dimensional architecture places it into the Group III alcohol dehydrogenase superfamily. A previous study suggested that KdnB did not require NAD(P) for activity. Strikingly, although the protein was crystallized in the absence of any cofactors, the electron density map clearly revealed the presence of a tightly bound NAD(H). In addition, a bound metal was observed, which was shown via X-ray fluorescence to be a zinc ion. Unlike other members of the Group III alcohol dehydrogenases, the dinucleotide cofactor in KdnB is tightly bound and cannot be removed without leading to protein precipitation. With respect to KdnA, it is a pyridoxal 5'-phosphate or (PLP)-dependent aminotransferase. For this analysis, the structure of KdnA, trapped in the presence of the external aldimine with PLP and glutamate, was determined to 2.15-Å resolution. The model of KdnA represents the first structure of a sugar aminotransferase that functions on an 8-oxo sugar. Taken together the results reported herein provide new molecular insight into the biosynthesis of Kdo8N.
Collapse
Affiliation(s)
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
93
|
Wagner T, Ermler U, Shima S. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode. Sci Rep 2016; 6:28226. [PMID: 27324530 PMCID: PMC4915002 DOI: 10.1038/srep28226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
In the three domains of life, vitamin B12 (cobalamin) is primarily used in methyltransferase and isomerase reactions. The methyltransferase complex MtrA–H of methanogenic archaea has a key function in energy conservation by catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme M and its coupling with sodium-ion translocation. The cobalamin-binding subunit MtrA is not homologous to any known B12-binding proteins and is proposed as the motor of the sodium-ion pump. Here, we present crystal structures of the soluble domain of the membrane-associated MtrA from Methanocaldococcus jannaschii and the cytoplasmic MtrA homologue/cobalamin complex from Methanothermus fervidus. The MtrA fold corresponds to the Rossmann-type α/β fold, which is also found in many cobalamin-containing proteins. Surprisingly, the cobalamin-binding site of MtrA differed greatly from all the other cobalamin-binding sites. Nevertheless, the hydrogen-bond linkage at the lower axial-ligand site of cobalt was equivalently constructed to that found in other methyltransferases and mutases. A distinct polypeptide segment fixed through the hydrogen-bond linkage in the relaxed Co(III) state might be involved in propagating the energy released upon corrinoid demethylation to the sodium-translocation site by a conformational change.
Collapse
Affiliation(s)
- Tristan Wagner
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Ulrich Ermler
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, 332-0012 Saitama, Japan
| |
Collapse
|
94
|
Brown A, Fernández IS, Gordiyenko Y, Ramakrishnan V. Ribosome-dependent activation of stringent control. Nature 2016; 534:277-280. [PMID: 27279228 PMCID: PMC4900451 DOI: 10.1038/nature17675] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
Abstract
In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics.
Collapse
MESH Headings
- Adenosine/metabolism
- Amino Acids/deficiency
- Binding Sites
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli/pathogenicity
- Escherichia coli/ultrastructure
- Escherichia coli Proteins/antagonists & inhibitors
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/ultrastructure
- GTP Pyrophosphokinase/antagonists & inhibitors
- GTP Pyrophosphokinase/genetics
- GTP Pyrophosphokinase/metabolism
- GTP Pyrophosphokinase/ultrastructure
- Gene Expression Regulation, Bacterial
- Guanosine Tetraphosphate/chemistry
- Guanosine Tetraphosphate/metabolism
- Metabolic Networks and Pathways
- Models, Molecular
- Phosphorylation
- Protein Biosynthesis
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Second Messenger Systems
- Stress, Physiological
Collapse
Affiliation(s)
- Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Israel S Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yuliya Gordiyenko
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
95
|
Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction. J Bacteriol 2016; 198:1218-29. [PMID: 26833410 DOI: 10.1128/jb.00872-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCE BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than on signal transduction or the resultant phenotypes. To begin to address this knowledge gap, we solved the crystal structures of two single-domain response regulators encoded by a region immediately downstream of that encoding BphPs. We observed a previously unknown arm-in-arm dimer linkage. Monomerization via deletion of the C-terminal dimerization motif had an inhibitory effect on net response regulator phosphorylation, underlining the importance of these unusual dimers for signal transduction.
Collapse
|
96
|
Wangkanont K, Wesener DA, Vidani JA, Kiessling LL, Forest KT. Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Glycan Recognition. J Biol Chem 2016; 291:5596-5610. [PMID: 26755729 PMCID: PMC4786701 DOI: 10.1074/jbc.m115.709212] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 01/07/2023] Open
Abstract
Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates.
Collapse
Affiliation(s)
| | | | | | - Laura L. Kiessling
- From the Departments of Chemistry, ,Biochemistry, and , To whom correspondence may be addressed: Dept. of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706. Tel.: 608-262-0541; E-mail:
| | - Katrina T. Forest
- Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, To whom correspondence may be addressed: Dept. of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706. Tel.: 608-265-3566; E-mail:
| |
Collapse
|
97
|
Singh W, Fields GB, Christov CZ, Karabencheva-Christova TG. Importance of the Linker Region in Matrix Metalloproteinase-1 Domain Interactions. RSC Adv 2016; 6:23223-23232. [PMID: 26998255 DOI: 10.1039/c6ra03033e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collagenolysis is catalyzed by enzymes from the matrix metalloproteinase (MMP) family, where one of the most studied is MMP-1. The X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP) provided important atomistic information, but few details on the effects of the conformational flexibility on catalysis. In addition, the role of the linker region between the catalytic (CAT) and hemopexin-like (HPX) domains was not defined. In order to reveal the dynamics and correlations of MMP-1 comprehensive atomistic molecular dynamics simulations of an MMP-1•THP complex was performed. To examine the role of the linker region for MMP-1 function simulations with linker regions from MT1-MMP/MMP-14 and MMP-13 replacing the MMP-1 linker region were performed. The MD studies were in good agreement with the experimental observation that in the MMP-1•THP X-ray crystallographic structure MMP-1 is in a "closed" conformation. MD revealed that the interactions of the THP with the both the CAT and HPX domains of MMP-1 are dynamic in nature, and the linker region of MMP-1 influences the interactions and dynamics of both the CAT and HPX domains and collagen binding to MMP-1.
Collapse
Affiliation(s)
- Warispreet Singh
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA
| | - Christo Z Christov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Tatyana G Karabencheva-Christova
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
98
|
Heinke F, Bittrich S, Kaiser F, Labudde D. SequenceCEROSENE: a computational method and web server to visualize spatial residue neighborhoods at the sequence level. BioData Min 2016; 9:6. [PMID: 26819632 PMCID: PMC4728770 DOI: 10.1186/s13040-016-0083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/17/2016] [Indexed: 11/19/2022] Open
Abstract
Background To understand the molecular function of biopolymers, studying their structural characteristics is of central importance. Graphics programs are often utilized to conceive these properties, but with the increasing number of available structures in databases or structure models produced by automated modeling frameworks this process requires assistance from tools that allow automated structure visualization. In this paper a web server and its underlying method for generating graphical sequence representations of molecular structures is presented. Results The method, called SequenceCEROSENE (color encoding of residues obtained by spatial neighborhood embedding), retrieves the sequence of each amino acid or nucleotide chain in a given structure and produces a color coding for each residue based on three-dimensional structure information. From this, color-highlighted sequences are obtained, where residue coloring represent three-dimensional residue locations in the structure. This color encoding thus provides a one-dimensional representation, from which spatial interactions, proximity and relations between residues or entire chains can be deduced quickly and solely from color similarity. Furthermore, additional heteroatoms and chemical compounds bound to the structure, like ligands or coenzymes, are processed and reported as well. To provide free access to SequenceCEROSENE, a web server has been implemented that allows generating color codings for structures deposited in the Protein Data Bank or structure models uploaded by the user. Besides retrieving visualizations in popular graphic formats, underlying raw data can be downloaded as well. In addition, the server provides user interactivity with generated visualizations and the three-dimensional structure in question. Conclusions Color encoded sequences generated by SequenceCEROSENE can aid to quickly perceive the general characteristics of a structure of interest (or entire sets of complexes), thus supporting the researcher in the initial phase of structure-based studies. In this respect, the web server can be a valuable tool, as users are allowed to process multiple structures, quickly switch between results, and interact with generated visualizations in an intuitive manner. The SequenceCEROSENE web server is available at https://biosciences.hs-mittweida.de/seqcerosene.
Collapse
Affiliation(s)
- Florian Heinke
- Department of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany
| | - Sebastian Bittrich
- Department of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany
| | - Florian Kaiser
- Department of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany
| | - Dirk Labudde
- Department of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany
| |
Collapse
|
99
|
Ilamathi M, Hemanth R, Nishanth S, Sivaramakrishnan V. Identification of potential transmembrane protease serine 4 inhibitors as anti-cancer agents by integrated computational approach. J Theor Biol 2016; 389:253-62. [PMID: 26590327 DOI: 10.1016/j.jtbi.2015.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022]
Abstract
Transmembrane protease serine 4 is a well known cell surface protease facilitating the extracellular matrix degradation and epithelial mesenchymal transition in hepatocellular carcinoma. Henceforth targeting transmembrane protease serine 4 is strongly believed to provide therapeutic intervention against hepatocellular carcinoma. Owing to lack of crystal structure for human transmembrane protease serine 4, we predicted its three dimensional structure for the first time in this study. Experimentally proven inhibitor-Tyroserleutide (TSL) against hepatocellular carcinoma via transmembrane protease serine 4 was used as a benchmark to identify structurally similar candidates from PubChem database to create the TSL library. Virtual screening of TSL library against modeled transmembrane protease serine 4 revealed the top four potential inhibitors. Further binding free energy (ΔGbind) analysis of the potential inhibitors revealed the best potential lead compound against transmembrane protease serine 4. Drug likeliness nature of the top four potential hits were additionally analyzed in comparison to TSL to confirm on the best potential lead compound with the highest % of human oral absorption. Consequently, e-pharmacophore mapping of the best potential lead compound yielded a six point feature. It was observed to contain four hydrogen bond donor sites (D), one positively ionizable site (P) and one aromatic ring (R). Such e-pharmacophore insight obtained from structural determinants by integrated computational analysis could serve as a framework for further advancement of drug discovery process of new anti-cancer agents with less toxicity and high specificity targeting transmembrane protease serine 4 and hepatocellular carcinoma.
Collapse
Affiliation(s)
- M Ilamathi
- Cardiomyocyte Toxicity and Oncology Research Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India
| | - R Hemanth
- Cardiomyocyte Toxicity and Oncology Research Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India
| | - S Nishanth
- Cardiomyocyte Toxicity and Oncology Research Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India
| | - V Sivaramakrishnan
- Cardiomyocyte Toxicity and Oncology Research Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India.
| |
Collapse
|
100
|
Ma C, Pathak C, Lee SJ, Lee KY, Jang SB, Nam M, Im H, Yoon HJ, Lee BJ. Alba from Thermoplasma volcanium belongs to α-NAT's: An insight into the structural aspects of Tv Alba and its acetylation by Tv Ard1. Arch Biochem Biophys 2016; 590:90-100. [DOI: 10.1016/j.abb.2015.11.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/04/2015] [Accepted: 11/26/2015] [Indexed: 01/30/2023]
|