51
|
Graves NJ, Gambin Y, Sierecki E. α-Synuclein Strains and Their Relevance to Parkinson's Disease, Multiple System Atrophy, and Dementia with Lewy Bodies. Int J Mol Sci 2023; 24:12134. [PMID: 37569510 PMCID: PMC10418915 DOI: 10.3390/ijms241512134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Like many neurodegenerative diseases, Parkinson's disease (PD) is characterized by the formation of proteinaceous aggregates in brain cells. In PD, those proteinaceous aggregates are formed by the α-synuclein (αSyn) and are considered the trademark of this neurodegenerative disease. In addition to PD, αSyn pathological aggregation is also detected in atypical Parkinsonism, including Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA), as well as neurodegeneration with brain iron accumulation, some cases of traumatic brain injuries, and variants of Alzheimer's disease. Collectively, these (and other) disorders are referred to as synucleinopathies, highlighting the relation between disease type and protein misfolding/aggregation. Despite these pathological relationships, however, synucleinopathies cover a wide range of pathologies, present with a multiplicity of symptoms, and arise from dysfunctions in different neuroanatomical regions and cell populations. Strikingly, αSyn deposition occurs in different types of cells, with oligodendrocytes being mainly affected in MSA, while aggregates are found in neurons in PD. If multiple factors contribute to the development of a pathology, especially in the cases of slow-developing neurodegenerative disorders, the common presence of αSyn aggregation, as both a marker and potential driver of disease, is puzzling. In this review, we will focus on comparing PD, DLB, and MSA, from symptomatology to molecular description, highlighting the role and contribution of αSyn aggregates in each disorder. We will particularly present recent evidence for the involvement of conformational strains of αSyn aggregates and discuss the reciprocal relationship between αSyn strains and the cellular milieu. Moreover, we will highlight the need for effective methodologies for the strainotyping of aggregates to ameliorate diagnosing capabilities and therapeutic treatments.
Collapse
Affiliation(s)
| | | | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; (N.J.G.)
| |
Collapse
|
52
|
Wang L, Zhou C, Zhang W, Zhang M, Cheng W, Feng J. Association of Cortical and Subcortical Microstructure With Clinical Progression and Fluid Biomarkers in Patients With Parkinson Disease. Neurology 2023; 101:e300-e310. [PMID: 37202161 PMCID: PMC10382272 DOI: 10.1212/wnl.0000000000207408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/28/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Mean diffusivity (MD) of diffusion MRI (dMRI) has been used to measure cortical and subcortical microstructural properties. This study investigated relationships of cortical and subcortical MD, clinical progression, and fluid biomarkers in Parkinson disease (PD). METHODS This longitudinal study using data from the Parkinson's Progression Markers Initiative was collected from April 2011 to July 2022. Clinical symptoms were assessed with Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (UPDRS) and Montreal Cognitive Assessment (MoCA) scores. Clinical assessments were followed up to 5 years. Linear mixed-effects (LME) models were performed to examine associations of MD and the annual rate of changes in clinical scores. Partial correlation analysis was conducted to examine the associations of MD and fluid biomarker levels. RESULTS A total of 174 patients with PD (age 61.9 ± 9.7 years, 63% male) with baseline dMRI and at least 2 years of clinical follow-up were included. Results of LME models revealed a significant association between MD values, predominantly in subcortical regions, temporal lobe, occipital lobe, and frontal lobe, and annual rate of changes in clinical scores (UPDRS-Part-I, standardized β > 2.35; UPDRS-Part-II, standardized β > 2.34; postural instability and gait disorder score, standardized β > 2.47; MoCA, standardized β < -2.42; all p < 0.05, false discovery rate [FDR] corrected). In addition, MD was associated with the levels of neurofilament light chain in serum (r > 0.22) and α-synuclein (right putamen r = 0.31), β-amyloid 1-42 (left hippocampus r = -0.30), phosphorylated tau at 181 threonine position (r > 0.26), and total tau (r > 0.23) in CSF at baseline (all p < 0.05, FDR corrected). Furthermore, the β coefficients derived from MD and annual rate of changes in the clinical score recapitulated the spatial distribution of dopamine (DAT, D1, and D2), glutamate (mGluR5 and NMDA), serotonin (5-HT1a and 5-HT2a), cannabinoid (CB1), and γ-amino butyric acid A receptor neurotransmitter receptors/transporters (p < 0.05, FDR corrected) derived from PET scans in the brain of healthy volunteers. DISCUSSION In this cohort study, cortical and subcortical MD values at baseline were associated with clinical progression and baseline fluid biomarkers, suggesting that microstructural properties could be useful for stratification of patients with fast clinical progression.
Collapse
Affiliation(s)
- Linbo Wang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Cheng Zhou
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Wei Zhang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Minming Zhang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Wei Cheng
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
53
|
Peng H, Chen S, Wu S, Shi X, Ma J, Yang H, Li X. Alpha-synuclein in skin as a high-quality biomarker for Parkinson's disease. J Neurol Sci 2023; 451:120730. [PMID: 37454572 DOI: 10.1016/j.jns.2023.120730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Parkinson's disease (PD), the most common neurological motor system disorder, which characterised by the irreversible loss of dopaminergic neurones in the substantia nigra pars compacta, and leads to the deficiency of dopamine in the striatum. Deposited Lewy bodies (LBs) in diseased neurones and nerve terminals are the pathological hallmark of PD, and alpha-synuclein (α-Syn) is the most prominent protein in LBs. The tight association between α-Syn and the molecular pathology of PD has generatly increaed the interest in using the α-Syn species as biomarkers to diagnose early PD. α-Syn is not confined to the central nervous system, it is also present in the peripheral tissues, such as human skin. The assessment of skin α-Syn has the potential to be a diagnostic method that not only has excellent sensitivity, specificity, and reproducibility, but also convenient and acceptable to patients. In this review, we (i) integrate the biochemical, aggregation and structural features of α-Syn; (ii) map the distribution of the α-Syn species present in the brain, biological fluids, and peripheral tissues; and (iii) present a critical and comparative analysis of previous studies that have measured α-Syn in the skin. Finally, we provide an outlook on the future of skin biopsy as a diagnostic approach for PD, and highlight its potential implications for clinical trials, clinical decision-making, treatment strategies as well as the development of new therapies.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Siyuan Chen
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Shaopu Wu
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Hongqi Yang
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Xue Li
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
54
|
Yang J, Wu S, Yang J, Zhang Q, Dong X. Amyloid beta-correlated plasma metabolite dysregulation in Alzheimer's disease: an untargeted metabolism exploration using high-resolution mass spectrometry toward future clinical diagnosis. Front Aging Neurosci 2023; 15:1189659. [PMID: 37455936 PMCID: PMC10338932 DOI: 10.3389/fnagi.2023.1189659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a leading cause of dementia, and it has rapidly become an increasingly burdensome and fatal disease in society. Despite medical research advances, accurate recognition of AD remains challenging. Epidemiological evidence suggests that metabolic abnormalities are tied to higher AD risk. Methods This study utilized case-control analyses with plasma samples and identified a panel of 27 metabolites using high-resolution mass spectrometry in both the Alzheimer's disease (AD) and cognitively normal (CN) groups. All identified variables were confirmed using MS/MS with detected fragmented ions and public metabolite databases. To understand the expression of amyloid beta proteins in plasma, ELISA assays were performed for both amyloid beta 42 (Aβ42) and amyloid beta 40 (Aβ40). Results The levels of plasma metabolites PAGln and L-arginine were found to significantly fluctuate in the peripheral blood of AD patients. In addition, ELISA results showed a significant increase in amyloid beta 42 (Aβ42) in AD patients compared to those who were cognitively normal (CN), while amyloid beta 40 (Aβ40) did not show any significant changes between the groups. Furthermore, positive correlations were observed between Aβ42/Aβ40 and PAGln or L-arginine, suggesting that both metabolites could play a role in the pathology of amyloid beta proteins. Binary regression analysis with these two metabolites resulted in an optimal model of the ROC (AUC = 0.95, p < 0.001) to effectively discriminate between AD and CN. Discussion This study highlights the potential of advanced high-resolution mass spectrometry (HRMS) technology for novel plasma metabolite discovery with high stability and sensitivity, thus paving the way for future clinical studies. The results of this study suggest that the combination of PAGln and L-arginine holds significant potential for improving the diagnosis of Alzheimer's disease (AD) in clinical settings. Overall, these findings have important implications for advancing our understanding of AD and developing effective approaches for its future clinical diagnosis.
Collapse
Affiliation(s)
- Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Shuo Wu
- Neurology Department, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Jun Yang
- Department of Internal Medicine, Shanghai Baoshan Elderly Nursing Hospital, Shanghai, China
| | - Qun Zhang
- Department of Internal Medicine, Shanghai Baoshan Elderly Nursing Hospital, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Suzhou Innovation Center of Shanghai University, Suzhou, Jiangsu, China
| |
Collapse
|
55
|
Jellinger KA. Morphological characteristics differentiate dementia with Lewy bodies from Parkinson disease with and without dementia. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02660-3. [PMID: 37306790 DOI: 10.1007/s00702-023-02660-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson disease (PD) with and without dementia are entities of a spectrum of Lewy body diseases. About 26.3% of all PD patients develop dementia increasing up to 83%. Parkinson disease-dementia (PDD) and DLB share many clinical and morphological features that separate them from non-demented PD (PDND). Clinically distinguished by the temporal sequence of motor and cognitive symptoms, the pathology of PDD and DLB includes variable combinations of Lewy body (LB) and Alzheimer (AD) lesions, both being more severe in DLB, but much less frequent and less severe in PDND. The objective of this study was to investigate the morphological differences between these three groups. 290 patients with pathologically confirmed PD were reviewed. 190 of them had clinical dementia; 110 met the neuropathological criteria of PDD and 80 of DLB. The major demographic and clinical data were obtained from medical records. Neuropathology included semiquantitative assessment of LB and AD pathologies including cerebral amyloid angiopathy (CAA). PDD patients were significantly older than PDND and DLB ones (83.9 vs 77.9 years, p < 0.05); the age of DLB patients was between them (80.0 years), while the disease duration was shortest in DLB. Brain weight was lowest in DLB, which showed higher Braak LB scores (mean 5.2 vs 4.2) and highest Braak tau stages (mean 5.2 vs 4.4 and 2.3, respectively). Thal Aβ phases were also highest in DLB (mean 4.1 vs 3.0 and 1.8, respectively). Major findings were frequency and degree of CAA, being highest in DLB (95% vs 50% and 24%, with scores 2.9 vs 0.7 and 0.3, respectively), whereas other small vessel lesions showed no significant differences. Striatal Aβ deposits also differentiated DLB from the other groups. This and other studies of larger cohorts of PD patients indicate that the association of CAA and cortical tau-but less-LB pathologies are associated with more severe cognitive decline and worse prognosis that distinguish DLB from PDD and PDND. The particular impact of both CAA and tau pathology supports the concept of a pathogenic continuum ranging from PDND to DLB + AD within the spectrum of age-related synucleinopathies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
56
|
Zhao Y, Zheng Q, Hong Y, Gao Y, Hu J, Lang M, Zhang H, Zhou Y, Luo H, Zhang X, Sun H, Yan XX, Huang TY, Wang YJ, Xu H, Liu C, Wang X. β 2-Microglobulin coaggregates with Aβ and contributes to amyloid pathology and cognitive deficits in Alzheimer's disease model mice. Nat Neurosci 2023:10.1038/s41593-023-01352-1. [PMID: 37264159 DOI: 10.1038/s41593-023-01352-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Extensive studies indicate that β-amyloid (Aβ) aggregation is pivotal for Alzheimer's disease (AD) progression; however, cumulative evidence suggests that Aβ itself is not sufficient to trigger AD-associated degeneration, and whether other additional pathological factors drive AD pathogenesis remains unclear. Here, we characterize pathogenic aggregates composed of β2-microglobulin (β2M) and Aβ that trigger neurodegeneration in AD. β2M, a component of major histocompatibility complex class I (MHC class I), is upregulated in the brains of individuals with AD and constitutes the amyloid plaque core. Elevation of β2M aggravates amyloid pathology independent of MHC class I, and coaggregation with β2M is essential for Aβ neurotoxicity. B2m genetic ablation abrogates amyloid spreading and cognitive deficits in AD mice. Antisense oligonucleotide- or monoclonal antibody-mediated β2M depletion mitigates AD-associated neuropathology, and inhibition of β2M-Aβ coaggregation with a β2M-based blocking peptide ameliorates amyloid pathology and cognitive deficits in AD mice. Our findings identify β2M as an essential factor for Aβ neurotoxicity and a potential target for treating AD.
Collapse
Affiliation(s)
- Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Maoju Lang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, China
| | - Timothy Y Huang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Huaxi Xu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, China.
| |
Collapse
|
57
|
Xu B, Fan F, Liu Y, Liu Y, Zhou L, Yu H. Distinct Effects of Familial Parkinson's Disease-Associated Mutations on α-Synuclein Phase Separation and Amyloid Aggregation. Biomolecules 2023; 13:biom13050726. [PMID: 37238596 DOI: 10.3390/biom13050726] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The Lewy bodies and Lewy neurites are key pathological hallmarks of Parkinson's disease (PD). Single-point mutations associated with familial PD cause α-synuclein (α-Syn) aggregation, leading to the formation of Lewy bodies and Lewy neurites. Recent studies suggest α-Syn nucleates through liquid-liquid phase separation (LLPS) to form amyloid aggregates in a condensate pathway. How PD-associated mutations affect α-Syn LLPS and its correlation with amyloid aggregation remains incompletely understood. Here, we examined the effects of five mutations identified in PD, A30P, E46K, H50Q, A53T, and A53E, on the phase separation of α-Syn. All other α-Syn mutants behave LLPS similarly to wild-type (WT) α-Syn, except that the E46K mutation substantially promotes the formation of α-Syn condensates. The mutant α-Syn droplets fuse to WT α-Syn droplets and recruit α-Syn monomers into their droplets. Our studies showed that α-Syn A30P, E46K, H50Q, and A53T mutations accelerated the formation of amyloid aggregates in the condensates. In contrast, the α-Syn A53E mutant retarded the aggregation during the liquid-to-solid phase transition. Finally, we observed that WT and mutant α-Syn formed condensates in the cells, whereas the E46K mutation apparently promoted the formation of condensates. These findings reveal that familial PD-associated mutations have divergent effects on α-Syn LLPS and amyloid aggregation in the phase-separated condensates, providing new insights into the pathogenesis of PD-associated α-Syn mutations.
Collapse
Affiliation(s)
- Bingkuan Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fengshuo Fan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yunpeng Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lin Zhou
- School of Chemistry and Bioengineering, Nanjing Normal University Taizhou College, Taizhou 225300, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
58
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
59
|
Khan S, Hassan MI, Shahid M, Islam A. Nature's Toolbox Against Tau Aggregation: An Updated Review of Current Research. Ageing Res Rev 2023; 87:101924. [PMID: 37004844 DOI: 10.1016/j.arr.2023.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Tau aggregation is a hallmark of several neurodegenerative disorders, such as Alzheimer's disease (AD), frontotemporal dementia, and progressive supranuclear palsy. Hyperphosphorylated tau is believed to contribute to the degeneration of neurons and the development of these complex diseases. Therefore, one potential treatment for these illnesses is to prevent or counteract tau aggregation. In recent years, interest has been increasing in developing nature-derived tau aggregation inhibitors as a potential treatment for neurodegenerative disorders. Researchers have become increasingly interested in natural compounds with multifunctional features, such as flavonoids, alkaloids, resveratrol, and curcumin, since these molecules can interact simultaneously with the various targets of AD. Recent studies have demonstrated that several natural compounds can inhibit tau aggregation and promote the disassembly of pre-formed tau aggregates. Nature-derived tau aggregation inhibitors hold promise as a potential treatment for neurodegenerative disorders. However, it is important to note that more research is needed to fully understand the mechanisms by which these compounds exert their effects and their safety and efficacy in preclinical and clinical studies. Nature-derived inhibitors of tau aggregation are a promising new direction in the research of neurodegenerative complexities. This review focuses on the natural products that have proven to be a rich supply for inhibitors in tau aggregation and their uses in neurodegenerative complexities, including AD.
Collapse
|
60
|
Han Y, He Z. Concomitant protein pathogenesis in Parkinson's disease and perspective mechanisms. Front Aging Neurosci 2023; 15:1189809. [PMID: 37181621 PMCID: PMC10174460 DOI: 10.3389/fnagi.2023.1189809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Comorbidity is a common phenotype in Parkinson's disease (PD). Patients with PD not only have motor deficit symptoms, but also have heterogeneous non-motor symptoms, including cognitive impairment and emotional changes, which are the featured symptoms observed in patients with Alzheimer's disease (AD), frontotemporal dementia (FTD) and cerebrovascular disease. Moreover, autopsy studies have also confirmed the concomitant protein pathogenesis, such as the co-existences of α-synuclein, amyloid-β and tau pathologies in PD and AD patients' brains. Here, we briefly summarize the recent reports regarding the comorbidity issues in PD from both clinical observations and neuropathological evidences. Furthermore, we provide some discussion about the perspective potential mechanisms underlying such comorbidity phenomenon, with a focus on PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuliang Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zhuohao He,
| |
Collapse
|
61
|
Kulcsarova K, Bang C, Berg D, Schaeffer E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1079-1106. [PMID: 37927277 PMCID: PMC10657696 DOI: 10.3233/jpd-230206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
62
|
Leitão AD, Spencer B, Sarsoza F, Ngolab J, Amalraj J, Masliah E, Wu C, Rissman RA. Hippocampal Reduction of α-Synuclein via RNA Interference Improves Neuropathology in Alzheimer's Disease Mice. J Alzheimers Dis 2023; 95:349-361. [PMID: 37522208 PMCID: PMC10578232 DOI: 10.3233/jad-230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) cases are often characterized by the pathological accumulation of α-synuclein (α-syn) in addition to amyloid-β (Aβ) and tau hallmarks. The role of α-syn has been extensively studied in synucleinopathy disorders, but less so in AD. Recent studies have shown that α-syn may also play a role in AD and its downregulation may be protective against the toxic effects of Aβ accumulation. OBJECTIVE We hypothesized that selectively knocking down α-syn via RNA interference improves the neuropathological and biochemical findings in AD mice. METHODS Here we used amyloid precursor protein transgenic (APP-Tg) mice to model AD and explore pathologic and behavioral phenotypes with knockdown of α-syn using RNA interference. We selectively reduced α-syn levels by stereotaxic bilateral injection of either LV-shRNA α-syn or LV-shRNA-luc (control) into the hippocampus of AD mice. RESULTS We found that downregulation of α-syn results in significant reduction in the number of Aβ plaques. In addition, mice treated with LV-shRNA α-syn had amelioration of abnormal microglial activation (Iba1) and astrocytosis (GFAP) phenotypes in AD mice. CONCLUSION Our data suggests a novel link between Aβ and α-syn pathology as well as a new therapeutic angle for targeting AD.
Collapse
Affiliation(s)
- André D.G. Leitão
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Floyd Sarsoza
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Ngolab
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jessica Amalraj
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Physiology and Neuroscience, Alzheimer’s Therapeutic Research Institute of the Keck School of Medicine of the University of Southern California, San Diego, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
63
|
Li D, Ren T, Li H, Liao G, Zhang X. Porphyromonas gingivalis: A key role in Parkinson's disease with cognitive impairment? Front Neurol 2022; 13:945523. [PMID: 35959396 PMCID: PMC9363011 DOI: 10.3389/fneur.2022.945523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive impairment (CI) is a common complication of Parkinson's disease (PD). The major features of Parkinson's disease with cognitive impairment (PD-CI) include convergence of α-Synuclein (α-Syn) and Alzheimer's disease (AD)-like pathologies, neuroinflammation, and dysbiosis of gut microbiota. Porphyromonas gingivalis (P. gingivalis) is an important pathogen in periodontitis. Recent research has suggested a role of P. gingivalis and its virulence factor in the pathogenesis of PD and AD, in particular concerning neuroinflammation and deposition of α-Synuclein (α-Syn) and amyloid-β (Aβ). Furthermore, in animal models, oral P. gingivalis could cause neurodegeneration through regulating the gut-brain axis, suggesting an oral-gut-brain axis might exist. In this article, we discussed the pathological characteristics of PD-CI and the role of P. gingivalis in them.
Collapse
Affiliation(s)
- Dongcheng Li
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Tengzhu Ren
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Li
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Geng Liao
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Xiong Zhang
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
- *Correspondence: Xiong Zhang
| |
Collapse
|