51
|
Hari R, Baillet S, Barnes G, Burgess R, Forss N, Gross J, Hämäläinen M, Jensen O, Kakigi R, Mauguière F, Nakasato N, Puce A, Romani GL, Schnitzler A, Taulu S. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin Neurophysiol 2018; 129:1720-1747. [PMID: 29724661 PMCID: PMC6045462 DOI: 10.1016/j.clinph.2018.03.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/18/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022]
Abstract
Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG.
Collapse
Affiliation(s)
- Riitta Hari
- Department of Art, Aalto University, Helsinki, Finland.
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gareth Barnes
- Wellcome Centre for Human Neuroimaging, University College of London, London, UK
| | - Richard Burgess
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Forss
- Clinical Neuroscience, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK; Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute of Physiological Sciences, Okazaki, Japan
| | - François Mauguière
- Department of Functional Neurology and Epileptology, Neurological Hospital & University of Lyon, Lyon, France
| | | | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Gian-Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, and Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Samu Taulu
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Physics, University of Washington, Seattle, WA, USA
| |
Collapse
|
52
|
Agapaki OM, Christakos CN, Anastasopoulos D. Characteristics of Rest and Postural Tremors in Parkinson's Disease: An Analysis of Motor Unit Firing Synchrony and Patterns. Front Hum Neurosci 2018; 12:179. [PMID: 29780311 PMCID: PMC5946021 DOI: 10.3389/fnhum.2018.00179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
The neural mechanisms responsible for resting and postural tremor in Parkinson’s disease (PD) have been the object of considerable study, much of it focusing on supraspinal sites. Here, we adopted an alternative approach that emphasizes motor unit (MU) firing synchrony and patterns of discharge. To explore if these could account for known features of PD tremor, we recorded the instantaneous acceleration of the upper limb of 23 PD patients at rest or while they tried to hold a stable posture together with surface EMG and single MU discharges of upper limb muscles. Spectral, coherence and cross-correlation analyses of the recorded signals demonstrated alternating epoch-I and epoch-II intervals in PD patients both at rest and while they held a stable posture. Epoch-II intervals are characterized by the presence of 4–8 Hz overt tremor, enhanced MU synchrony and spike-doublets or triplets bearing a one-to-one relation to each tremor cycle. Epoch-I resembled physiological tremor in that it was characterized by 6–10 Hz non-overt tremor, lower MU synchrony and rhythmical MU firing at the intrinsic rate of the unit. The frequency of overt and non-overt tremor remained the same whether the patient was at rest or held a stable posture and the same was true of the remaining characteristics of epoch-I and epoch-II. The mean interval between spikes of a doublet/triplet varied between 30 and 50 ms and, for any given patient, remained roughly constant throughout measurements. This is the first time that enhanced MU synchrony and spike doublets/triplets characterized by relatively stable interspike intervals, are shown to accompany the overt tremor of PD patients. To account for our findings we propose that a two-state oscillatory spinal stretch reflex loop generates overt parkinsonian tremor in response to intermittent, descending, relatively high frequency oscillatory signals.
Collapse
Affiliation(s)
- Orsalia M Agapaki
- Laboratory of Systems Physiology, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.,Computational Neuroscience Group, Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Constantinos N Christakos
- Laboratory of Systems Physiology, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.,Computational Neuroscience Group, Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Dimitrios Anastasopoulos
- Laboratory of Physiology and Clinical Neurophysiology, School of Nursing, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neurology, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
53
|
Abstract
Tremor is clinically defined as a rhythmic, oscillating movement of parts of the body, which functionally leads to impairment of the coordination and execution of targeted movements. It can be a symptom of a primary disease, such as resting tremor in Parkinson's disease or occur as an independent disease, such as essential or orthostatic tremor. For the development of tremor, cerebral components as well as mechanisms at the spinal and muscular level play an important role. This review presents the results of new imaging and electrophysiological studies that have led to important advances in our understanding of the pathophysiology of tremor. We discuss pathophysiological models for the development of resting tremor in Parkinson's disease, essential and orthostatic tremor. We describe recent developments starting from the classical generator model, with an onset of pathological oscillations in distinct cerebral regions, to a network perspective in which tremor arises and spreads through existing anatomical or newly emerged pathological brain networks. In particular translational approaches are presented and discussed. These could serve in the future as a basis for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- M Muthuraman
- Sektion für Bewegungsstörungen und Neurostimulation, Biomedizinische Statistik und multimodale Signalverarbeitung, Klinik und Poliklinik für Neurologie, Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland
| | - A Schnitzler
- Klinik für Neurologie, Universitätsklinik Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Deutschland
| | - S Groppa
- Sektion für Bewegungsstörungen und Neurostimulation, Biomedizinische Statistik und multimodale Signalverarbeitung, Klinik und Poliklinik für Neurologie, Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| |
Collapse
|
54
|
Harmsen IE, Rowland NC, Wennberg RA, Lozano AM. Characterizing the effects of deep brain stimulation with magnetoencephalography: A review. Brain Stimul 2018; 11:481-491. [PMID: 29331287 DOI: 10.1016/j.brs.2017.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an important form of neuromodulation that is being applied to patients with motor, mood, or cognitive circuit disorders. Despite the efficacy and widespread use of DBS, the precise mechanisms by which it works remain unknown. Over the last decade, magnetoencephalography (MEG) has become an important functional neuroimaging technique used to study DBS. OBJECTIVE This review summarizes the literature related to the use of MEG to characterize the effects of DBS. METHODS Peer reviewed literature on DBS-MEG was obtained by searching the publicly accessible literature databases available on PubMed. The abstracts of all reports were scanned and publications which combined DBS-MEG in human subjects were selected for review. RESULTS A total of 32 publications met the selection criteria, and included studies which applied DBS for Parkinson's disease, dystonia, chronic pain, phantom limb pain, cluster headache, and epilepsy. DBS-MEG studies provided valuable insights into network connectivity, pathological coupling, and the modulatory effects of DBS. CONCLUSIONS As DBS-MEG research continues to develop, we can expect to gain a better understanding of diverse pathophysiological networks and their response to DBS. This knowledge will improve treatment efficacy, reduce side-effects, reveal optimal surgical targets, and advance the development of closed-loop neuromodulation.
Collapse
Affiliation(s)
- Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, Toronto, Ontario, Canada.
| | - Nathan C Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Richard A Wennberg
- Mitchell Goldhar Magnetoencephalography Unit, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
55
|
Hirschmann J, Butz M, Hartmann CJ, Hoogenboom N, Özkurt TE, Vesper J, Wojtecki L, Schnitzler A. Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations. Mov Disord 2017; 31:1551-1559. [PMID: 27214766 DOI: 10.1002/mds.26663] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. OBJECTIVE The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. METHODS The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. RESULTS We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. CONCLUSIONS Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Christian J Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Nienke Hoogenboom
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tolga E Özkurt
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
56
|
Helmich RC. The cerebral basis of Parkinsonian tremor: A network perspective. Mov Disord 2017; 33:219-231. [DOI: 10.1002/mds.27224] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/06/2017] [Accepted: 09/17/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Rick C. Helmich
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging; Radboud University Nijmegen; Nijmegen The Netherlands
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Parkinson Centre Nijmegen; Nijmegen The Netherlands
| |
Collapse
|
57
|
Hirschmann J, Schoffelen JM, Schnitzler A, van Gerven MAJ. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clin Neurophysiol 2017; 128:2029-2036. [PMID: 28841506 DOI: 10.1016/j.clinph.2017.07.419] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/23/2017] [Accepted: 07/25/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the possibility of tremor detection based on deep brain activity. METHODS We re-analyzed recordings of local field potentials (LFPs) from the subthalamic nucleus in 10 PD patients (12 body sides) with spontaneously fluctuating rest tremor. Power in several frequency bands was estimated and used as input to Hidden Markov Models (HMMs) which classified short data segments as either tremor-free rest or rest tremor. HMMs were compared to direct threshold application to individual power features. RESULTS Applying a threshold directly to band-limited power was insufficient for tremor detection (mean area under the curve [AUC] of receiver operating characteristic: 0.64, STD: 0.19). Multi-feature HMMs, in contrast, allowed for accurate detection (mean AUC: 0.82, STD: 0.15), using four power features obtained from a single contact pair. Within-patient training yielded better accuracy than across-patient training (0.84vs. 0.78, p=0.03), yet tremor could often be detected accurately with either approach. High frequency oscillations (>200Hz) were the best performing individual feature. CONCLUSIONS LFP-based markers of tremor are robust enough to allow for accurate tremor detection in short data segments, provided that appropriate statistical models are used. SIGNIFICANCE LFP-based markers of tremor could be useful control signals for closed-loop deep brain stimulation.
Collapse
Affiliation(s)
- J Hirschmann
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | - J M Schoffelen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - A Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Center for Movement Disorders and Neuromodulation, Medical Faculty, University Hospital Düsseldorf, Germany
| | - M A J van Gerven
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
58
|
Horn A, Neumann W, Degen K, Schneider G, Kühn AA. Toward an electrophysiological "sweet spot" for deep brain stimulation in the subthalamic nucleus. Hum Brain Mapp 2017; 38:3377-3390. [PMID: 28390148 PMCID: PMC6867148 DOI: 10.1002/hbm.23594] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Enhanced beta-band activity recorded in patients suffering from Parkinson's Disease (PD) has been described as a potential physiomarker for disease severity. Beta power is suppressed by Levodopa intake and STN deep brain stimulation (DBS) and correlates with disease severity across patients. The aim of the present study was to explore the promising signature of the physiomarker in the spatial domain. Based on local field potential data acquired from 54 patients undergoing STN-DBS, power values within alpha, beta, low beta, and high beta bands were calculated. Values were projected into common stereotactic space after DBS lead localization. Recorded beta power values were significantly higher at posterior and dorsal lead positions, as well as in active compared with inactive pairs. The peak of activity in the beta band was situated within the sensorimotor functional zone of the nucleus. In contrast, higher alpha activity was found in a more ventromedial region, potentially corresponding to associative or premotor functional zones of the STN. Beta- and alpha-power peaks were then used as seeds in a fiber tracking experiment. Here, the beta-site received more input from primary motor cortex whereas the alpha-site was more strongly connected to premotor and prefrontal areas. The results summarize predominant spatial locations of frequency signatures recorded in STN-DBS patients in a probabilistic fashion. The site of predominant beta-activity may serve as an electrophysiologically determined target for optimal outcome in STN-DBS for PD in the future. Hum Brain Mapp 38:3377-3390, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andreas Horn
- Department of NeurologyMovement Disorders and Neuromodulation Unit, Charité – University MedicineBerlinD‐10117Germany
- Berenson‐Allen Center for Noninvasive Brain StimulationDepartment of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusetts
| | - Wolf‐Julian Neumann
- Department of NeurologyMovement Disorders and Neuromodulation Unit, Charité – University MedicineBerlinD‐10117Germany
| | - Katharina Degen
- Department of NeurologyMovement Disorders and Neuromodulation Unit, Charité – University MedicineBerlinD‐10117Germany
| | | | - Andrea A. Kühn
- Department of NeurologyMovement Disorders and Neuromodulation Unit, Charité – University MedicineBerlinD‐10117Germany
- NeuroCure – Cluster of ExcellenceBerlinD‐10117Germany
- Berlin School of Mind and BrainBerlinD‐10117Germany
- Deutsches Zentrum für Neurodegenerative ErkrankungenBerlinD‐10117Germany
| |
Collapse
|
59
|
He X, Zhang Y, Chen J, Xie C, Gan R, Yang R, Wang L, Nie K, Wang L. The patterns of EEG changes in early-onset Parkinson's disease patients. Int J Neurosci 2017; 127:1028-1035. [PMID: 28281852 DOI: 10.1080/00207454.2017.1304393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xuetao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jieling Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunge Xie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rong Gan
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rong Yang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
60
|
Kloeters S, Hartmann CJ, Pundmann VD, Schnitzler A, Südmeyer M, Lange J. Impaired perception of human movements in Parkinson’s disease. Behav Brain Res 2017; 317:88-94. [DOI: 10.1016/j.bbr.2016.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 12/01/2022]
|
61
|
Jha A, Litvak V, Taulu S, Thevathasan W, Hyam JA, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, Friston K, Brown P. Functional Connectivity of the Pedunculopontine Nucleus and Surrounding Region in Parkinson's Disease. Cereb Cortex 2016; 27:54-67. [PMID: 28316456 PMCID: PMC5357066 DOI: 10.1093/cercor/bhw340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deep brain stimulation of the pedunculopontine nucleus and surrounding region (PPNR) is a novel treatment strategy for gait freezing in Parkinson's disease (PD). However, clinical results have been variable, in part because of the paucity of functional information that might help guide selection of the optimal surgical target. In this study, we use simultaneous magnetoencephalography and local field recordings from the PPNR in seven PD patients, to characterize functional connectivity with distant brain areas at rest. The PPNR was preferentially coupled to brainstem and cingulate regions in the alpha frequency (8-12 Hz) band and to the medial motor strip and neighboring areas in the beta (18-33 Hz) band. The distribution of coupling also depended on the vertical distance of the electrode from the pontomesencephalic line: most effects being greatest in the middle PPNR, which may correspond to the caudal pars dissipata of the pedunculopontine nucleus. These observations confirm the crucial position of the PPNR as a functional node between cortical areas such as the cingulate/ medial motor strip and other brainstem nuclei, particularly in the dorsal pons. In particular they suggest a special role for the middle PPNR as this has the greatest functional connectivity with other brain regions.
Collapse
Affiliation(s)
- Ashwani Jha
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Vladimir Litvak
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Samu Taulu
- I-LABS MEG Brain Imaging Center, University of Washington, Seattle, WA, USA.,Department of Physics, University of Washington, Seattle, WA, USA
| | - Wesley Thevathasan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jonathan A Hyam
- Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Marko Bogdanovic
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
62
|
Shreve LA, Velisar A, Malekmohammadi M, Koop MM, Trager M, Quinn EJ, Hill BC, Blumenfeld Z, Kilbane C, Mantovani A, Henderson JM, Brontë-Stewart H. Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson's disease. Clin Neurophysiol 2016; 128:128-137. [PMID: 27889627 DOI: 10.1016/j.clinph.2016.10.095] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Determine the incidence of resting state oscillations in alpha/beta, high frequency (HFO) bands, and their phase amplitude coupling (PAC) in a large cohort in Parkinson's disease (PD). METHODS Intra-operative local field potentials (LFPs) from subthalamic nucleus (STN) were recorded from 100 PD subjects, data from 74 subjects were included in the analysis. RESULTS Alpha/beta oscillations were evident in >99%, HFO in 87% and PAC in 98% of cases. Alpha/beta oscillations (P<0.01) and PAC were stronger in the more affected (MA) hemisphere (P=0.03). Alpha/beta oscillations were primarily found in 13-20Hz (low beta). Beta and HFO frequencies with the greatest coupling, were positively correlated (P=0.001). Tremor attenuated alpha (P=0.002) and beta band oscillations (P<0.001). CONCLUSIONS STN alpha/beta band oscillations and PAC were evident in ⩾98% cases and were greater in MA hemisphere. Resting tremor attenuated underlying alpha/beta band oscillations. SIGNIFICANCE Beta band LFP power may be used to drive adaptive deep brain stimulation (aDBS), augmented by a kinematic classifier in tremor dominant PD.
Collapse
Affiliation(s)
- Lauren A Shreve
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anca Velisar
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Mahsa Malekmohammadi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Mandy Miller Koop
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Megan Trager
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Emma J Quinn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Bruce C Hill
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Zack Blumenfeld
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Camilla Kilbane
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Jaimie M Henderson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Helen Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
63
|
Li X, Zhuang P, Hallett M, Zhang Y, Li J, Li Y. Subthalamic oscillatory activity in parkinsonian patients with off-period dystonia. Acta Neurol Scand 2016; 134:327-338. [PMID: 27696368 DOI: 10.1111/ane.12547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The study was aimed to explore oscillatory activity in the subthalamic nucleus (STN) in Parkinson's disease (PD) with off-period dystonia, a type of levodopa-induced dyskinesias (LID). METHODS Eighteen patients with PD who underwent STN DBS were studied. Nine patients had dyskinesia defined as the LID group and nine patients who did not present any sign of dyskinesia were defined as the control group. Microelectrode recordings in the STN together with electromyogram (EMG) were recorded. Spectral and coherence analyses were performed to study the neuronal oscillations in relation to limb muscles. RESULTS Two hundred and fifteen neurons were identified. There were 39 neurons with tremor-frequency band (4-7 Hz) oscillation, 57 neurons with β-frequency band (12-30 Hz, β-FB) oscillation and 100 neurons without oscillation, and 19 neurons with very low-frequency band oscillation at a mean peak power of 1.2 ± 0.5 Hz (LFB). These LFB oscillatory neurons (n = 15) were frequently significantly coherent with EMG of off-period dystonia. Notably, 89% (n = 17) neurons with LFB oscillation were found in the patients in the off-dystonia group. The age at onset of PD, duration of PD, and levodopa equivalent dose daily consumption were statistically different between two groups (P < 0.05). CONCLUSIONS Subthalamic LFB oscillatory neurons seem to play an important role in the genesis of off-period dystonia in advanced PD. Clinical and demographic analyses confirmed that the earlier age at onset of PD, longer duration of PD, and levodopa exposure are important risk factors in the development of the type of LID.
Collapse
Affiliation(s)
- X. Li
- Beijing Institute of Functional Neurosurgery; Xuanwu Hospital; Capital Medical University; Beijing China
| | - P. Zhuang
- Beijing Institute of Functional Neurosurgery; Xuanwu Hospital; Capital Medical University; Beijing China
- Center of Parkinson's Disease; Beijing Institute for Brain Disorders; Beijing China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University); Ministry of Education; Beijing China
| | - M. Hallett
- Human Motor Control Section; Medical Neurology Branch; National Institute of Neurological Disorders and Stroke; NIH; Bethesda MD USA
| | - Y. Zhang
- Beijing Institute of Functional Neurosurgery; Xuanwu Hospital; Capital Medical University; Beijing China
| | - J. Li
- Beijing Institute of Functional Neurosurgery; Xuanwu Hospital; Capital Medical University; Beijing China
| | - Y. Li
- Beijing Institute of Functional Neurosurgery; Xuanwu Hospital; Capital Medical University; Beijing China
| |
Collapse
|
64
|
West T, Farmer S, Berthouze L, Jha A, Beudel M, Foltynie T, Limousin P, Zrinzo L, Brown P, Litvak V. The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity. Front Hum Neurosci 2016; 10:517. [PMID: 27826233 PMCID: PMC5078477 DOI: 10.3389/fnhum.2016.00517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 11/13/2022] Open
Abstract
In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.
Collapse
Affiliation(s)
- Timothy West
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, UCLLondon, UK; Wellcome Trust Centre for Neuroimaging, UCL Institute of NeurologyLondon, UK
| | - Simon Farmer
- Department of Neurology, National Hospital for Neurology and NeurosurgeryLondon, UK; Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCLLondon, UK
| | - Luc Berthouze
- Centre for Computational Neuroscience and Robotics, University of SussexFalmer, UK; UCL Great Ormond Street Institute of Child Health, UCLLondon, UK
| | - Ashwani Jha
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL London, UK
| | - Martijn Beudel
- Department of Neurology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, John Radcliffe HospitalOxford, UK; Medical Research Council Brain Network Dynamics Unit, University of OxfordOxford, UK
| | - Vladimir Litvak
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology London, UK
| |
Collapse
|
65
|
Hartung H, Tan SKH, Temel Y, Sharp T. High-frequency stimulation of the subthalamic nucleus modulates neuronal activity in the lateral habenula nucleus. Eur J Neurosci 2016; 44:2698-2707. [PMID: 27623306 DOI: 10.1111/ejn.13397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 11/27/2022]
Abstract
High-frequency stimulation (HFS) of the subthalamic nucleus (STN) is often used to treat movement disability in advanced Parkinson's disease, but some patients experience debilitating psychiatric effects including depression. Interestingly, HFS of the STN modulates 5-HT neurons in the dorsal raphe nucleus (DRN) which are linked to depression, but the neural substrate of this effect is unknown. Here, we tested the effect of STN stimulation on neuronal activity in the lateral habenula nucleus (LHb), an important source of input to DRN 5-HT neurons and also a key controller of emotive behaviours. LHb neurons were monitored in anaesthetized rats using single-unit extracellular recording, and localization within the LHb was confirmed by juxtacellular labelling. HFS of the STN (130 Hz) evoked rapid changes in the firing rate of the majority of LHb neurons tested (38 of 68). Some LHb neurons (19/68) were activated by HFS, while others (19/68), distinguished by a higher basal firing rate, were inhibited. LHb neurons that project to the DRN were identified using antidromic activation and collision testing (n = 17 neurons). Some of these neurons (5/17) were also excited by HFS of the STN, and others (7/17) were inhibited although this was only a statistical trend. In summary, HFS of the STN modulated the firing of LHb neurons, including those projecting to the DRN. The data identify that the STN impacts on the LHb-DRN pathway. Moreover, this pathway may be part of the circuitry mediating the psychiatric effects of STN stimulation experienced by patients with Parkinson's disease.
Collapse
Affiliation(s)
- Henrike Hartung
- University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK
| | - Sonny K H Tan
- Departments of Neuroscience and Neurosurgery, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University, Maastricht, The Netherlands
| | - Trevor Sharp
- University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
66
|
|
67
|
Wilson TW, Heinrichs-Graham E, Proskovec AL, McDermott TJ. Neuroimaging with magnetoencephalography: A dynamic view of brain pathophysiology. Transl Res 2016; 175:17-36. [PMID: 26874219 PMCID: PMC4959997 DOI: 10.1016/j.trsl.2016.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/12/2023]
Abstract
Magnetoencephalography (MEG) is a noninvasive, silent, and totally passive neurophysiological imaging method with excellent temporal resolution (∼1 ms) and good spatial precision (∼3-5 mm). In a typical experiment, MEG data are acquired as healthy controls or patients with neurologic or psychiatric disorders perform a specific cognitive task, or receive sensory stimulation. The resulting data are generally analyzed using standard electrophysiological methods, coupled with advanced image reconstruction algorithms. To date, the total number of MEG instruments and associated users is significantly smaller than comparable human neuroimaging techniques, although this is likely to change in the near future with advances in the technology. Despite this small base, MEG research has made a significant impact on several areas of translational neuroscience, largely through its unique capacity to quantify the oscillatory dynamics of activated brain circuits in humans. This review focuses on the clinical areas where MEG imaging has arguably had the greatest impact in regard to the identification of aberrant neural dynamics at the regional and network level, monitoring of disease progression, determining how efficacious pharmacologic and behavioral interventions modulate neural systems, and the development of neural markers of disease. Specifically, this review covers recent advances in understanding the abnormal neural oscillatory dynamics that underlie Parkinson's disease, autism spectrum disorders, human immunodeficiency virus (HIV)-associated neurocognitive disorders, cerebral palsy, attention-deficit hyperactivity disorder, cognitive aging, and post-traumatic stress disorder. MEG imaging has had a major impact on how clinical neuroscientists understand the brain basis of these disorders, and its translational influence is rapidly expanding with new discoveries and applications emerging continuously.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb; Department of Neurological Sciences, UNMC, Omaha, Neb.
| | - Elizabeth Heinrichs-Graham
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb
| | - Amy L Proskovec
- Center for Magnetoencephalography, UNMC, Omaha, Neb; Department of Psychology, University of Nebraska - Omaha, Neb
| | - Timothy J McDermott
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb
| |
Collapse
|
68
|
Kühn AA, Volkmann J. Innovations in deep brain stimulation methodology. Mov Disord 2016; 32:11-19. [PMID: 27400763 DOI: 10.1002/mds.26703] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/22/2016] [Indexed: 01/15/2023] Open
Abstract
Deep brain stimulation is a powerful clinical method for movement disorders that no longer respond satisfactorily to pharmacological management, but its progress has been hampered by stagnation in technological procedure solutions and device development. Recently, the combined research efforts of bioengineers, neuroscientists, and clinicians have helped to better understand the mechanisms of deep brain stimulation, and solutions for the translational roadblock are emerging. Here, we define the needs for methodological advances in deep brain stimulation from a neurophysiological perspective and describe technological solutions that are currently evaluated for near-term clinical application. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
69
|
Florin E, Pfeifer J, Visser-Vandewalle V, Schnitzler A, Timmermann L. Parkinson subtype-specific Granger-causal coupling and coherence frequency in the subthalamic area. Neuroscience 2016; 332:170-80. [PMID: 27393252 DOI: 10.1016/j.neuroscience.2016.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Previous work on Parkinson's disease (PD) has indicated a predominantly afferent coupling between affected arm muscle activity and electrophysiological activity within the subthalamic nucleus (STN). So far, no information is available indicating which frequency components drive the afferent information flow in PD patients. Non-directional coupling e.g. by measuring coherence is primarily established in the beta band as well as at tremor frequency. Based on previous evidence it is likely that different subtypes of the disease are associated with different connectivity patterns. Therefore, we determined coherence and causality between local field potentials (LFPs) in the STN and surface electromyograms (EMGs) from the contralateral arm in 18 akinetic-rigid (AR) PD patients and 8 tremor-dominant (TD) PD patients. During the intraoperative recording, patients were asked to lift their forearm contralateral to the recording side. Significantly more afferent connections were detected for the TD patients for tremor-periods and non-tremor-periods combined as well as for only tremor periods. Within the STN 74% and 63% of the afferent connections are associated with coherence from 4-8Hz and 8-12Hz, respectively. However, when considering only tremor-periods significantly more afferent than efferent connections were associated with coherence from 12 to 20Hz across all recording heights. No difference between efferent and afferent connections is seen in the frequency range from 4 to 12Hz for all recording heights. For the AR patients, no significant difference in afferent and efferent connections within the STN was found for the different frequency bands. Still, for the AR patients dorsal of the STN significantly more afferent than efferent connections were associated with coherence in the frequency range from 12 to 16Hz. These results provide further evidence for the differential pathological oscillations and pathways present in AR and TD Parkinson patients.
Collapse
Affiliation(s)
- Esther Florin
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany.
| | | | | | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany.
| |
Collapse
|
70
|
Long LL, Podurgiel SJ, Haque AF, Errante EL, Chrobak JJ, Salamone JD. Subthalamic and Cortical Local Field Potentials Associated with Pilocarpine-Induced Oral Tremor in the Rat. Front Behav Neurosci 2016; 10:123. [PMID: 27378874 PMCID: PMC4911403 DOI: 10.3389/fnbeh.2016.00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
Tremulous jaw movements (TJMs) are rapid vertical deflections of the lower jaw that resemble chewing but are not directed at any particular stimulus. In rodents, TJMs are induced by neurochemical conditions that parallel those seen in human Parkinsonism, including neurotoxic or pharmacological depletion of striatal dopamine (DA), DA antagonism, and cholinomimetic administration. Moreover, TJMs in rodents can be attenuated by antiparkinsonian agents, including levodopa (L-DOPA), DA agonists, muscarinic antagonists, and adenosine A2A antagonists. In human Parkinsonian patients, exaggerated physiological synchrony is seen in the beta frequency band in various parts of the cortical/basal ganglia/thalamic circuitry, and activity in the tremor frequency range (3–7 Hz) also has been recorded. The present studies were undertaken to determine if tremor-related local field potential (LFP) activity could be recorded from motor cortex (M1) or subthalamic nucleus (STN) during the TJMs induced by the muscarinic agonist pilocarpine, which is a well-known tremorogenic agent. Pilocarpine induced a robust TJM response that was marked by rhythmic electromyographic (EMG) activity in the temporalis muscle. Compared to periods with no tremor activity, TJM epochs were characterized by increased LFP activity in the tremor frequency range in both neocortex and STN. Tremor activity was not associated with increased synchrony in the beta frequency band. These studies identified tremor-related LFP activity in parts of the cortical/basal ganglia circuitry that are involved in the pathophysiology of Parkinsonism. This research may ultimately lead to identification of the oscillatory neural mechanisms involved in the generation of tremulous activity, and promote development of novel treatments for tremor disorders.
Collapse
Affiliation(s)
- Lauren L Long
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| | | | - Aileen F Haque
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| | - Emily L Errante
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| | - James J Chrobak
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| |
Collapse
|
71
|
Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, Tamburin S. Pathophysiology of Motor Dysfunction in Parkinson's Disease as the Rationale for Drug Treatment and Rehabilitation. PARKINSON'S DISEASE 2016; 2016:9832839. [PMID: 27366343 PMCID: PMC4913065 DOI: 10.1155/2016/9832839] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/03/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
Cardinal motor features of Parkinson's disease (PD) include bradykinesia, rest tremor, and rigidity, which appear in the early stages of the disease and largely depend on dopaminergic nigrostriatal denervation. Intermediate and advanced PD stages are characterized by motor fluctuations and dyskinesia, which depend on complex mechanisms secondary to severe nigrostriatal loss and to the problems related to oral levodopa absorption, and motor and nonmotor symptoms and signs that are secondary to marked dopaminergic loss and multisystem neurodegeneration with damage to nondopaminergic pathways. Nondopaminergic dysfunction results in motor problems, including posture, balance and gait disturbances, and fatigue, and nonmotor problems, encompassing depression, apathy, cognitive impairment, sleep disturbances, pain, and autonomic dysfunction. There are a number of symptomatic drugs for PD motor signs, but the pharmacological resources for nonmotor signs and symptoms are limited, and rehabilitation may contribute to their treatment. The present review will focus on classical notions and recent insights into the neuropathology, neuropharmacology, and neurophysiology of motor dysfunction of PD. These pieces of information represent the basis for the pharmacological, neurosurgical, and rehabilitative approaches to PD.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Pierluigi Tocco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Angela Federico
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Laura Roncari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
- Rehabilitation Unit, Pederzoli Hospital, Via Monte Baldo 24, 37019 Peschiera del Garda, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Giampietro Zanette
- Neurology Unit, Pederzoli Hospital, Via Monte Baldo 24, 37019 Peschiera del Garda, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| |
Collapse
|
72
|
Trenado C, Elben S, Petri D, Hirschmann J, Groiss SJ, Vesper J, Schnitzler A, Wojtecki L. Combined Invasive Subcortical and Non-invasive Surface Neurophysiological Recordings for the Assessment of Cognitive and Emotional Functions in Humans. J Vis Exp 2016. [PMID: 27286467 DOI: 10.3791/53466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In spite of the success in applying non-invasive electroencephalography (EEG), magneto-encephalography (MEG) and functional magnetic resonance imaging (fMRI) for extracting crucial information about the mechanism of the human brain, such methods remain insufficient to provide information about physiological processes reflecting cognitive and emotional functions at the subcortical level. In this respect, modern invasive clinical approaches in humans, such as deep brain stimulation (DBS), offer a tremendous possibility to record subcortical brain activity, namely local field potentials (LFPs) representing coherent activity of neural assemblies from localized basal ganglia or thalamic regions. Notwithstanding the fact that invasive approaches in humans are applied only after medical indication and thus recorded data correspond to altered brain circuits, valuable insight can be gained regarding the presence of intact brain functions in relation to brain oscillatory activity and the pathophysiology of disorders in response to experimental cognitive paradigms. In this direction, a growing number of DBS studies in patients with Parkinson's disease (PD) target not only motor functions but also higher level processes such as emotions, decision-making, attention, memory and sensory perception. Recent clinical trials also emphasize the role of DBS as an alternative treatment in neuropsychiatric disorders ranging from obsessive compulsive disorder (OCD) to chronic disorders of consciousness (DOC). Consequently, we focus on the use of combined invasive (LFP) and non-invasive (EEG) human brain recordings in assessing the role of cortical-subcortical structures in cognitive and emotional processing trough experimental paradigms (e.g. speech stimuli with emotional connotation or paradigms of cognitive control such as the Flanker task), for patients undergoing DBS treatment.
Collapse
Affiliation(s)
- Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University
| | - Saskia Elben
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - David Petri
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Jan Hirschmann
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Stefan J Groiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Jan Vesper
- Department of Neurosurgery, Functional Neurosurgery and Stereotaxy, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf;
| |
Collapse
|
73
|
Kern K, Naros G, Braun C, Weiss D, Gharabaghi A. Detecting a Cortical Fingerprint of Parkinson's Disease for Closed-Loop Neuromodulation. Front Neurosci 2016; 10:110. [PMID: 27065781 PMCID: PMC4811963 DOI: 10.3389/fnins.2016.00110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/07/2016] [Indexed: 01/04/2023] Open
Abstract
Recent evidence suggests that deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) mediates its clinical effects by modulating cortical oscillatory activity, presumably via a direct cortico-subthalamic connection. This observation might pave the way for novel closed-loop approaches comprising a cortical sensor. Enhanced beta oscillations (13-35 Hz) have been linked to the pathophysiology of PD and may serve as such a candidate marker to localize a cortical area reliably modulated by DBS. However, beta-oscillations are widely distributed over the cortical surface, necessitating an additional signal source for spotting the cortical area linked to the pathologically synchronized cortico-subcortical motor network. In this context, both cortico-subthalamic coherence and cortico-muscular coherence (CMC) have been studied in PD patients. Whereas, the former requires invasive recordings, the latter allows for non-invasive detection, but displays a rather distributed cortical synchronization pattern in motor tasks. This distributed cortical representation may conflict with the goal of detecting a cortical localization with robust biomarker properties which is detectable on a single subject basis. We propose that this limitation could be overcome when recording CMC at rest. We hypothesized that-unlike healthy subjects-PD would show CMC at rest owing to the enhanced beta oscillations observed in PD. By performing source space analysis of beta CMC recorded during resting-state magnetoencephalography, we provide preliminary evidence in one patient for a cortical hot spot that is modulated most strongly by subthalamic DBS. Such a spot would provide a prominent target region either for direct neuromodulation or for placing a potential sensor in closed-loop DBS approaches, a proposal that requires investigation in a larger cohort of PD patients.
Collapse
Affiliation(s)
- Kevin Kern
- Division of Functional and Restorative Neurosurgery and Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery and Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| | - Christoph Braun
- Magnetoencephalography Center, Eberhard Karls University TuebingenTuebingen, Germany
- Center for Mind/Brain Sciences (CIMeC), University of TrentoItaly
| | - Daniel Weiss
- Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research and German Centre of Neurodegenerative Diseases (DZNE), Eberhard Karls University TuebingenTuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery and Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| |
Collapse
|
74
|
Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochir (Wien) 2016; 158:171-80; discussion 180. [PMID: 26611690 DOI: 10.1007/s00701-015-2646-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dystonia has been treated well using deep brain stimulation at the globus pallidus internus (GPi DBS). Dystonia can be categorized as two basic types of movement, phasic-type and tonic-type. Cervical dystonia is the most common type of focal dystonia, and sequential differences in clinical outcomes between phasic-type and tonic-type cervical dystonia have not been reported. METHODS This study included a retrospective cohort of 30 patients with primary cervical dystonia who underwent GPi DBS. Age, disease duration, dystonia direction, movement types, employment status, relevant life events, and neuropsychological examinations were analyzed with respect to clinical outcomes following GPi DBS. RESULTS The only significant factor affecting clinical outcomes was movement type (phasic or tonic). Sequential changes in clinical outcomes showed significant differences between phasic- and tonic-type cervical dystonia. A delayed benefit was found in both phasic- and tonic-type dystonia. CONCLUSIONS The clinical outcome of phasic-type cervical dystonia is more favorable than that of tonic-type cervical dystonia following GPi DBS.
Collapse
|
75
|
Oswal A, Jha A, Neal S, Reid A, Bradbury D, Aston P, Limousin P, Foltynie T, Zrinzo L, Brown P, Litvak V. Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation. J Neurosci Methods 2015; 261:29-46. [PMID: 26698227 PMCID: PMC4758829 DOI: 10.1016/j.jneumeth.2015.11.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022]
Abstract
Setup for MEG and intracranial recordings during Deep Brain Stimulation is described. Phantom experiment showed correct recovery of oscillatory sources despite artefacts. The method is applied to real data from a patient with Parkinson's Disease. Cortico-subthalamic coherence profiles on and off stimulation were comparable.
Background Deep Brain Stimulation (DBS) is an effective treatment for several neurological and psychiatric disorders. In order to gain insights into the therapeutic mechanisms of DBS and to advance future therapies a better understanding of the effects of DBS on large-scale brain networks is required. New method In this paper, we describe an experimental protocol and analysis pipeline for simultaneously performing DBS and intracranial local field potential (LFP) recordings at a target brain region during concurrent magnetoencephalography (MEG) measurement. Firstly we describe a phantom setup that allowed us to precisely characterise the MEG artefacts that occurred during DBS at clinical settings. Results Using the phantom recordings we demonstrate that with MEG beamforming it is possible to recover oscillatory activity synchronised to a reference channel, despite the presence of high amplitude artefacts evoked by DBS. Finally, we highlight the applicability of these methods by illustrating in a single patient with Parkinson's disease (PD), that changes in cortical-subthalamic nucleus coupling can be induced by DBS. Comparison with existing approaches To our knowledge this paper provides the first technical description of a recording and analysis pipeline for combining simultaneous cortical recordings using MEG, with intracranial LFP recordings of a target brain nucleus during DBS.
Collapse
Affiliation(s)
- Ashwini Oswal
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Ashwani Jha
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, UK
| | - Spencer Neal
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, UK
| | - Alphonso Reid
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - David Bradbury
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Peter Aston
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Vladimir Litvak
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
76
|
He X, Hao MZ, Wei M, Xiao Q, Lan N. Contribution of inter-muscular synchronization in the modulation of tremor intensity in Parkinson's disease. J Neuroeng Rehabil 2015; 12:108. [PMID: 26628267 PMCID: PMC4666195 DOI: 10.1186/s12984-015-0101-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 11/19/2015] [Indexed: 11/27/2022] Open
Abstract
Background Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson’s disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. Methods 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Results Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor frequency, indicating that the neuromechanical coupling in peripheral neuromuscular system was stronger at tremor frequency. Conclusions Both paired and pool-averaged coherences are more consistent indexes to correlate to tremor intensity in a group of upper extremity muscles of PD patients. The central drive at tremor frequency contributes mainly to synchronize peripheral muscles in the modulation of tremor intensity.
Collapse
Affiliation(s)
- Xin He
- Institute of Rehabilitation Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Man-Zhao Hao
- Institute of Rehabilitation Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Ming Wei
- Department of Neurology & Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qin Xiao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ning Lan
- Institute of Rehabilitation Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China. .,Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
77
|
Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease. Neurobiol Dis 2015; 86:177-86. [PMID: 26639855 DOI: 10.1016/j.nbd.2015.11.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022] Open
Abstract
The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop.
Collapse
|
78
|
Lentz L, Zhao Y, Kelly MT, Schindeldecker W, Goetz S, Nelson DE, Raike RS. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus. Exp Neurol 2015; 273:69-82. [DOI: 10.1016/j.expneurol.2015.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/22/2015] [Accepted: 07/25/2015] [Indexed: 12/25/2022]
|
79
|
Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2015; 115:19-38. [PMID: 26510756 DOI: 10.1152/jn.00281.2015] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.
Collapse
Affiliation(s)
- Todd M Herrington
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jennifer J Cheng
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
80
|
Ouyang G, Wang Y, Yang Z, Li X. Global Synchronization of Multichannel EEG in Patients With Electrical Status Epilepticus in Sleep. Clin EEG Neurosci 2015; 46:357-63. [PMID: 25392005 DOI: 10.1177/1550059414538807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/08/2014] [Indexed: 11/17/2022]
Abstract
In the research field of epilepsy, it is a challenge to understand the transition of brain activity to electrical status epilepticus in sleep (ESES). In this study, an S-estimator method is proposed to describe the course of global synchronization in multichannel electroencephalograph (EEG) from awake to sleep in 11 patients with ESES. The study confirms that there is a significant increase in spikes and global synchronization from awake to sleep. It is also found that global synchronization is strongly correlated with spikes. The proposed method has the potential of revealing the intrinsic features of EEG signals and the underlying brain dynamics in ESES.
Collapse
Affiliation(s)
- Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Yinghua Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
81
|
Jitkritsadakul O, Thanawattano C, Anan C, Bhidayasiri R. Exploring the effect of electrical muscle stimulation as a novel treatment of intractable tremor in Parkinson's disease. J Neurol Sci 2015; 358:146-52. [PMID: 26342942 DOI: 10.1016/j.jns.2015.08.1527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND As the pathophysiology of tremor in Parkinson disease (PD) involves a complex interaction between central and peripheral mechanisms, we propose that modulation of peripheral reflex mechanism by electrical muscle stimulation (EMS) may improve tremor temporarily. OBJECTIVES To determine the efficacy of EMS as a treatment for drug resistant tremor in PD patients. METHODS This study was a single-blinded, quasi-experimental study involving 34 PD patients with classic resting tremor as confirmed by tremor analysis. The EMS was given at 50Hz over the abductor pollicis brevis and interrosseus muscles for 10s with identified tremor parameters before and during stimulation as primary outcomes. RESULTS Compared to before stimulation, we observed a significant reduction in the root mean square (RMS) of the angular velocity (p<0.001) and peak magnitude (p<0.001) of resting tremor while tremor frequency (p=0.126) and dispersion (p=0.284) remained unchanged during stimulation. The UPDRS tremor score decreased from 10.59 (SD=1.74) before stimulation to 8.85 (SD=2.19) during stimulation (p<0.001). The average percentage of improvement of the peak magnitude and RMS angular velocity was 49.57% (SD=38.89) and 43.81% (SD=33.15) respectively. 70.6% and 61.8% of patients experienced at least 30% tremor attenuation as calculated from the peak magnitude and RMS angular velocity respectively. CONCLUSIONS Our study demonstrated the efficacy of EMS in temporarily improving resting tremor in medically intractable PD patients. Although tremor severity decreased, they were not completely eliminated and continued with a similar frequency, thus demonstrating the role of peripheral reflex mechanism in the modulation of tremor, but not as a generator. EMS should be further explored as a possible therapeutic intervention for tremor in PD.
Collapse
Affiliation(s)
- Onanong Jitkritsadakul
- Chulalongkorn Center of Excellence for Parkinson Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Chusak Thanawattano
- Biomedical Signal Processing Laboratory, National Electronics and Computer Technology Center (NECTEC), and National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Chanawat Anan
- Chulalongkorn Center of Excellence for Parkinson Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Center of Excellence for Parkinson Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand; Department of Rehabilitation Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
82
|
Neumann WJ, Jha A, Bock A, Huebl J, Horn A, Schneider GH, Sander TH, Litvak V, Kühn AA. Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain 2015; 138:1894-906. [PMID: 25935723 DOI: 10.1093/brain/awv109] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Primary dystonia has been associated with an underlying dysfunction of a wide network of brain regions including the motor cortex, basal ganglia, cerebellum, brainstem and spinal cord. Dystonia can be effectively treated by pallidal deep brain stimulation although the mechanism of this effect is not well understood. Here, we sought to characterize cortico-basal ganglia functional connectivity using a frequency-specific measure of connectivity-coherence. We recorded direct local field potentials from the human pallidum simultaneously with whole head magnetoencephalography to characterize functional connectivity in the cortico-pallidal oscillatory network in nine patients with idiopathic dystonia. Three-dimensional cortico-pallidal coherence images were compared to surrogate images of phase shuffled data across patients to reveal clusters of significant coherence (family-wise error P < 0.01, voxel extent 1000). Three frequency-specific, spatially-distinct cortico-pallidal networks have been identified: a pallido-temporal source of theta band (4-8 Hz) coherence, a pallido-cerebellar source of alpha band (7-13 Hz) coherence and a cortico-pallidal source of beta band (13-30 Hz) coherence over sensorimotor areas. Granger-based directionality analysis revealed directional coupling with the pallidal local field potentials leading in the theta and alpha band and the magnetoencephalographic cortical source leading in the beta band. The degree of pallido-cerebellar coupling showed an inverse correlation with dystonic symptom severity. Our data extend previous findings in patients with Parkinson's disease describing motor cortex-basal ganglia oscillatory connectivity in the beta band to patients with dystonia. Source coherence analysis revealed two additional frequency-specific networks involving the temporal cortex and the cerebellum. Pallido-cerebellar oscillatory connectivity and its association with dystonic symptoms provides further confirmation of cerebellar involvement in dystonia that has been recently reported using functional magnetic resonance imaging and fibre tracking.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany 2 The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Ashwani Jha
- 3 Sobell Department of Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Antje Bock
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Julius Huebl
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Andreas Horn
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Gerd-Helge Schneider
- 4 Department of Neurosurgery, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Tillmann H Sander
- 5 Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestr. 2-12, 10587 Berlin, Germany
| | - Vladimir Litvak
- 2 The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Andrea A Kühn
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany 6 Berlin School of Mind and Brain, Charité - University Medicine Berlin, Unter den Linden 6, 10099 Berlin,Germany Berlin, Germany 7 NeuroCure, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
83
|
Beudel M, Little S, Pogosyan A, Ashkan K, Foltynie T, Limousin P, Zrinzo L, Hariz M, Bogdanovic M, Cheeran B, Green AL, Aziz T, Thevathasan W, Brown P. Tremor Reduction by Deep Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson's Disease. Neuromodulation 2015; 18:349-54. [PMID: 25879998 PMCID: PMC4829100 DOI: 10.1111/ner.12297] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objectives Rest tremor is a cardinal symptom of Parkinson's disease (PD), and is readily suppressed by deep brain stimulation (DBS) of the subthalamic nucleus (STN). The therapeutic effect of the latter on bradykinesia and rigidity has been associated with the suppression of exaggerated beta (13–30 Hz) band synchronization in the vicinity of the stimulating electrode, but there is no correlation between beta suppression and tremor amplitude. In the present study, we investigate whether tremor suppression is related to suppression of activities at other frequencies. Materials and Methods We recorded hand tremor and contralateral local field potential (LFP) activity from DBS electrodes during stimulation of the STN in 15 hemispheres in 11 patients with PD. DBS was applied with increasing voltages starting at 0.5 V until tremor suppression was achieved or until 4.5 V was reached. Results Tremor was reduced to 48.9% ± 10.9% of that without DBS once stimulation reached 2.5–3 V (t14 = −4.667, p < 0.001). There was a parallel suppression of low gamma (31–45 Hz) power to 92.5% ± 3% (t14 = −2.348, p = 0.034). This was not seen over a band containing tremor frequencies and their harmonic (4–12 Hz), or over the beta band. Moreover, low gamma power correlated with tremor severity (mean r = 0.43 ± 0.14, p = 0.008) within subjects. This was not the case for LFP power in the other two bands. Conclusions Our findings support a relationship between low gamma oscillations and PD tremor, and reinforce the principle that the subthalamic LFP is a rich signal that may contain information about the severity of multiple different Parkinsonian features.
Collapse
Affiliation(s)
- Martijn Beudel
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Simon Little
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alek Pogosyan
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kings College Hospital, Kings College London, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Marko Bogdanovic
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Binith Cheeran
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alexander L Green
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tipu Aziz
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Wesley Thevathasan
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.,The Bionics Institute, Melbourne, Victoria, Australia
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
84
|
Neuromuscular correlates of subthalamic stimulation and upper limb freezing in Parkinson's disease. Clin Neurophysiol 2015; 127:610-620. [PMID: 25792072 DOI: 10.1016/j.clinph.2015.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/05/2015] [Accepted: 02/13/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The pathophysiology of deep brain stimulation mechanisms and resistant freezing phenomena in idiopathic Parkinson's disease (iPD) remains incompletely understood. Further studies on the neuromuscular substrates are needed. METHODS We analyzed 16 patients with advanced iPD and bilateral subthalamic nucleus stimulation, and 13 age- and gender-matched healthy controls. Patients were tested after overnight withdrawal of medication with 'stimulation off' (StimOff) and 'stimulation on' (StimOn). Subjects performed continuous tapping of the right index finger with simultaneous recordings of biomechanical registration, EMG of finger flexors and extensors, and EEG. First, we analyzed EEG and EMG spectral measures comparing StimOff with healthy controls and StimOff with StimOn (irrespective of freezing). Second, we contrasted 'regular (unimpaired) tapping' and 'freezing' resistant to subthalamic neurostimulation as obtained in StimOn. RESULTS iPD showed increased intermuscular coherence around 8Hz in StimOff that was reduced in StimOn. This 8Hz muscular activity was not coherent to cortical activity. 'Freezing' episodes showed increased muscle activity of finger flexors and extensors at 6-9Hz, and increased cortical activity at 7-11Hz. During transition from regular tapping to 'freezing' the cortical activity first increased over the left sensorimotor area followed by a spread to the left frontal and right parietal areas. CONCLUSIONS We identified neuromuscular motor network features of subthalamic neurostimulation therapy and resistant upper limb freezing that point to increased low-frequency muscular and cortical activity. SIGNIFICANCE Together, our findings demonstrate several motor network abnormalities associated with upper limb freezing that may translate into future research on freezing of gait in iPD.
Collapse
|
85
|
Cagnan H, Little S, Foltynie T, Limousin P, Zrinzo L, Hariz M, Cheeran B, Fitzgerald J, Green AL, Aziz T, Brown P. The nature of tremor circuits in parkinsonian and essential tremor. ACTA ACUST UNITED AC 2014; 137:3223-34. [PMID: 25200741 PMCID: PMC4240284 DOI: 10.1093/brain/awu250] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
See Arkadir et al. (doi:10.1093/brain/awu285) for a scientific commentary on this article. The mechanisms underlying tremor generation remain unclear. Cagnan et al. use deep brain stimulation of the thalamus or subthalamic nucleus at/near a patient's own tremor frequency to investigate the networks responsible for parkinsonian and essential tremor. The results reveal differences in the circuitry underlying these two tremor types. Tremor is a cardinal feature of Parkinson’s disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient’s own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson’s disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50–77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34–74 years). Stimulation at near-to tremor frequency entrained tremor in all three patient groups (ventrolateral thalamic stimulation in Parkinson’s disease, P = 0.0078, subthalamic stimulation in Parkinson’s disease, P = 0.0312; ventrolateral thalamic stimulation in essential tremor, P = 0.0137; two-tailed paired Wilcoxon signed-rank tests). However, only ventrolateral thalamic stimulation in essential tremor modulated postural tremor amplitude according to the timing of stimulation pulses with respect to the tremor cycle (e.g. P = 0.0002 for tremor amplification, two-tailed Wilcoxon rank sum test). Parkinsonian rest and essential postural tremor severity (i.e. tremor amplitude) differed in their relative tolerance to spontaneous changes in tremor frequency when stimulation was not applied. Specifically, the amplitude of parkinsonian rest tremor remained unchanged despite spontaneous changes in tremor frequency, whereas that of essential postural tremor reduced when tremor frequency departed from median values. Based on these results we conclude that parkinsonian rest tremor is driven by a neural network, which includes the subthalamic nucleus and ventrolateral thalamus and has broad frequency-amplitude tolerance. We propose that it is this tolerance to changes in tremor frequency that dictates that parkinsonian rest tremor may be significantly entrained by low frequency stimulation without stimulation timing-dependent amplitude modulation. In contrast, the circuit influenced by low frequency thalamic stimulation in essential tremor has a narrower frequency-amplitude tolerance so that tremor entrainment through extrinsic driving is necessarily accompanied by amplitude modulation. Such differences in parkinsonian rest and essential tremor will be important in selecting future strategies for closed loop deep brain stimulation for tremor control.
Collapse
Affiliation(s)
- Hayriye Cagnan
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, West Wing Level 6, OX3 9DU, Oxford, UK
| | - Simon Little
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, West Wing Level 6, OX3 9DU, Oxford, UK
| | - Thomas Foltynie
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Marwan Hariz
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Binith Cheeran
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, West Wing Level 6, OX3 9DU, Oxford, UK
| | - James Fitzgerald
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, West Wing Level 6, OX3 9DU, Oxford, UK 3 Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexander L Green
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, West Wing Level 6, OX3 9DU, Oxford, UK 3 Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Tipu Aziz
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, West Wing Level 6, OX3 9DU, Oxford, UK 3 Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Peter Brown
- 1 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, West Wing Level 6, OX3 9DU, Oxford, UK
| |
Collapse
|