51
|
Felline A, Seeber M, Fanelli F. PSNtools for standalone and web-based structure network analyses of conformational ensembles. Comput Struct Biotechnol J 2022; 20:640-649. [PMID: 35140884 PMCID: PMC8801349 DOI: 10.1016/j.csbj.2021.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
Structure graphs, in which interacting amino acids/nucleotides correspond to linked nodes, represent cutting-edge tools to investigate macromolecular function. The graph-based approach defined as Protein Structure Network (PSN) was initially implemented in the Wordom software and subsequently in the webPSN server. PSNs are computed either on a molecular dynamics (MD) trajectory (PSN-MD) or on a single structure. In the latter case, information on atomic fluctuations is inferred from the Elastic Network Model-Normal Mode Analysis (ENM-NMA) (PSN-ENM). While Wordom performs both PSN-ENM and PSN-MD analyses but without output post-processing, the webPSN server performs only single-structure PSN-EMN but assisting the user in input setup and output analysis. Here we release for the first time the standalone software PSNtools, which allows calculation and post-processing of PSN analyses carried out either on single structures or on conformational ensembles. Relevant unique and novel features of PSNtools are either comparisons of two networks or computations of consensus networks on sets of homologous/analogous macromolecular structures or conformational ensembles. Network comparisons and consensus serve to infer differences in functionally different states of the same system or network-based signatures in groups of bio-macromolecules sharing either the same functionality or the same fold. In addition to the new software, here we release also an updated version of the webPSN server, which allows performing an interactive graphical analysis of PSN-MD, following the upload of the PSNtools output. PSNtools, the auxiliary binary version of Wordom software, and the WebPSN server are freely available at http://webpsn.hpc.unimo.it/wpsn3.php.
Collapse
|
52
|
Sheik Amamuddy O, Afriyie Boateng R, Barozi V, Wavinya Nyamai D, Tastan Bishop Ö. Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 M pro and its evolutionary mutations as a case study. Comput Struct Biotechnol J 2021; 19:6431-6455. [PMID: 34849191 PMCID: PMC8613987 DOI: 10.1016/j.csbj.2021.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/15/2023] Open
Abstract
The rational search for allosteric modulators and the allosteric mechanisms of these modulators in the presence of mutations is a relatively unexplored field. Here, we established novel in silico approaches and applied them to SARS-CoV-2 main protease (Mpro) as a case study. First, we identified six potential allosteric modulators. Then, we focused on understanding the allosteric effects of these modulators on each of its protomers. We introduced a new combinatorial approach and dynamic residue network (DRN) analysis algorithms to examine patterns of change and conservation of critical nodes, according to five independent criteria of network centrality. We observed highly conserved network hubs for each averaged DRN metric on the basis of their existence in both protomers in the absence and presence of all ligands (persistent hubs). We also detected ligand specific signal changes. Using eigencentrality (EC) persistent hubs and ligand introduced hubs we identified a residue communication path connecting the allosteric binding site to the catalytic site. Finally, we examined the effects of the mutations on the behavior of the protein in the presence of selected potential allosteric modulators and investigated the ligand stability. One crucial outcome was to show that EC centrality hubs form an allosteric communication path between the allosteric ligand binding site to the active site going through the interface residues of domains I and II; and this path was either weakened or lost in the presence of some of the mutations. Overall, the results revealed crucial aspects that need to be considered in rational computational drug discovery.
Collapse
Affiliation(s)
| | | | - Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| |
Collapse
|
53
|
Ni D, Chai Z, Wang Y, Li M, Yu Z, Liu Y, Lu S, Zhang J. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duan Ni
- College of Pharmacy Ningxia Medical University Yinchuan China
- The Charles Perkins Centre University of Sydney Sydney New South Wales Australia
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai China
| | - Ying Wang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Mingyu Li
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | | | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shaoyong Lu
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jian Zhang
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| |
Collapse
|
54
|
Okeke CJ, Musyoka TM, Sheik Amamuddy O, Barozi V, Tastan Bishop Ö. Allosteric pockets and dynamic residue network hubs of falcipain 2 in mutations including those linked to artemisinin resistance. Comput Struct Biotechnol J 2021; 19:5647-5666. [PMID: 34745456 PMCID: PMC8545671 DOI: 10.1016/j.csbj.2021.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 10/29/2022] Open
Abstract
Continually emerging resistant strains of malarial parasites to current drugs present challenges. Understanding the underlying resistance mechanisms, especially those linked to allostery is, thus, highly crucial for drug design. This forms the main concern of the paper through a case study of falcipain 2 (FP-2) and its mutations, some of which are linked to artemisinin (ART) drug resistance. Here, we applied a variety of in silico approaches and tools that we developed recently, together with existing computational tools. This included novel essential dynamics and dynamic residue network (DRN) analysis algorithms. We identified six pockets demonstrating dynamic differences in the presence of some mutations. We observed striking allosteric effects in two mutant proteins. In the presence of M245I, a cryptic pocket was detected via a unique mechanism in which Pocket 2 fused with Pocket 6. In the presence of the A353T mutation, which is located at Pocket 2, the pocket became the most rigid among all protein systems analyzed. Pocket 6 was also highly stable in all cases, except in the presence of M245I mutation. The effect of ART linked mutations was more subtle, and the changes were at residue level. Importantly, we identified an allosteric communication path formed by four unique averaged BC hubs going from the mutated residue to the catalytic site and passing through the interface of three identified pockets. Collectively, we established and demonstrated that we have robust tools and a pipeline that can be applicable to the analysis of mutations.
Collapse
Affiliation(s)
| | | | - Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
55
|
Gamma Carbonic Anhydrases from Hydrothermal Vent Bacteria: Cases of Alternating Active Site Due to a Long Loop with Proton Shuttle Residue. Catalysts 2021. [DOI: 10.3390/catal11101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Accelerated CO2 sequestration uses carbonic anhydrases (CAs) as catalysts; thus, there is much research on these enzymes. The γ-CA from Escherichia coli (EcoCA-γ) was the first γ-CA to display an active site that switches between “open” and “closed” states through Zn2+ coordination by the proton-shuttling His residue. Here, we explored this occurrence in γ-CAs from hydrothermal vent bacteria and also the γ-CA from Methanosarcina thermophila (Cam) using molecular dynamics. Ten sequences were analyzed through multiple sequence alignment and motif analysis, along with three others from a previous study. Conservation of residues and motifs was high, and phylogeny indicated a close relationship amongst the sequences. All structures, like EcoCA-γ, had a long loop harboring the proton-shuttling residue. Trimeric structures were modeled and simulated for 100 ns at 423 K, with all the structures displaying thermostability. A shift between “open” and “closed” active sites was observed in the 10 models simulated through monitoring the behavior of the His proton-shuttling residue. Cam, which has two Glu proton shuttling residues on long loops (Glu62 and Glu84), also showed an active site switch affected by the first Glu proton shuttle, Glu62. This switch was thus concluded to be common amongst γ-CAs and not an isolated occurrence.
Collapse
|
56
|
Huang S, Mei H, Lu L, Kuang Z, Heng Y, Xu L, Liang X, Qiu M, Pan X. Conformational transitions of caspase-6 in substrate-induced activation process explored by perturbation-response scanning combined with targeted molecular dynamics. Comput Struct Biotechnol J 2021; 19:4156-4164. [PMID: 34527189 PMCID: PMC8342898 DOI: 10.1016/j.csbj.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Caspase-6 participates in a series of neurodegenerative pathways, and has aroused widespread attentions as a promising molecular target for the treatment of neurodegeneration. Caspase-6 is a homodimer with 6 central-stranded β-sheets and 5 α-helices in each monomer. Previous crystallographic studies suggested that the 60′s, 90′s and 130′s helices of caspase-6 undergo a distinctive conformational transition upon substrate binding. Although the caspase-6 structures in apo and active states have been determined, the conformational transition process between the two states remains poorly understood. In this work, perturbation-response scanning (PRS) combined with targeted molecular dynamics (TMD) simulations was employed to unravel the atomistic mechanism of the dynamic conformational transitions underlying the substrate-induced activation process of caspase-6. The results showed that the conformational transition of caspase-6 from apo to active states is mainly characterized by structural rearrangements of the substrate-binding site as well as the conformational changes of 60′s and 130′s extended helices. The H-bond interactions between L1, 130′s helix and 90′s helix are proved to be key determinant factors for substrate-induced conformational transition. These findings provide valuable insights into the activation mechanism of caspase-6 as well as the molecular design of caspase-6 inhibitors.
Collapse
Affiliation(s)
- Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Laichun Lu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Zuyin Kuang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Yu Heng
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Lei Xu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Xiaoqi Liang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Minyao Qiu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, College of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
57
|
Sheik Amamuddy O, Glenister M, Tshabalala T, Tastan Bishop Ö. MDM-TASK-web: MD-TASK and MODE-TASK web server for analyzing protein dynamics. Comput Struct Biotechnol J 2021; 19:5059-5071. [PMID: 34589183 PMCID: PMC8455658 DOI: 10.1016/j.csbj.2021.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
The web server, MDM-TASK-web, combines the MD-TASK and MODE-TASK software suites, which are aimed at the coarse-grained analysis of static and all-atom MD-simulated proteins, using a variety of non-conventional approaches, such as dynamic residue network analysis, perturbation-response scanning, dynamic cross-correlation, essential dynamics and normal mode analysis. Altogether, these tools allow for the exploration of protein dynamics at various levels of detail, spanning single residue perturbations and weighted contact network representations, to global residue centrality measurements and the investigation of global protein motion. Typically, following molecular dynamic simulations designed to investigate intrinsic and extrinsic protein perturbations (for instance induced by allosteric and orthosteric ligands, protein binding, temperature, pH and mutations), this selection of tools can be used to further describe protein dynamics. This may lead to the discovery of key residues involved in biological processes, such as drug resistance. The server simplifies the set-up required for running these tools and visualizing their results. Several scripts from the tool suites were updated and new ones were also added and integrated with 2D/3D visualization via the web interface. An embedded work-flow, integrated documentation and visualization tools shorten the number of steps to follow, starting from calculations to result visualization. The Django-powered web server (available at https://mdmtaskweb.rubi.ru.ac.za/) is compatible with all major web browsers. All scripts implemented in the web platform are freely available at https://github.com/RUBi-ZA/MD-TASK/tree/mdm-task-web and https://github.com/RUBi-ZA/MODE-TASK/tree/mdm-task-web.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Michael Glenister
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Thulani Tshabalala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
58
|
Zhu Y, Ye F, Zhou Z, Liu W, Liang Z, Hu G. Insights into Conformational Dynamics and Allostery in DNMT1-H3Ub/USP7 Interactions. Molecules 2021; 26:molecules26175153. [PMID: 34500587 PMCID: PMC8434485 DOI: 10.3390/molecules26175153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on the modeling structures of DNMT1-ubiquitylated H3 (H3Ub)/ubiquitin specific peptidase 7 (USP7) complexes, we have used a combination of elastic network models, molecular dynamics simulations, structural residue perturbation, network modeling, and pocket pathway analysis to examine their molecular mechanisms of allosteric regulation. The comparative intrinsic and conformational dynamics analysis of three DNMT1 systems has highlighted the pivotal role of the RFTS domain as the dynamics hub in both intra- and inter-molecular interactions. The site perturbation and network modeling approaches have revealed the different and more complex allosteric interaction landscape in both DNMT1 complexes, involving the events caused by mutational hotspots and post-translation modification sites through protein-protein interactions (PPIs). Furthermore, communication pathway analysis and pocket detection have provided new mechanistic insights into molecular mechanisms underlying quaternary structures of DNMT1 complexes, suggesting potential targeting pockets for PPI-based allosteric drug design.
Collapse
Affiliation(s)
- Yu Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Ziyun Zhou
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Wanlin Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
- Correspondence: (Z.L.); (G.H.)
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
- Correspondence: (Z.L.); (G.H.)
| |
Collapse
|
59
|
Functional cross-talk between phosphorylation and disease-causing mutations in the cardiac sodium channel Na v1.5. Proc Natl Acad Sci U S A 2021; 118:2025320118. [PMID: 34373326 PMCID: PMC8379932 DOI: 10.1073/pnas.2025320118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The cardiac sodium channel (Nav1.5) is crucial for generating a regular heartbeat. It is thus not surprising that Nav1.5 mutations have been linked to life-threatening arrhythmias. Interestingly, Nav1.5 activity can also be altered by posttranslational modifications, such as tyrosine phosphorylation. Our combination of protein engineering and molecular modeling has revealed that the detrimental effect of a long QT3 patient mutation is only exposed when a proximal tyrosine is phosphorylated. This suggests a dynamic cross-talk between the genetic mutation and a neighboring phosphorylation, a phenomenon that could be important in other classes of proteins. Additionally, we show that phosphorylation can affect the channel’s sensitivity toward clinically relevant drugs, a finding that may prove important when devising patient-specific treatment plans. The voltage-gated sodium channel Nav1.5 initiates the cardiac action potential. Alterations of its activation and inactivation properties due to mutations can cause severe, life-threatening arrhythmias. Yet despite intensive research efforts, many functional aspects of this cardiac channel remain poorly understood. For instance, Nav1.5 undergoes extensive posttranslational modification in vivo, but the functional significance of these modifications is largely unexplored, especially under pathological conditions. This is because most conventional approaches are unable to insert metabolically stable posttranslational modification mimics, thus preventing a precise elucidation of the contribution by these modifications to channel function. Here, we overcome this limitation by using protein semisynthesis of Nav1.5 in live cells and carry out complementary molecular dynamics simulations. We introduce metabolically stable phosphorylation mimics on both wild-type (WT) and two pathogenic long-QT mutant channel backgrounds and decipher functional and pharmacological effects with unique precision. We elucidate the mechanism by which phosphorylation of Y1495 impairs steady-state inactivation in WT Nav1.5. Surprisingly, we find that while the Q1476R patient mutation does not affect inactivation on its own, it enhances the impairment of steady-state inactivation caused by phosphorylation of Y1495 through enhanced unbinding of the inactivation particle. We also show that both phosphorylation and patient mutations can impact Nav1.5 sensitivity toward the clinically used antiarrhythmic drugs quinidine and ranolazine, but not flecainide. The data highlight that functional effects of Nav1.5 phosphorylation can be dramatically amplified by patient mutations. Our work is thus likely to have implications for the interpretation of mutational phenotypes and the design of future drug regimens.
Collapse
|
60
|
Systematic Structure-Based Search for Ochratoxin-Degrading Enzymes in Proteomes from Filamentous Fungi. Biomolecules 2021; 11:biom11071040. [PMID: 34356666 PMCID: PMC8301969 DOI: 10.3390/biom11071040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023] Open
Abstract
(1) Background: ochratoxins are mycotoxins produced by filamentous fungi with important implications in the food manufacturing industry due to their toxicity. Decontamination by specific ochratoxin-degrading enzymes has become an interesting alternative for the treatment of contaminated food commodities. (2) Methods: using a structure-based approach based on homology modeling, blind molecular docking of substrates and characterization of low-frequency protein motions, we performed a proteome mining in filamentous fungi to characterize new enzymes with potential ochratoxinase activity. (3) Results: the proteome mining results demonstrated the ubiquitous presence of fungal binuclear zinc-dependent amido-hydrolases with a high degree of structural homology to the already characterized ochratoxinase from Aspergillus niger. Ochratoxinase-like enzymes from ochratoxin-producing fungi showed more favorable substrate-binding pockets to accommodate ochratoxins A and B. (4) Conclusions: filamentous fungi are an interesting and rich source of hydrolases potentially capable of degrading ochratoxins, and could be used for the detoxification of diverse food commodities.
Collapse
|
61
|
El Ahdab D, Lagardère L, Inizan TJ, Célerse F, Liu C, Adjoua O, Jolly LH, Gresh N, Hobaika Z, Ren P, Maroun RG, Piquemal JP. Interfacial Water Many-Body Effects Drive Structural Dynamics and Allosteric Interactions in SARS-CoV-2 Main Protease Dimerization Interface. J Phys Chem Lett 2021; 12:6218-6226. [PMID: 34196568 PMCID: PMC8262171 DOI: 10.1021/acs.jpclett.1c01460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 05/27/2023]
Abstract
Following our previous work ( Chem. Sci. 2021, 12, 4889-4907), we study the structural dynamics of the SARS-CoV-2 Main Protease dimerization interface (apo dimer) by means of microsecond adaptive sampling molecular dynamics simulations (50 μs) using the AMOEBA polarizable force field (PFF). This interface is structured by a complex H-bond network that is stable only at physiological pH. Structural correlations analysis between its residues and the catalytic site confirms the presence of a buried allosteric site. However, noticeable differences in allosteric connectivity are observed between PFFs and non-PFFs. Interfacial polarizable water molecules are shown to appear at the heart of this discrepancy because they are connected to the global interface H-bond network and able to adapt their dipole moment (and dynamics) to their diverse local physicochemical microenvironments. The water-interface many-body interactions appear to drive the interface volume fluctuations and to therefore mediate the allosteric interactions with the catalytic cavity.
Collapse
Affiliation(s)
- Dina El Ahdab
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
- Université Saint-Joseph de Beyrouth, UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, 1104 2020 Beirut, Lebanon
| | - Louis Lagardère
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
- Sorbonne Université, IP2CT, FR 2622 CNRS, 75005 Paris, France
| | | | - Fréderic Célerse
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
- Sorbonne Université, IPCM, UMR 8232 CNRS, 75005 Paris, France
| | - Chengwen Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Olivier Adjoua
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
| | - Luc-Henri Jolly
- Sorbonne Université, IP2CT, FR 2622 CNRS, 75005 Paris, France
| | - Nohad Gresh
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
| | - Zeina Hobaika
- Université Saint-Joseph de Beyrouth, UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, 1104 2020 Beirut, Lebanon
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard G Maroun
- Université Saint-Joseph de Beyrouth, UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, 1104 2020 Beirut, Lebanon
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
62
|
Yadav M, Igarashi M, Yamamoto N. Dynamic residue interaction network analysis of the oseltamivir binding site of N1 neuraminidase and its H274Y mutation site conferring drug resistance in influenza A virus. PeerJ 2021; 9:e11552. [PMID: 34141489 PMCID: PMC8179223 DOI: 10.7717/peerj.11552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Oseltamivir (OTV)-resistant influenza virus exhibits His-to-Tyr mutation at residue 274 (H274Y) in N1 neuraminidase (NA). However, the molecular mechanisms by which the H274Y mutation in NA reduces its binding affinity to OTV have not been fully elucidated. Methods In this study, we used dynamic residue interaction network (dRIN) analysis based on molecular dynamics simulation to investigate the correlation between the OTV binding site of NA and its H274Y mutation site. Results dRIN analysis revealed that the OTV binding site and H274Y mutation site of NA interact via the three interface residues connecting them. H274Y mutation significantly enhanced the interaction between residue 274 and the three interface residues in NA, thereby significantly decreasing the interaction between OTV and its surrounding loop 150 residues. Thus, we concluded that such changes in residue interactions could reduce the binding affinity of OTV to NA, resulting in drug resistant influenza viruses. Using dRIN analysis, we succeeded in understanding the characteristic changes in residue interactions due to H274Y mutation, which can elucidate the molecular mechanism of reduction in OTV binding affinity to influenza NA. Finally, the dRIN analysis used in this study can be widely applied to various systems such as individual proteins, protein-ligand complexes, and protein-protein complexes, to characterize the dynamic aspects of the interactions.
Collapse
Affiliation(s)
- Mohini Yadav
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Norifumi Yamamoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
| |
Collapse
|
63
|
Conformational Flexibility of A Highly Conserved Helix Controls Cryptic Pocket Formation in FtsZ. J Mol Biol 2021; 433:167061. [PMID: 34023403 DOI: 10.1016/j.jmb.2021.167061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis is responsible for more than 1.6 million deaths each year. One potential antibacterial target in M. tuberculosis is filamentous temperature sensitive protein Z (FtsZ), which is the bacterial homologue of mammalian tubulin, a validated cancer target. M. tuberculosis FtsZ function is essential, with its inhibition leading to arrest of cell division, elongation of the bacterial cell and eventual cell death. However, the development of potent inhibitors against FtsZ has been a challenge owing to the lack of structural information. Here we report multiple crystal structures of M. tuberculosis FtsZ in complex with a coumarin analogue. The 4-hydroxycoumarin binds exclusively to two novel cryptic pockets in nucleotide-free FtsZ, but not to the binary FtsZ-GTP or GDP complexes. Our findings provide a detailed understanding of the molecular basis for cryptic pocket formation, controlled by the conformational flexibility of the H7 helix, and thus reveal an important structural and mechanistic rationale for coumarin antibacterial activity.
Collapse
|
64
|
Force Field Parameters for Fe 2+4S 2-4 Clusters of Dihydropyrimidine Dehydrogenase, the 5-Fluorouracil Cancer Drug Deactivation Protein: A Step towards In Silico Pharmacogenomics Studies. Molecules 2021; 26:molecules26102929. [PMID: 34069161 PMCID: PMC8156676 DOI: 10.3390/molecules26102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022] Open
Abstract
The dimeric dihydropyrimidine dehydrogenase (DPD), metalloenzyme, an adjunct anti-cancer drug target, contains highly specialized 4 × Fe2+4S2−4 clusters per chain. These clusters facilitate the catalysis of the rate-limiting step in the pyrimidine degradation pathway through a harmonized electron transfer cascade that triggers a redox catabolic reaction. In the process, the bulk of the administered 5-fluorouracil (5-FU) cancer drug is inactivated, while a small proportion is activated to nucleic acid antimetabolites. The occurrence of missense mutations in DPD protein within the general population, including those of African descent, has adverse toxicity effects due to altered 5-FU metabolism. Thus, deciphering mutation effects on protein structure and function is vital, especially for precision medicine purposes. We previously proposed combining molecular dynamics (MD) and dynamic residue network (DRN) analysis to decipher the molecular mechanisms of missense mutations in other proteins. However, the presence of Fe2+4S2−4 clusters in DPD poses a challenge for such in silico studies. The existing AMBER force field parameters cannot accurately describe the Fe2+ center coordination exhibited by this enzyme. Therefore, this study aimed to derive AMBER force field parameters for DPD enzyme Fe2+ centers, using the original Seminario method and the collation features Visual Force Field Derivation Toolkit as a supportive approach. All-atom MD simulations were performed to validate the results. Both approaches generated similar force field parameters, which accurately described the human DPD protein Fe2+4S2−4 cluster architecture. This information is crucial and opens new avenues for in silico cancer pharmacogenomics and drug discovery related research on 5-FU drug efficacy and toxicity issues.
Collapse
|
65
|
Ma S, Li H, Yang J, Yu K. Molecular simulation studies of the interactions between the human/pangolin/cat/bat ACE2 and the receptor binding domain of the SARS-CoV-2 spike protein. Biochimie 2021; 187:1-13. [PMID: 33984400 PMCID: PMC8110333 DOI: 10.1016/j.biochi.2021.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022]
Abstract
The recent outbreak of SARS-CoV-2 has had a profound effect on the world. Similar to that in SARS-CoV, the entry receptor of SARS-CoV-2 is ACE2. The binding of SARS-CoV-2 spike protein to ACE2 is the critical to the virus infection. Recently multiple species (human, Chinese chrysanthemum, Malay pangolin and cat) have been reported to be susceptible to the virus infection. However, the binding capacity and the detailed binding mechanism of SARS-CoV-2 spike protein to ACE2 of these species remains unexplored. Herein free energy calculations with MM-GBSA and Potential of Mean Forces together reveal that the Human-SARS-CoV-2 has a higher stability tendency than Human-SARS-CoV. Meanwhile, we uncover that SARS-CoV-2 has an enhanced ability to bind with the ACE2 in humans, pangolins and cats compared to that in bats. Analysis of key residues with energy decomposition and residue contact maps reveal several important consensus sites in ACE2s among the studied species, and determined the more favorable specified residues among the different types of amino acids. These results provide important implications for understanding SARS-CoV-2 host range which will make it possible to control the spread of the virus and use of animal models, targeted drug screening and vaccine candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Shaojie Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, PR China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hui Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Shanghai Institute for Advanced Immunochemical Studies, And School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, PR China; National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Shanghai Institute for Advanced Immunochemical Studies, And School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
66
|
Wang S, Xu Y, Yu XW. Propeptide in Rhizopus chinensis Lipase: New Insights into Its Mechanism of Activity and Substrate Selectivity by Computational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4263-4275. [PMID: 33797235 DOI: 10.1021/acs.jafc.1c00721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most fungal lipases contain a propeptide, which is very important for their function and substrate selectivity. In the present study, Rhizopus chinensis lipase (RCL) was used as a research model to explore the mechanism of the propeptide of the lipase. Conventional molecular dynamics (MD) and metadynamics simulations were used to explore the mechanism by which the propeptide affects the activity of the lipase, which was subsequently verified by mutation experiments. MD simulations indicated that the propeptide had an inhibitory effect on the lid movement of RCL and found a key region (Val5-Thr10) on the propeptide. Subsequently, site-directed mutations were created in this region. The mutations enhanced the lipase catalytic efficiency to 700% and showed the potential for the propeptide to shift the substrate specificity of RCL. The specificity and activity of RCL mutants also had similar trends to wild-type RCL toward triglycerides with varying chain lengths. The mutual corroboration of simulation and site-directed mutagenesis results revealed the vital role of the key propeptide region in the catalytic activity and substrate specificity of the lipase.
Collapse
Affiliation(s)
- Shang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PRC
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PRC
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PRC
| |
Collapse
|
67
|
Madsen JJ, Olsen OH. Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain. Biomolecules 2021; 11:549. [PMID: 33917935 PMCID: PMC8068379 DOI: 10.3390/biom11040549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022] Open
Abstract
The vast majority of coagulation factor VII (FVII), a trypsin-like protease, circulates as the inactive zymogen. Activated FVII (FVIIa) is formed upon proteolytic activation of FVII, where it remains in a zymogen-like state and it is fully activated only when bound to tissue factor (TF). The catalytic domains of trypsin-like proteases adopt strikingly similar structures in their fully active forms. However, the dynamics and structures of the available corresponding zymogens reveal remarkable conformational plasticity of the protease domain prior to activation in many cases. Exactly how ligands and cofactors modulate the conformational dynamics and function of these proteases is not entirely understood. Here, we employ atomistic simulations of FVIIa (and variants hereof, including a TF-independent variant and N-terminally truncated variants) to provide fundamental insights with atomistic resolution into the plasticity-rigidity interplay of the protease domain conformations that appears to govern the functional response to proteolytic and allosteric activation. We argue that these findings are relevant to the FVII zymogen, whose structure has remained elusive despite substantial efforts. Our results shed light on the nature of FVII and demonstrate how conformational dynamics has played a crucial role in the evolutionary adaptation of regulatory mechanisms that were not present in the ancestral trypsin. Exploiting this knowledge could lead to engineering of protease variants for use as next-generation hemostatic therapeutics.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Ole H. Olsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| |
Collapse
|
68
|
Bhattarai A, Emerson IA. Exploring the conformational dynamics and flexibility of intrinsically disordered HIV-1 Nef protein using molecular dynamic network approaches. 3 Biotech 2021; 11:156. [PMID: 33747706 DOI: 10.1007/s13205-021-02698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/19/2021] [Indexed: 10/22/2022] Open
Abstract
Intrinsically disordered proteins represent a class of proteins that lack fixed and well-defined three-dimensional structures in solution. HIV-1 Nef is an intrinsically disordered peripheral membrane protein involved in the replication and pathogenesis of HIV-1 infection. Nef controls expression levels of cell surface CD4 molecules that are essential for adaptive immunity. Despite the lack of fixed and stable structures, Nef physically interacts with the host cellular proteins (AP-1/MHC-I) and modulates intracellular trafficking pathways. Therefore, it is essential to understand how this dynamic conformational flexibility affects Nef structures and function. In this study, we combined all-atom molecular dynamics (MD) simulations and dynamic network approaches to better understand the structure and dynamics of Nef in two different forms, the free unbound and the bound state. Using the MD simulation approach, we show that the intrinsically disordered Nef exhibit a large dynamic field with more atomic fluctuations and lesser thermodynamic stability in the unbound conditions. The conformations of Nef change over time, and this protein remains more compact, folded, and stable in the bound form. The dynamic network analysis revealed regions of the protein capable of modulating the conformational behavior of the disordered Nef. The average betweenness centrality (BC) unveiled residues that are critical for mediating protein-protein interactions. The average shortest path length (L) and the perturbation response scanning exposed residues that are likely to be important in steering protein conformational changes. Overall, the study demonstrates how all-atom MD simulations combined with the dynamic network approach can be used to gain further insights into the structure and dynamics-function relationship of intrinsically disordered HIV-1 Nef. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02698-8.
Collapse
|
69
|
Borges B, Gallo G, Coelho C, Negri N, Maiello F, Hardy L, Würtele M. Dynamic cross correlation analysis of Thermus thermophilus alkaline phosphatase and determinants of thermostability. Biochim Biophys Acta Gen Subj 2021; 1865:129895. [PMID: 33781823 DOI: 10.1016/j.bbagen.2021.129895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Understanding the determinants of protein thermostability is very important both from the theoretical and applied perspective. One emerging view in thermostable enzymes seems to indicate that a salt bridge/charged residue network plays a fundamental role in their thermostability. METHODS The structure of alkaline phosphatase (AP) from Thermus thermophilus HB8 was solved by X-ray crystallography at 2.1 Å resolution. The obtained structure was further analyzed by molecular dynamics studies at different temperatures (303 K, 333 K and 363 K) and compared to homologous proteins from the cold-adapted organisms Shewanella sp. and Vibrio strain G15-21. To analyze differences in measures of dynamic variation, several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis were used. Using hierarchical clustering, the obtained results were combined to determine residues showing high degree dynamical variations due to temperature jumps. Furthermore, dynamic cross correlation (DCC) analysis was carried out to characterize networks of charged residues. RESULTS Top clustered residues showed a higher propensity for thermostabilizing mutations, indicating evolutionary pressure acting on thermophilic organisms. The description of rotamer distributions by Gini coefficients and Kullback-Leibler (KL) divergence both revealed significant correlations with temperature. DCC analysis revealed a significant trend to de-correlation of the movement of charged residues at higher temperatures. SIGNIFICANCE The de-correlation of charged residues detected in Thermus thermophilus AP, highlights the importance of dynamic electrostatic network interactions for the thermostability of this enzyme.
Collapse
Affiliation(s)
- Bruno Borges
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Camila Coelho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Naiane Negri
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil; Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Maiello
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Leon Hardy
- Department of Physics, University of South Florida, Tampa, United States
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.
| |
Collapse
|
70
|
In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO 2 Biomineralization Processes: A Visit to the Thermophilic Bacteria Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter takaii, and Thermus thermophilus. Int J Mol Sci 2021; 22:ijms22062861. [PMID: 33799806 PMCID: PMC8000050 DOI: 10.3390/ijms22062861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022] Open
Abstract
Carbonic anhydrases (CAs) have been identified as ideal catalysts for CO2 sequestration. Here, we report the sequence and structural analyses as well as the molecular dynamics (MD) simulations of four γ-CAs from thermophilic bacteria. Three of these, Persephonella marina, Persephonella hydrogeniphila, and Thermosulfidibacter takaii originate from hydrothermal vents and one, Thermus thermophilus HB8, from hot springs. Protein sequences were retrieved and aligned with previously characterized γ-CAs, revealing differences in the catalytic pocket residues. Further analysis of the structures following homology modeling revealed a hydrophobic patch in the catalytic pocket, presumed important for CO2 binding. Monitoring of proton shuttling residue His69 (P. marina γ-CA numbering) during MD simulations of P. hydrogeniphila and P. marina’s γ-CAs (γ-PhCA and γ-PmCA), showed a different behavior to that observed in the γ-CA of Escherichia coli, which periodically coordinates Zn2+. This work also involved the search for hotspot residues that contribute to interface stability. Some of these residues were further identified as key in protein communication via betweenness centrality metric of dynamic residue network analysis. T. takaii’s γ-CA showed marginally lower thermostability compared to the other three γ-CA proteins with an increase in conformations visited at high temperatures being observed. Hydrogen bond analysis revealed important interactions, some unique and others common in all γ-CAs, which contribute to interface formation and thermostability. The seemingly thermostable γ-CA from T. thermophilus strangely showed increased unsynchronized residue motions at 423 K. γ-PhCA and γ-PmCA were, however, preliminarily considered suitable as prospective thermostable CO2 sequestration agents.
Collapse
|
71
|
Guclu TF, Atilgan AR, Atilgan C. Dynamic Community Composition Unravels Allosteric Communication in PDZ3. J Phys Chem B 2021; 125:2266-2276. [PMID: 33631929 DOI: 10.1021/acs.jpcb.0c11604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The third domain of PSD-95 (PDZ3) is a model for investigating allosteric communication in protein and ligand interactions. While motifs contributing to its binding specificity have been scrutinized, a conformational dynamical basis is yet to be established. Despite the miniscule structural changes due to point mutants, the observed significant binding affinity differences have previously been assessed with a focus on two α-helices located at the binding groove (α2) and the C-terminus (α3). Here, we employ a new computational approach to develop a generalized view on the molecular basis of PDZ3 binding selectivity and interaction communication for a set of point mutants of the protein (G330T, H372A, G330T-H372A) and its ligand (CRIPT, named L1, and its T-2F variant, L2) along with the wild type (WT). To analyze the dynamical aspects hidden in the conformations that are produced by molecular dynamics simulations, we utilize variations in community composition calculated based on the betweenness centrality measure from graph theory. We find that the highly charged N-terminus, which is located far from the ligand, has the propensity to share the same community with the ligand in the biologically functional complexes, indicating a distal segment might mediate the binding dynamics. N- and C-termini of PDZ3 share communities, and α3 acts as a hub for the whole protein by sustaining the communication with all structural segments, albeit being a trait not unique to the functional complexes. Moreover, α2 which lines the binding cavity frequently parts communities with the ligand and is not a controller of the binding but is rather a slave to the overall dynamics coordinated by the N-terminus. Thus, ligand binding fate in PDZ3 is traced to the population of community compositions extracted from dynamics despite the lack of significant conformational changes.
Collapse
Affiliation(s)
- Tandac F Guclu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| |
Collapse
|
72
|
Govind Kumar V, Ogden DS, Isu U, Polasa A, Losey J, Moradi M. Differential Dynamic Behavior of Prefusion Spike Proteins of SARS Coronaviruses 1 and 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33398271 DOI: 10.1101/2020.12.25.424008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The coronavirus spike protein, which binds to the same human receptor in both SARS-CoV-1 and 2, has been implied to be a potential source of their differential transmissibility. However, the mechanistic details of spike protein binding to its human receptor remain elusive at the molecular level. Here, we have used an extensive set of unbiased and biased microsecond-level all-atom molecular dynamics (MD) simulations of SARS-CoV-1 and 2 spike proteins to determine the differential dynamic behavior of prefusion spike protein structure in the two viruses. Our results indicate that the active form of the SARS-CoV-2 spike protein is more stable than that of SARS-CoV-1 and the energy barrier associated with the activation is higher in SARS-CoV-2. Our results also suggest that not only the receptor binding domain (RBD) but also other domains such as the N-terminal domain (NTD) could play a role in the differential binding behavior of SARS-CoV-1 and 2 spike proteins.
Collapse
|
73
|
Chebon-Bore L, Sanyanga TA, Manyumwa CV, Khairallah A, Tastan Bishop Ö. Decoding the Molecular Effects of Atovaquone Linked Resistant Mutations on Plasmodium falciparum Cytb-ISP Complex in the Phospholipid Bilayer Membrane. Int J Mol Sci 2021; 22:2138. [PMID: 33670016 PMCID: PMC7926518 DOI: 10.3390/ijms22042138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
Atovaquone (ATQ) is a drug used to prevent and treat malaria that functions by targeting the Plasmodium falciparum cytochrome b (PfCytb) protein. PfCytb catalyzes the transmembrane electron transfer (ET) pathway which maintains the mitochondrial membrane potential. The ubiquinol substrate binding site of the protein has heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors that act as redox centers to aid in ET. Recent studies investigating ATQ resistance mechanisms have shown that point mutations of PfCytb confer resistance. Thus, understanding the resistance mechanisms at the molecular level via computational approaches incorporating phospholipid bilayer would help in the design of new efficacious drugs that are also capable of bypassing parasite resistance. With this knowledge gap, this article seeks to explore the effect of three drug resistant mutations Y268C, Y268N and Y268S on the PfCytb structure and function in the presence and absence of ATQ. To draw reliable conclusions, 350 ns all-atom membrane (POPC:POPE phospholipid bilayer) molecular dynamics (MD) simulations with derived metal parameters for the holo and ATQ-bound -proteins were performed. Thereafter, simulation outputs were analyzed using dynamic residue network (DRN) analysis. Across the triplicate MD runs, hydrophobic interactions, reported to be crucial in protein function were assessed. In both, the presence and absence of ATQ and a loss of key active site residue interactions were observed as a result of mutations. These active site residues included: Met 133, Trp136, Val140, Thr142, Ile258, Val259, Pro260 and Phe264. These changes to residue interactions are likely to destabilize the overall intra-protein residue communication network where the proteins' function could be implicated. Protein dynamics of the ATQ-bound mutant complexes showed that they assumed a different pose to the wild-type, resulting in diminished residue interactions in the mutant proteins. In summary, this study presents insights on the possible effect of the mutations on ATQ drug activity causing resistance and describes accurate MD simulations in the presence of the lipid bilayer prior to conducting inhibitory drug discovery for the PfCytb-iron sulphur protein (Cytb-ISP) complex.
Collapse
Affiliation(s)
| | | | | | | | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa; (L.C.-B.); (T.A.S.); (C.V.M.); (A.K.)
| |
Collapse
|
74
|
Fischer A, Häuptli F, Lill MA, Smieško M. Computational Assessment of Combination Therapy of Androgen Receptor-Targeting Compounds. J Chem Inf Model 2021; 61:1001-1009. [PMID: 33523669 DOI: 10.1021/acs.jcim.0c01194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ligand-binding domain of the androgen receptor (AR) is a target for drugs against prostate cancer and offers three distinct binding sites for small molecules. Drugs acting on the orthosteric hormone binding site suffer from resistance mechanisms that can, in the worst case, reverse their therapeutic effect. While many allosteric ligands targeting either the activation function-2 (AF-2) or the binding function-3 (BF-3) have been reported, their potential for simultaneous administration with currently prescribed antiandrogens was disregarded. Here, we report results of 60 μs molecular dynamics simulations to investigate combinations of orthosteric and allosteric AR antagonists. Our results suggest BF-3 inhibitors to be more suitable in combination with classical antiandrogens as opposed to AF-2 inhibitors based on binding free energies and binding modes. As a mechanistic explanation for these observations, we deduced a structural adaptation of helix-12 involved in the formation of the AF-2 site by classical AR antagonists. Additionally, the changes were accompanied by an expansion of the orthosteric binding site. Considering our predictions, the selective combination of AR-targeting compounds may improve the treatment of prostate cancer.
Collapse
Affiliation(s)
- André Fischer
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Florian Häuptli
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| |
Collapse
|
75
|
Wang S, Xu Y, Yu XW. A phenylalanine dynamic switch controls the interfacial activation of Rhizopus chinensis lipase. Int J Biol Macromol 2021; 173:1-12. [PMID: 33476612 DOI: 10.1016/j.ijbiomac.2021.01.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/10/2023]
Abstract
The catalytic mechanism of most lipases involves a step called "interfacial activation" which significantly increases lipases activity beyond the critical micellar concentration (CMC) of substrate. In the present study, Rhizopus chinensis lipase (RCL) was used as a research model to explore the mechanism of lipase interfacial activation beyond the CMC. Molecular dynamic (MD) simulations indicated the open- and closed-lid transitions and revealed that Phe113 was the critical site for RCL activation by its dynamic flipping. Such putative switch affecting interfacial activation has not been reported in lipase so far. The function of Phe113 was subsequently verified by mutation experiments. The F113W mutant increases the lipase catalytic efficiency (1.9 s-1·μM-1) to 280% at the optimum temperature (40 °C) and pH 8.5 with the addition of 0.12 μg protein in the 200 μL reaction system. MD simulations indicated that the fast flipping rate from the closed to the open state, the high open state proportion, and the exposure of the catalytic triad are the main reasons for the lipase activation. The mutual corroboration of simulations and site-directed mutagenesis results revealed the vital role of Phe113 in the lipase activation.
Collapse
Affiliation(s)
- Shang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
76
|
Fischer A, Frehner G, Lill MA, Smieško M. Conformational Changes of Thyroid Receptors in Response to Antagonists. J Chem Inf Model 2021; 61:1010-1019. [PMID: 33449688 DOI: 10.1021/acs.jcim.0c01403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thyroid hormone receptors (TRs) play a critical role in human development, growth, and metabolism. Antagonists of TRs offer an attractive strategy to treat hyperthyroidism without the disadvantage of a delayed onset of drug action. While it is challenging to examine the atomistic behavior of TRs in a laboratory setting, computational methods such as molecular dynamics (MD) simulations have proven their value to elucidate ligand-induced conformational changes in nuclear receptors. Here, we performed MD simulations of TRα and TRβ complexed to their native ligand triiodothyronine (T3) as well as several antagonists. Based on the examination of 27 μs MD trajectories, we showed how binding of these compounds influences various structural features of the receptors including the helicity of helices 3 and 10 as well as the location of helix-12. Helices 3 and 12 are known to mediate coactivator association required for downstream signaling, suggesting these changes to be the molecular basis for TR antagonism. A mechanistic analysis of the trajectories revealed an allosteric pathway between H3 and H12 to be responsible for the conformational adaptations. Even though a mechanistic understanding of conformational adaptations triggered by TR antagonists is important for the development of novel therapeutics, they have not been previously examined in detail as it was done here.
Collapse
Affiliation(s)
- André Fischer
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Gabriela Frehner
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| |
Collapse
|
77
|
Halder A, Anto A, Subramanyan V, Bhattacharyya M, Vishveshwara S, Vishveshwara S. Surveying the Side-Chain Network Approach to Protein Structure and Dynamics: The SARS-CoV-2 Spike Protein as an Illustrative Case. Front Mol Biosci 2020; 7:596945. [PMID: 33392257 PMCID: PMC7775578 DOI: 10.3389/fmolb.2020.596945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023] Open
Abstract
Network theory-based approaches provide valuable insights into the variations in global structural connectivity between different dynamical states of proteins. Our objective is to review network-based analyses to elucidate such variations, especially in the context of subtle conformational changes. We present technical details of the construction and analyses of protein structure networks, encompassing both the non-covalent connectivity and dynamics. We examine the selection of optimal criteria for connectivity based on the physical concept of percolation. We highlight the advantages of using side-chain-based network metrics in contrast to backbone measurements. As an illustrative example, we apply the described network approach to investigate the global conformational changes between the closed and partially open states of the SARS-CoV-2 spike protein. These conformational changes in the spike protein is crucial for coronavirus entry and fusion into human cells. Our analysis reveals global structural reorientations between the two states of the spike protein despite small changes between the two states at the backbone level. We also observe some differences at strategic locations in the structures, correlating with their functions, asserting the advantages of the side-chain network analysis. Finally, we present a view of allostery as a subtle synergistic-global change between the ligand and the receptor, the incorporation of which would enhance drug design strategies.
Collapse
Affiliation(s)
- Anushka Halder
- Department of Pharmacology, Yale University, New Haven, CT, United States
| | - Arinnia Anto
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Varsha Subramanyan
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | | - Smitha Vishveshwara
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | |
Collapse
|
78
|
Ghorbani M, Brooks BR, Klauda JB. Critical Sequence Hotspots for Binding of Novel Coronavirus to Angiotensin Converter Enzyme as Evaluated by Molecular Simulations. J Phys Chem B 2020; 124:10034-10047. [PMID: 33112147 PMCID: PMC7605337 DOI: 10.1021/acs.jpcb.0c05994] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The novel coronavirus (nCOV-2019) outbreak has put the world on edge, causing millions of cases and hundreds of thousands of deaths all around the world, as of June 2020, let alone the societal and economic impacts of the crisis. The spike protein of nCOV-2019 resides on the virion's surface mediating coronavirus entry into host cells by binding its receptor binding domain (RBD) to the host cell surface receptor protein, angiotensin converter enzyme (ACE2). Our goal is to provide a detailed structural mechanism of how nCOV-2019 recognizes and establishes contacts with ACE2 and its difference with an earlier severe acute respiratory syndrome coronavirus (SARS-COV) in 2002 via extensive molecular dynamics (MD) simulations. Numerous mutations have been identified in the RBD of nCOV-2019 strains isolated from humans in different parts of the world. In this study, we investigated the effect of these mutations as well as other Ala-scanning mutations on the stability of the RBD/ACE2 complex. It is found that most of the naturally occurring mutations to the RBD either slightly strengthen or have the same binding affinity to ACE2 as the wild-type nCOV-2019. This means that the virus had sufficient binding affinity to its receptor at the beginning of the crisis. This also has implications for any vaccine design endeavors since these mutations could act as antibody escape mutants. Furthermore, in silico Ala-scanning and long-timescale MD simulations highlight the crucial role of the residues at the interface of RBD and ACE2 that may be used as potential pharmacophores for any drug development endeavors. From an evolutional perspective, this study also identifies how the virus has evolved from its predecessor SARS-COV and how it could further evolve to become even more infectious.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
- Laboratory of Computational Biology, National, Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824, USA
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National, Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
79
|
Verkhivker GM. Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins. J Proteome Res 2020; 19:4587-4608. [PMID: 33006900 PMCID: PMC7640983 DOI: 10.1021/acs.jproteome.0c00654] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 12/13/2022]
Abstract
The development of computational strategies for the quantitative characterization of the functional mechanisms of SARS-CoV-2 spike proteins is of paramount importance in efforts to accelerate the discovery of novel therapeutic agents and vaccines combating the COVID-19 pandemic. Structural and biophysical studies have recently characterized the conformational landscapes of the SARS-CoV-2 spike glycoproteins in the prefusion form, revealing a spectrum of stable and more dynamic states. By employing molecular simulations and network modeling approaches, this study systematically examined functional dynamics and identified the regulatory centers of allosteric interactions for distinct functional states of the wild-type and mutant variants of the SARS-CoV-2 prefusion spike trimer. This study presents evidence that the SARS-CoV-2 spike protein can function as an allosteric regulatory engine that fluctuates between dynamically distinct functional states. Perturbation-based modeling of the interaction networks revealed a key role of the cross-talk between the effector hotspots in the receptor binding domain and the fusion peptide proximal region of the SARS-CoV-2 spike protein. The results have shown that the allosteric hotspots of the interaction networks in the SARS-CoV-2 spike protein can control the dynamic switching between functional conformational states that are associated with virus entry to the host receptor. This study offers a useful and novel perspective on the underlying mechanisms of the SARS-CoV-2 spike protein through the lens of allosteric signaling as a regulatory apparatus of virus transmission that could open up opportunities for targeted allosteric drug discovery against SARS-CoV-2 proteins and contribute to the rapid response to the current and potential future pandemic scenarios.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate
Program in Computational and Data Sciences, Keck Center for Science
and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
80
|
Manyumwa CV, Emameh RZ, Tastan Bishop Ö. Alpha-Carbonic Anhydrases from Hydrothermal Vent Sources as Potential Carbon Dioxide Sequestration Agents: In Silico Sequence, Structure and Dynamics Analyses. Int J Mol Sci 2020; 21:E8066. [PMID: 33138066 PMCID: PMC7662607 DOI: 10.3390/ijms21218066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
With the increase in CO2 emissions worldwide and its dire effects, there is a need to reduce CO2 concentrations in the atmosphere. Alpha-carbonic anhydrases (α-CAs) have been identified as suitable sequestration agents. This study reports the sequence and structural analysis of 15 α-CAs from bacteria, originating from hydrothermal vent systems. Structural analysis of the multimers enabled the identification of hotspot and interface residues. Molecular dynamics simulations of the homo-multimers were performed at 300 K, 363 K, 393 K and 423 K to unearth potentially thermostable α-CAs. Average betweenness centrality (BC) calculations confirmed the relevance of some hotspot and interface residues. The key residues responsible for dimer thermostability were identified by comparing fluctuating interfaces with stable ones, and were part of conserved motifs. Crucial long-lived hydrogen bond networks were observed around residues with high BC values. Dynamic cross correlation fortified the relevance of oligomerization of these proteins, thus the importance of simulating them in their multimeric forms. A consensus of the simulation analyses used in this study suggested high thermostability for the α-CA from Nitratiruptor tergarcus. Overall, our novel findings enhance the potential of biotechnology applications through the discovery of alternative thermostable CO2 sequestration agents and their potential protein design.
Collapse
Affiliation(s)
- Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6140, South Africa;
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran;
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6140, South Africa;
| |
Collapse
|
81
|
Amamuddy OS, Verkhivker GM, Bishop ÖT. Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 M pro. J Chem Inf Model 2020; 60:5080-5102. [PMID: 32853525 PMCID: PMC7496595 DOI: 10.1021/acs.jcim.0c00634] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/15/2022]
Abstract
A new coronavirus (SARS-CoV-2) is a global threat to world health and economy. Its dimeric main protease (Mpro), which is required for the proteolytic cleavage of viral precursor proteins, is a good candidate for drug development owing to its conservation and the absence of a human homolog. Improving our understanding of Mpro behavior can accelerate the discovery of effective therapies to reduce mortality. All-atom molecular dynamics (MD) simulations (100 ns) of 50 mutant Mpro dimers obtained from filtered sequences from the GISAID database were analyzed using root-mean-square deviation, root-mean-square fluctuation, Rg, averaged betweenness centrality, and geometry calculations. The results showed that SARS-CoV-2 Mpro essentially behaves in a similar manner to its SAR-CoV homolog. However, we report the following new findings from the variants: (1) Residues GLY15, VAL157, and PRO184 have mutated more than once in SARS CoV-2; (2) the D48E variant has lead to a novel "TSEEMLN"" loop at the binding pocket; (3) inactive apo Mpro does not show signs of dissociation in 100 ns MD; (4) a non-canonical pose for PHE140 widens the substrate binding surface; (5) dual allosteric pockets coinciding with various stabilizing and functional components of the substrate binding pocket were found to display correlated compaction dynamics; (6) high betweenness centrality values for residues 17 and 128 in all Mpro samples suggest their high importance in dimer stability-one such consequence has been observed for the M17I mutation whereby one of the N-fingers was highly unstable. (7) Independent coarse-grained Monte Carlo simulations suggest a relationship between the rigidity/mutability and enzymatic function. Our entire approach combining database preparation, variant retrieval, homology modeling, dynamic residue network (DRN), relevant conformation retrieval from 1-D kernel density estimates from reaction coordinates to other existing approaches of structural analysis, and data visualization within the coronaviral Mpro is also novel and is applicable to other coronaviral proteins.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics, Department of Microbiology and Biochemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics, Department of Microbiology and Biochemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
82
|
Computational SNP Analysis and Molecular Simulation Revealed the Most Deleterious Missense Variants in the NBD1 Domain of Human ABCA1 Transporter. Int J Mol Sci 2020; 21:ijms21207606. [PMID: 33066695 PMCID: PMC7589834 DOI: 10.3390/ijms21207606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
The ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound exporter protein involved in regulating serum HDL level by exporting cholesterol and phospholipids to load up in lipid-poor ApoA-I and ApoE, which allows the formation of nascent HDL. Mutations in the ABCA1 gene, when presents in both alleles, disrupt the canonical function of ABCA1, which associates with many disorders related to lipid transport. Although many studies have reported the phenotypic effects of a large number of ABCA1 variants, the pathological effect of non-synonymous polymorphisms (nsSNPs) in ABCA1 remains elusive. Therefore, aiming at exploring the structural and functional consequences of nsSNPs in ABCA1, in this study, we employed an integrated computational approach consisting of nine well-known in silico tools to identify damaging SNPs and molecular dynamics (MD) simulation to get insights into the magnitudes of the damaging effects. In silico tools revealed four nsSNPs as being most deleterious, where the two SNPs (G1050V and S1067C) are identified as the highly conserved and functional disrupting mutations located in the NBD1 domain. MD simulation suggested that both SNPs, G1050V and S1067C, changed the overall structural flexibility and dynamics of NBD1, and induced substantial alteration in the structural organization of ATP binding site. Taken together, these findings direct future studies to get more insights into the role of these variants in the loss of the ABCA1 function.
Collapse
|
83
|
Gupta R, Liu Y, Wang H, Nordyke CT, Puterbaugh RZ, Cui W, Varga K, Chu F, Ke H, Vashisth H, Cote RH. Structural Analysis of the Regulatory GAF Domains of cGMP Phosphodiesterase Elucidates the Allosteric Communication Pathway. J Mol Biol 2020; 432:5765-5783. [PMID: 32898583 PMCID: PMC7572642 DOI: 10.1016/j.jmb.2020.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
Regulation of photoreceptor phosphodiesterase (PDE6) activity is responsible for the speed, sensitivity, and recovery of the photoresponse during visual signaling in vertebrate photoreceptor cells. It is hypothesized that physiological differences in the light responsiveness of rods and cones may result in part from differences in the structure and regulation of the distinct isoforms of rod and cone PDE6. Although rod and cone PDE6 catalytic subunits share a similar domain organization consisting of tandem GAF domains (GAFa and GAFb) and a catalytic domain, cone PDE6 is a homodimer whereas rod PDE6 consists of two homologous catalytic subunits. Here we provide the x-ray crystal structure of cone GAFab regulatory domain solved at 3.3 Å resolution, in conjunction with chemical cross-linking and mass spectrometric analysis of conformational changes to GAFab induced upon binding of cGMP and the PDE6 inhibitory γ-subunit (Pγ). Ligand-induced changes in cross-linked residues implicate multiple conformational changes in the GAFa and GAFb domains in forming an allosteric communication network. Molecular dynamics simulations of cone GAFab revealed differences in conformational dynamics of the two subunits forming the homodimer and allosteric perturbations on cGMP binding. Cross-linking of Pγ to GAFab in conjunction with solution NMR spectroscopy of isotopically labeled Pγ identified the central polycationic region of Pγ interacting with the GAFb domain. These results provide a mechanistic basis for developing allosteric activators of PDE6 with therapeutic implications for halting the progression of several retinal degenerative diseases.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Yong Liu
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA
| | - Huanchen Wang
- Signal Transduction Laboratory, NIEHS/NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Christopher T Nordyke
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Ryan Z Puterbaugh
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Wenjun Cui
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Krisztina Varga
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA
| | - Rick H Cote
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA.
| |
Collapse
|
84
|
Felline A, Seeber M, Fanelli F. webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules. Nucleic Acids Res 2020; 48:W94-W103. [PMID: 32427333 PMCID: PMC7319592 DOI: 10.1093/nar/gkaa397] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/21/2020] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
A mixed Protein Structure Network (PSN) and Elastic Network Model-Normal Mode Analysis (ENM-NMA)-based strategy (i.e. PSN-ENM) was developed to investigate structural communication in bio-macromolecules. Protein Structure Graphs (PSGs) are computed on a single structure, whereas information on system dynamics is supplied by ENM-NMA. The approach was implemented in a webserver (webPSN), which was significantly updated herein. The webserver now handles both proteins and nucleic acids and relies on an internal upgradable database of network parameters for ions and small molecules in all PDB structures. Apart from the radical restyle of the server and some changes in the calculation setup, other major novelties concern the possibility to: a) compute the differences in nodes, links, and communication pathways between two structures (i.e. network difference) and b) infer links, hubs, communities, and metapaths from consensus networks computed on a number of structures. These new features are useful to identify commonalties and differences between two different functional states of the same system or structural-communication signatures in homologous or analogous systems. The output analysis relies on 3D-representations, interactive tables and graphs, also available for download. Speed and accuracy make this server suitable to comparatively investigate structural communication in large sets of bio-macromolecular systems. URL: http://webpsn.hpc.unimore.it.
Collapse
Affiliation(s)
- Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Michele Seeber
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
85
|
Abid N, Pietrucci D, Salemi M, Chillemi G. New Insights into the Effect of Residue Mutations on the Rotavirus VP1 Function Using Molecular Dynamic Simulations. J Chem Inf Model 2020; 60:5011-5025. [PMID: 32786703 DOI: 10.1021/acs.jcim.0c00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rotavirus group A remains a major cause of diarrhea in infants and young children worldwide. The permanent emergence of new genotypes puts the potential effectiveness of vaccines under serious questions. Thirteen VP1 structures with mutations mapping to the RNA entry site were analyzed using molecular dynamics simulations, and the results were combined with the experimental findings reported previously. The results revealed structural fluctuations in the protein-protein recognition sites and in the bottleneck of the RNA entry site that may affect the interaction of different proteins and delay the initiation of the viral replication, respectively. Altogether, the structural analysis of VP1 in the region crucial for the initiation of the viral replication, mainly the bottleneck site, may boost efforts to develop antivirals, as they might complement the available vaccines.
Collapse
Affiliation(s)
- Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000 Monastir, Tunisia.,High Institute of Biotechnology of Sidi Thabet, Department of Biotechnology, University Manouba, BP-66, 2020 Ariana-Tunis, Tunisia
| | - Daniele Pietrucci
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Emerging Pathogens Institute, University of Florida, P.O. Box 100009, Gainesville, Florida 32610-3633, United States
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems, DIBAF, University of Tuscia, Via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, Via Giovanni Amendola, 122/O, 70126 Bari, Italy
| |
Collapse
|
86
|
D'Amico RN, Murray AM, Boehr DD. Driving Protein Conformational Cycles in Physiology and Disease: "Frustrated" Amino Acid Interaction Networks Define Dynamic Energy Landscapes: Amino Acid Interaction Networks Change Progressively Along Alpha Tryptophan Synthase's Catalytic Cycle. Bioessays 2020; 42:e2000092. [PMID: 32720327 DOI: 10.1002/bies.202000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Indexed: 12/22/2022]
Abstract
A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or "conformational cycle," required for function is proposed. It is suggested that the free-energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free-energy landscape. Some network connections are consistent in every structural state, while others periodically change their interaction strength according to the conformational cycle. It is reviewed here that structural transitions change these periodic network connections, which then predisposes the protein toward the next set of network changes, and hence the next structural change. These concepts are illustrated by recent work on tryptophan synthase. Disruption of these dynamic connections may lead to aberrant protein function and disease states.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - Alec M Murray
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| |
Collapse
|
87
|
Xiao F, Song X, Tian P, Gan M, Verkhivker GM, Hu G. Comparative Dynamics and Functional Mechanisms of the CYP17A1 Tunnels Regulated by Ligand Binding. J Chem Inf Model 2020; 60:3632-3647. [PMID: 32530640 DOI: 10.1021/acs.jcim.0c00447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an important member of cytochrome P450 (CYP) enzymes, CYP17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones, making it an attractive therapeutic target. The emerging structural information about CYP17A1 and the growing number of inhibitors for these enzymes call for a systematic strategy to delineate and classify mechanisms of ligand transport through tunnels that control catalytic activity. In this work, we applied an integrated computational strategy to different CYP17A1 systems with a panel of ligands to systematically study at the atomic level the mechanism of ligand-binding and tunneling dynamics. Atomistic simulations and binding free energy computations identify the dynamics of dominant tunnels and characterize energetic properties of critical residues responsible for ligand binding. The common transporting pathways including S, 3, and 2c tunnels were identified in CYP17A1 binding systems, while the 2c tunnel is a newly formed pathway upon ligand binding. We employed and integrated several computational approaches including the analysis of functional motions and sequence conservation, atomistic modeling of dynamic residue interaction networks, and perturbation response scanning analysis to dissect ligand tunneling mechanisms. The results revealed the hinge-binding and sliding motions as main functional modes of the tunnel dynamic, and a group of mediating residues as key regulators of tunnel conformational dynamics and allosteric communications. We have also examined and quantified the mutational effects on the tunnel composition, conformational dynamics, and long-range allosteric behavior. The results of this investigation are fully consistent with the experimental data, providing novel rationale to the experiments and offering valuable insights into the relationships between the structure and function of the channel networks and a robust atomistic model of activation mechanisms and allosteric interactions in CYP enzymes.
Collapse
Affiliation(s)
- Fei Xiao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xingyu Song
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Peiyi Tian
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Mi Gan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University Pharmacy School, 9401 Jeronimo Rd, Irvine, California 92618, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
88
|
Ghorbani M, Brooks BR, Klauda JB. Critical Sequence Hot-spots for Binding of nCOV-2019 to ACE2 as Evaluated by Molecular Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32637962 DOI: 10.1101/2020.06.27.175448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The novel coronavirus (nCOV-2019) outbreak has put the world on edge, causing millions of cases and hundreds of thousands of deaths all around the world, as of June 2020, let alone the societal and economic impacts of the crisis. The spike protein of nCOV-2019 resides on the virion's surface mediating coronavirus entry into host cells by binding its receptor binding domain (RBD) to the host cell surface receptor protein, angiotensin converter enzyme (ACE2). Our goal is to provide a detailed structural mechanism of how nCOV-2019 recognizes and establishes contacts with ACE2 and its difference with an earlier coronavirus SARS-COV in 2002 via extensive molecular dynamics (MD) simulations. Numerous mutations have been identified in the RBD of nCOV-2019 strains isolated from humans in different parts of the world. In this study, we investigated the effect of these mutations as well as other Ala-scanning mutations on the stability of RBD/ACE2 complex. It is found that most of the naturally-occurring mutations to the RBD either strengthen or have the same binding affinity to ACE2 as the wild-type nCOV-2019. This may have implications for high human-to-human transmission of coronavirus in regions where these mutations have been found as well as any vaccine design endeavors since these mutations could act as antibody escape mutants. Furthermore, in-silico Ala-scanning and long-timescale MD simulations, highlight the crucial role of the residues at the interface of RBD and ACE2 that may be used as potential pharmacophores for any drug development endeavors. From an evolutional perspective, this study also identifies how the virus has evolved from its predecessor SARS-COV and how it could further evolve to become more infectious.
Collapse
|
89
|
Kagami LP, das Neves GM, Timmers LFSM, Caceres RA, Eifler-Lima VL. Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Comput Biol Chem 2020; 87:107322. [PMID: 32604028 DOI: 10.1016/j.compbiolchem.2020.107322] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/15/2023]
Abstract
Although molecular dynamics encompasses several applications, studies focusing on biomolecular systems are central issues of this research area. Such simulations require the generation of trajectory files, which provide a path for the analysis and interpretation of results with biological significance. However, although several programs have been developed in Python language for the analyses of molecular dynamics (MD) trajectories, they usually require some knowledge of programming languages in order to write or run the scripts using command lines, which certainly hinders the access of MD simulations to many scientists with the necessary biological background to interpret their results. To ease the access to Python packages focusing on MD trajectory analyses, we built a user-friendly and easy-to-install graphical PyMOL interface. Geo-Measures integrates the PyMOL functionalities with MDTraj, a powerful library of trajectory analyses, allowing the users to access up to 14 different types of analyses. Two sample cases are reported here to demonstrate the use of Geo-Measures. In the first example, which involves the use a MD trajectory file of hemoglobin from the MoDEL MD bank, we exemplified the analyses of the following variables: root mean square deviation, radius of gyration, free energy landscape and principal component analysis. In the second case, we built a trajectory file for the ecto-5'-nucleotidase using the LiGRO program to study the carbon alpha pincer angles, to define the secondary structure of the proteins and to analyze the Modevectors. This user-friendly graphical PyMOL plugin, which can be used to generate several descriptive analyses for protein structures, is open source and can be downloaded at: https://pymolwiki.org/index.php/Geo_Measures_Plugin.
Collapse
Affiliation(s)
- Luciano Porto Kagami
- Laboratory of Medicinal Organic Synthesis (LaSOM), Faculty of Pharmacy, Federal University of Rio Grande do Sul, Ipiranga Avenue, n° 2752, Porto Alegre, RS, 90610-000, Brazil; Programa de Pós-gradução de Ciências da Saúde da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, n° 245, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
| | - Gustavo Machado das Neves
- Laboratory of Medicinal Organic Synthesis (LaSOM), Faculty of Pharmacy, Federal University of Rio Grande do Sul, Ipiranga Avenue, n° 2752, Porto Alegre, RS, 90610-000, Brazil; Programa de Pós-gradução de Ciências da Saúde da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, n° 245, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Luís Fernando Saraiva Macedo Timmers
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade do Vale do Taquari -Univates, Rua Avelino Talini, 171 - Bairro Universitário, Lajeado, RS, 95914-014, Brazil; Programa de Pós-gradução de Ciências da Saúde da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, n° 245, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
| | - Rafael Andrade Caceres
- Programa de Pós-graduação de Biociências da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, n° 245, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil; Programa de Pós-gradução de Ciências da Saúde da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, n° 245, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Vera Lucia Eifler-Lima
- Laboratory of Medicinal Organic Synthesis (LaSOM), Faculty of Pharmacy, Federal University of Rio Grande do Sul, Ipiranga Avenue, n° 2752, Porto Alegre, RS, 90610-000, Brazil; Programa de Pós-gradução de Ciências da Saúde da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, n° 245, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| |
Collapse
|
90
|
Bhattarai A, Emerson IA. Computational investigations on the dynamic binding effect of molecular tweezer CLR01 toward intrinsically disordered HIV-1 Nef. Biotechnol Appl Biochem 2020; 68:513-530. [PMID: 32447788 DOI: 10.1002/bab.1957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) are highly flexible molecules that undergo disorder to order transition through their interaction with other molecules. IDPs play a vital role in several biological processes ranging from molecular recognition to several human diseases through the protein-protein interaction. The dynamic flexibility of IDPs and their implications in several human diseases enable these molecules to serve as novel therapeutic targets. However, the challenging task is to develop novel drugs against IDPs because of their lack of stable structures and the nature of high conformational flexibility. In this study, we have calculated the dynamic binding effect of the supramolecular tweezer CLR01 against the intrinsically disordered HIV-1 Nef by employing molecular docking and dynamics simulation approaches. From docking results, we predicted the strong binding affinity of the tweezer with the target residues of Nef. The docking results were further validated from the molecular dynamics simulation studies confirming the conformational stability of Nef upon tweezer binding. These findings provide useful insights into the development of potent inhibitors for targeting Nef protein functions.
Collapse
Affiliation(s)
- Anil Bhattarai
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
91
|
Nyamai DW, Tastan Bishop Ö. Identification of Selective Novel Hits against Plasmodium falciparum Prolyl tRNA Synthetase Active Site and a Predicted Allosteric Site Using in silico Approaches. Int J Mol Sci 2020; 21:E3803. [PMID: 32471245 PMCID: PMC7312540 DOI: 10.3390/ijms21113803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been increased interest in aminoacyl tRNA synthetases (aaRSs) as potential malarial drug targets. These enzymes play a key role in protein translation by the addition of amino acids to their cognate tRNA. The aaRSs are present in all Plasmodium life cycle stages, and thus present an attractive malarial drug target. Prolyl tRNA synthetase is a class II aaRS that functions in charging tRNA with proline. Various inhibitors against Plasmodium falciparum ProRS (PfProRS) active site have been designed. However, none have gone through clinical trials as they have been found to be highly toxic to human cells. Recently, a possible allosteric site was reported in PfProRS with two possible allosteric modulators: glyburide and TCMDC-124506. In this study, we sought to identify novel selective inhibitors targeting PfProRS active site and possible novel allosteric modulators of this enzyme. To achieve this, virtual screening of South African natural compounds against PfProRS and the human homologue was carried out using AutoDock Vina. The modulation of protein motions by ligand binding was studied by molecular dynamics (MD) using the GROningen MAchine for Chemical Simulations (GROMACS) tool. To further analyse the protein global motions and energetic changes upon ligand binding, principal component analysis (PCA), and free energy landscape (FEL) calculations were performed. Further, to understand the effect of ligand binding on the protein communication, dynamic residue network (DRN) analysis of the MD trajectories was carried out using the MD-TASK tool. A total of ten potential natural hit compounds were identified with strong binding energy scores. Binding of ligands to the protein caused observable global and residue level changes. Dynamic residue network calculations showed increase in betweenness centrality (BC) metric of residues at the allosteric site implying these residues are important in protein communication. A loop region at the catalytic domain between residues 300 and 350 and the anticodon binding domain showed significant contributions to both PC1 and PC2. Large motions were observed at a loop in the Z-domain between residues 697 and 710 which was also in agreement with RMSF calculations that showed increase in flexibility of residues in this region. Residues in this loop region are implicated in ATP binding and thus a change in dynamics may affect ATP binding affinity. Free energy landscape (FEL) calculations showed that the holo protein (protein-ADN complex) and PfProRS-SANC184 complexes were stable, as shown by the low energy with very few intermediates and hardly distinguishable low energy barriers. In addition, FEL results agreed with backbone RMSD distribution plots where stable complexes showed a normal RMSD distribution while unstable complexes had multimodal RMSD distribution. The betweenness centrality metric showed a loss of functional importance of key ATP binding site residues upon allosteric ligand binding. The deep basins in average L observed at the allosteric region imply that there is high accessibility of residues at this region. To further analyse BC and average L metrics data, we calculated the ΔBC and ΔL values by taking each value in the holo protein BC or L matrix less the corresponding value in the ligand-bound complex BC or L matrix. Interestingly, in allosteric complexes, residues located in a loop region implicated in ATP binding had negative ΔL values while in orthosteric complexes these residues had positive ΔL values. An increase in contact frequency between residues Ser263, Thr267, Tyr285, and Leu707 at the allosteric site and residues Thr397, Pro398, Thr402, and Gln395 at the ATP binding TXE loop was observed. In summary, this study identified five potential orthosteric inhibitors and five allosteric modulators against PfProRS. Allosteric modulators changed ATP binding site dynamics, as shown by RMSF, PCA, and DRN calculations. Changes in dynamics of the ATP binding site and increased contact frequency between residues at the proposed allosteric site and the ATP binding site may explain how allosteric modulators distort the ATP binding site and thus might inhibit PfProRS. The scaffolds of the identified hits in the study can be used as a starting point for antimalarial inhibitor development with low human cytotoxicity.
Collapse
Affiliation(s)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
92
|
Chakrabarty B, Naganathan V, Garg K, Agarwal Y, Parekh N. NAPS update: network analysis of molecular dynamics data and protein-nucleic acid complexes. Nucleic Acids Res 2020; 47:W462-W470. [PMID: 31106363 PMCID: PMC6602509 DOI: 10.1093/nar/gkz399] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 02/04/2023] Open
Abstract
Network theory is now a method of choice to gain insights in understanding protein structure, folding and function. In combination with molecular dynamics (MD) simulations, it is an invaluable tool with widespread applications such as analyzing subtle conformational changes and flexibility regions in proteins, dynamic correlation analysis across distant regions for allosteric communications, in drug design to reveal alternative binding pockets for drugs, etc. Updated version of NAPS now facilitates network analysis of the complete repertoire of these biomolecules, i.e., proteins, protein–protein/nucleic acid complexes, MD trajectories, and RNA. Various options provided for analysis of MD trajectories include individual network construction and analysis of intermediate time-steps, comparative analysis of these networks, construction and analysis of average network of the ensemble of trajectories and dynamic cross-correlations. For protein–nucleic acid complexes, networks of the whole complex as well as that of the interface can be constructed and analyzed. For analysis of proteins, protein–protein complexes and MD trajectories, network construction based on inter-residue interaction energies with realistic edge-weights obtained from standard force fields is provided to capture the atomistic details. Updated version of NAPS also provides improved visualization features, interactive plots and bulk execution. URL: http://bioinf.iiit.ac.in/NAPS/
Collapse
Affiliation(s)
- Broto Chakrabarty
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Varun Naganathan
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Kanak Garg
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Yash Agarwal
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| |
Collapse
|
93
|
Sheik Amamuddy O, Musyoka TM, Boateng RA, Zabo S, Tastan Bishop Ö. Determining the unbinding events and conserved motions associated with the pyrazinamide release due to resistance mutations of Mycobacterium tuberculosis pyrazinamidase. Comput Struct Biotechnol J 2020; 18:1103-1120. [PMID: 32489525 PMCID: PMC7251373 DOI: 10.1016/j.csbj.2020.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023] Open
Abstract
Pyrazinamide (PZA) is the only first-line antitubercular drug active against latent Mycobacterium tuberculosis (Mtb). It is activated to pyrazinoic acid by the pncA-encoded pyrazinamidase enzyme (PZase). Despite the emergence of PZA drug resistance, the underlying mechanisms of resistance remain unclear. This study investigated part of these mechanisms by modelling a PZA-bound wild type and 82 mutant PZase structures before applying molecular dynamics (MD) with an accurate Fe2+ cofactor coordination geometry. After observing nanosecond-scale PZA unbinding from several PZase mutants, an algorithm was developed to systematically detect ligand release via centre of mass distances (COM) and ligand average speed calculations, before applying the statistically guided network analysis (SGNA) method to investigate conserved protein motions associated with ligand unbinding. Ligand and cofactor perspectives were also investigated. A conserved pair of lid-destabilising motions was found. These consisted of (1) antiparallel lid and side flap motions; (2) the contractions of a flanking region within the same flap and residue 74 towards the core. Mutations affecting the hinge residues (H51 and H71), nearby residues or L19 were found to destabilise the lid. Additionally, other metal binding site (MBS) mutations delocalised the Fe2+ cofactor, also facilitating lid opening. In the early stages of unbinding, a wider variety of PZA poses were observed, suggesting multiple exit pathways. These findings provide insights into the late events preceding PZA unbinding, which we found to occur in some resistant PZase mutants. Further, the algorithm developed here to identify unbinding events coupled with SGNA can be applicable to other similar problems.
Collapse
Key Words
- 3D, Three-dimensional
- ACPYPE, AnteChamber Python Parser interface
- Amber force field parameters
- CHPC, Center for High Performance Computing
- COM, Center of mass
- Drug resistance
- Drug unbinding
- FDA, Food and Drug Administration
- HTMD, High throughput molecular dynamics
- INH, Isoniazid
- MBS, Metal binding site
- MCBP, Metal Center Parameter Builder
- MD, Molecular dynamics
- MDR-TB, Multidrug-resistant tuberculosis
- Missense mutations
- Molecular dynamics simulations
- PBC, Periodic boundary conditions
- PDB, Protein Data bank
- POA, Pyrazinoic acid
- PZA, Pyrazinamide
- PZase, Pyrazinamidase
- QM, Quantum Mechanics
- RIF, Rifampicin
- SGNA, Statistically guided network analysis
- Statistically guided network analysis
- TB, Tuberculosis
- VAPOR, Variant Analysis Portal
- WHO, World Health Organization
- WT, Wild type
Collapse
Affiliation(s)
| | | | - Rita Afriyie Boateng
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Sophakama Zabo
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
94
|
Crystal structure of Thermus thermophilus methylenetetrahydrofolate dehydrogenase and determinants of thermostability. PLoS One 2020; 15:e0232959. [PMID: 32401802 PMCID: PMC7219735 DOI: 10.1371/journal.pone.0232959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
The elucidation of mechanisms behind the thermostability of proteins is extremely important both from the theoretical and applied perspective. Here we report the crystal structure of methylenetetrahydrofolate dehydrogenase (MTHFD) from Thermus thermophilus HB8, a thermophilic model organism. Molecular dynamics trajectory analysis of this protein at different temperatures (303 K, 333 K and 363 K) was compared with homologous proteins from the less temperature resistant organism Thermoplasma acidophilum and the mesophilic organism Acinetobacter baumannii using several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis. These methods enabled the determination of important residues for the thermostability of this enzyme. The description of rotamer distributions by Gini coefficients and Kullback–Leibler (KL) divergence both revealed significant correlations with temperature. The emerging view seems to indicate that a static salt bridge/charged residue network plays a fundamental role in the temperature resistance of Thermus thermophilus MTHFD by enhancing both electrostatic interactions and entropic energy dispersion. Furthermore, this analysis uncovered a relationship between residue mutations and evolutionary pressure acting on thermophilic organisms and thus could be of use for the design of future thermostable enzymes.
Collapse
|
95
|
Sanyanga TA, Tastan Bishop Ö. Structural Characterization of Carbonic Anhydrase VIII and Effects of Missense Single Nucleotide Variations to Protein Structure and Function. Int J Mol Sci 2020; 21:E2764. [PMID: 32316137 PMCID: PMC7215520 DOI: 10.3390/ijms21082764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Human carbonic anhydrase 8 (CA-VIII) is an acatalytic isoform of the α -CA family. Though the protein cannot hydrate CO2, CA-VIII is essential for calcium (Ca2+) homeostasis within the body, and achieves this by allosterically inhibiting the binding of inositol 1,4,5-triphosphate (IP3) to the IP3 receptor type 1 (ITPR1) protein. However, the mechanism of interaction of CA-VIII to ITPR1 is not well understood. In addition, functional defects to CA-VIII due to non-synonymous single nucleotide polymorphisms (nsSNVs) result in Ca2+ dysregulation and the development of the phenotypes such as cerebellar ataxia, mental retardation and disequilibrium syndrome 3 (CAMRQ3). The pathogenesis of CAMRQ3 is also not well understood. The structure and function of CA-VIII was characterised, and pathogenesis of CAMRQ3 investigated. Structural and functional characterisation of CA-VIII was conducted through SiteMap and CPORT to identify potential binding site residues. The effects of four pathogenic nsSNVs, S100A, S100P, G162R and R237Q, and two benign S100L and E109D variants on CA-VIII structure and function was then investigated using molecular dynamics (MD) simulations, dynamic cross correlation (DCC) and dynamic residue network (DRN) analysis. SiteMap and CPORT analyses identified 38 unique CA-VIII residues that could potentially bind to ITPR1. MD analysis revealed less conformational sampling within the variant proteins and highlighted potential increases to variant protein rigidity. Dynamic cross correlation (DCC) showed that wild-type (WT) protein residue motion is predominately anti-correlated, with variant proteins showing no correlation to greater residue correlation. DRN revealed variant-associated increases to the accessibility of the N-terminal binding site residues, which could have implications for associations with ITPR1, and further highlighted differences to the mechanism of benign and pathogenic variants. SNV presence is associated with a reduction to the usage of Trp37 in all variants, which has implications for CA-VIII stability. The differences to variant mechanisms can be further investigated to understand pathogenesis of CAMRQ3, enhancing precision medicine-related studies into CA-VIII.
Collapse
MESH Headings
- Binding Sites
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cerebellar Ataxia/genetics
- Cerebellar Ataxia/pathology
- Databases, Genetic
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Intellectual Disability/genetics
- Intellectual Disability/pathology
- Molecular Dynamics Simulation
- Mutation, Missense
- Polymorphism, Single Nucleotide
- Protein Binding
- Protein Interaction Maps
- Protein Stability
- Protein Structure, Tertiary
Collapse
Affiliation(s)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
96
|
Surpeta B, Sequeiros-Borja CE, Brezovsky J. Dynamics, a Powerful Component of Current and Future in Silico Approaches for Protein Design and Engineering. Int J Mol Sci 2020; 21:E2713. [PMID: 32295283 PMCID: PMC7215530 DOI: 10.3390/ijms21082713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
Computational prediction has become an indispensable aid in the processes of engineering and designing proteins for various biotechnological applications. With the tremendous progress in more powerful computer hardware and more efficient algorithms, some of in silico tools and methods have started to apply the more realistic description of proteins as their conformational ensembles, making protein dynamics an integral part of their prediction workflows. To help protein engineers to harness benefits of considering dynamics in their designs, we surveyed new tools developed for analyses of conformational ensembles in order to select engineering hotspots and design mutations. Next, we discussed the collective evolution towards more flexible protein design methods, including ensemble-based approaches, knowledge-assisted methods, and provable algorithms. Finally, we highlighted apparent challenges that current approaches are facing and provided our perspectives on their further development.
Collapse
Affiliation(s)
- Bartłomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (B.S.); (C.E.S.-B.)
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| | - Carlos Eduardo Sequeiros-Borja
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (B.S.); (C.E.S.-B.)
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (B.S.); (C.E.S.-B.)
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
97
|
Understanding the Pyrimethamine Drug Resistance Mechanism via Combined Molecular Dynamics and Dynamic Residue Network Analysis. Molecules 2020; 25:molecules25040904. [PMID: 32085470 PMCID: PMC7070769 DOI: 10.3390/molecules25040904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
In this era of precision medicine, insights into the resistance mechanism of drugs are integral for the development of potent therapeutics. Here, we sought to understand the contribution of four point mutations (N51I, C59R, S108N, and I164L) within the active site of the malaria parasite enzyme dihydrofolate reductase (DHFR) towards the resistance of the antimalarial drug pyrimethamine. Homology modeling was used to obtain full-length models of wild type (WT) and mutant DHFR. Molecular docking was employed to dock pyrimethamine onto the generated structures. Subsequent all-atom molecular dynamics (MD) simulations and binding free-energy computations highlighted that pyrimethamine's stability and affinity inversely relates to the number of mutations within its binding site and, hence, resistance severity. Generally, mutations led to reduced binding affinity to pyrimethamine and increased conformational plasticity of DHFR. Next, dynamic residue network analysis (DRN) was applied to determine the impact of mutations and pyrimethamine binding on communication dispositions of DHFR residues. DRN revealed residues with distinctive communication profiles, distinguishing WT from drug-resistant mutants as well as pyrimethamine-bound from pyrimethamine-free models. Our results provide a new perspective on the understanding of mutation-induced drug resistance.
Collapse
|
98
|
Potshangbam AM, Rathore RS, Nongdam P. Discovery of sulfone-resistant dihydropteroate synthase (DHPS) as a target enzyme for kaempferol, a natural flavanoid. Heliyon 2020; 6:e03378. [PMID: 32083215 PMCID: PMC7016458 DOI: 10.1016/j.heliyon.2020.e03378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/27/2019] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Kaempferol is a ubiquitous flavonoid, found in various plants having a wide range of known pharmacological activities, including antioxidant, antiinflammatory, anticancer, antiallergic, antidiabetic, neuroprotective, cardioprotective and antimicrobial activities. Nonetheless various evidence suggest that kaempferol is also able to interact with many unknown therapeutic targets modulating signalling pathways, thus providing an opportunity to explore the potential target space of kaempferol. In this study, we have employed various ligand-based approaches to identify the potential targets of kaempferol, followed by validations using modelling and docking studies. Molecular dynamics, free energy calculations, volume and residue contact map analyses were made to delineate the cause of drug-resistance among mutants. We have discovered dihydropteroate synthase (DHPS) as a novel potential therapeutic target for kaempferol. Further studies employing molecular dynamics simulations and binding free energies indicate that kaempferol has potential to inhibit even the sulfone-resistant DHPS mutants, which makes it a very attractive antibiotic agent. The identification of natural-product based kaempferol opens up the door for the design of antibiotics in a quick and high throughput fashion for identifying antibiotic leads.
Collapse
Affiliation(s)
| | - Ravindranath Singh Rathore
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | | |
Collapse
|
99
|
Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker GM, Tastan Bishop Ö. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 2020; 21:E847. [PMID: 32013012 PMCID: PMC7036869 DOI: 10.3390/ijms21030847] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding molecular mechanisms underlying the complexity of allosteric regulationin proteins has attracted considerable attention in drug discovery due to the benefits and versatilityof allosteric modulators in providing desirable selectivity against protein targets while minimizingtoxicity and other side effects. The proliferation of novel computational approaches for predictingligand-protein interactions and binding using dynamic and network-centric perspectives has ledto new insights into allosteric mechanisms and facilitated computer-based discovery of allostericdrugs. Although no absolute method of experimental and in silico allosteric drug/site discoveryexists, current methods are still being improved. As such, the critical analysis and integration ofestablished approaches into robust, reproducible, and customizable computational pipelines withexperimental feedback could make allosteric drug discovery more efficient and reliable. In this article,we review computational approaches for allosteric drug discovery and discuss how these tools can beutilized to develop consensus workflows for in silico identification of allosteric sites and modulatorswith some applications to pathogen resistance and precision medicine. The emerging realization thatallosteric modulators can exploit distinct regulatory mechanisms and can provide access to targetedmodulation of protein activities could open opportunities for probing biological processes and insilico design of drug combinations with improved therapeutic indices and a broad range of activities.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Colleen Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| |
Collapse
|
100
|
OKAMOTO C, ANDO K. Molecular Dynamics Simulation and Binding Analysis of Olfactory Receptor Protein mOR-EG and Odorant Molecule Eugenol. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2020. [DOI: 10.2477/jccj.2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chisato OKAMOTO
- Department of Mathematical Sciences, Tokyo Woman's Christian University, 2-6-1 Zenpuku-ji,Suginami, Tokyo 167-8585
| | - Koji ANDO
- Department of Mathematical Sciences, Tokyo Woman's Christian University, 2-6-1 Zenpuku-ji,Suginami, Tokyo 167-8585
| |
Collapse
|