51
|
Yabe I. [Recent clinical advances in hereditary spinocerebellar degeneration]. Rinsho Shinkeigaku 2024; 64:135-147. [PMID: 38382935 DOI: 10.5692/clinicalneurol.cn-001931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Spinocerebellar degeneration (SCD) is a neurodegenerative disorder characterized by cerebellar ataxia and other multisystem manifestations, such as Parkinsonism and pyramidal tract symptoms. No effective treatment is available for SCD. Approximately one-third of the cases of SCD are inherited, and the remaining two-third are sporadic, including multiple system atrophy. This article provides an overview of hereditary SCD, its clinical features, recent treatment advances, biomarkers, role of genomic medicine, and future treatment prospects.
Collapse
Affiliation(s)
- Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| |
Collapse
|
52
|
Funakawa K, Kurihara M, Takahashi K, Higashihara M, Hara M, Mitsutake A, Ishiura H, Tokumaru AM, Sonoo M, Murayama S, Saito Y, Iwata A. Proximal sensory neuropathy and cerebellar ataxia as presenting symptoms of NOTCH2NLC-related neuronal intranuclear inclusion disease. J Neurol Sci 2024; 458:122915. [PMID: 38326182 DOI: 10.1016/j.jns.2024.122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Kai Funakawa
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masanori Kurihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| | - Kensuke Takahashi
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Manato Hara
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Akihiko Mitsutake
- Department of Neurology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Department of Neurology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aya Midori Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masahiro Sonoo
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Yuko Saito
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
53
|
Yu D, Li J, Tai H, Ma J, Zhang Z, Tang W. Neuronal intranuclear inclusion disease misdiagnosed as Parkinson's disease: a case report. J Int Med Res 2024; 52:3000605241233159. [PMID: 38436278 PMCID: PMC10913512 DOI: 10.1177/03000605241233159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease that mainly manifests as dementia, muscle weakness, sensory disturbances, and autonomic nervous dysfunction. Herein, we report a 68-year-old Chinese woman who was hospitalized because of resting tremor and bradykinesia that had been present for 7 years. Five years prior, bradykinesia and hypermyotonia had become apparent. She had urinary incontinence and rapid eye movement sleep behavior disorder. She was diagnosed with Parkinson's disease (PD) and received levodopa and pramipexole, which relieved her motor symptoms. During hospitalization, diffusion-weighted imaging revealed a high-intensity signal along the cortical medullary junction. Moreover, a skin biopsy revealed the presence of intranuclear inclusions in adipocytes, fibroblasts, and sweat gland cells. NIID was diagnosed by testing the Notch 2 N-terminal-like C (NOTCH2NLC) gene. We report this case to remind doctors to consider NIID when diagnosing patients with symptoms indicative of Parkinson's disease. Moreover, we note that further research is needed on the mechanism by which levodopa is effective for NIID.
Collapse
Affiliation(s)
- Dandan Yu
- Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Jing Li
- Donggang Center Hospital, Donggang, China
| | - Hongfei Tai
- Beijing Tiantan Hospital Capital Medical University, Beijing, China
| | - Jing Ma
- Donggang Center Hospital, Donggang, China
| | - Zaiqiang Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Tang
- Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
54
|
Zeng T, Chen Y, Huang H, Li S, Huang J, Xie H, Lin S, Chen S, Chen G, Yang D. Neuronal Intranuclear Inclusion Disease with NOTCH2NLC GGC Repeat Expansion: A Systematic Review and Challenges of Phenotypic Characterization. Aging Dis 2024; 16:AD.2024.0131-1. [PMID: 38377026 PMCID: PMC11745434 DOI: 10.14336/ad.2024.0131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a highly clinically heterogeneous neurodegenerative disorder primarily attributed to abnormal GGC repeat expansions in the NOTCH2NLC gene. This study aims to comprehensively explore its phenotypic characteristics and genotype-phenotype correlation. A literature search was conducted in PubMed, Embase, and the Cochrane Library from September 1, 2019, to December 31, 2022, encompassing reported NIID cases confirmed by pathogenic NOTCH2NLC mutations. Linear regressions and trend analyses were performed. Analyzing 635 cases from 85 included studies revealed that familial cases exhibited significantly larger GGC repeat expansions than sporadic cases (p < 0.001), and this frequency significantly increased with expanding GGC repeats (p trend < 0.001). Age at onset (AAO) showed a negative correlation with GGC repeat expansions (p < 0.001). The predominant initial symptoms included tremor (31.70%), cognitive impairment (14.12%), and muscle weakness (10.66%). The decreased or absent tendon reflex (DTR/ATR) emerged as a notable clinical indicator of NIID due to its high prevalence. U-fiber was observed in 79.11% of patients, particularly prominent in paroxysmal disease-dominant (87.50%) and dementia-dominant cases (81.08%). Peripheral neuropathy-dominant cases exhibited larger GGC repeat expansions (median = 123.00) and an earlier AAO (median = 33.00) than other phenotypes. Moreover, a significant genetic anticipation of 3.5 years was observed (p = 0.039). This study provides a comprehensive and up-to-date compilation of genotypic and phenotypic information on NIID since the identification of the causative gene NOTCH2NLC. We contribute a novel diagnostic framework for NIID to support clinical practice.
Collapse
Affiliation(s)
- Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Shenyi Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
55
|
Lee GH, Jung E, Jung NY, Mizuguchi T, Matsumoto N, Kim EJ. Case report: Neuronal intranuclear inclusion disease initially mimicking reversible cerebral vasoconstriction syndrome: serial neuroimaging findings during an 11-year follow-up. Front Neurol 2024; 15:1347646. [PMID: 38405405 PMCID: PMC10884197 DOI: 10.3389/fneur.2024.1347646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare, progressive neurodegenerative disorder known for its diverse clinical manifestations. Although episodic neurogenic events can be associated with NIID, no reported cases have demonstrated concurrent clinical features or MRI findings resembling reversible cerebral vasoconstriction syndrome (RCVS). Here, we present the inaugural case of an adult-onset NIID patient who initially displayed symptoms reminiscent of RCVS. The 59-year-old male patient's initial presentation included a thunderclap headache, right visual field deficit, and confusion. Although his brain MRI appeared normal, MR angiography unveiled left posterior cerebral artery occlusion, subsequently followed by recanalization, culminating in an RCVS diagnosis. Over an 11-year period, the patient encountered 10 additional episodes, each escalating in duration and intensity, accompanied by seizures. Simultaneously, cognitive impairment progressed. Genetic testing for NIID revealed an abnormal expansion of GGC repeats in NOTCH2NLC, with a count of 115 (normal range, <60), and this patient was diagnosed with NIID. Our report highlights that NIID can clinically and radiologically mimic RCVS. Therefore, in the differential diagnosis of RCVS, particularly in cases with atypical features or recurrent episodes, consideration of NIID is warranted. Additionally, the longitudinal neuroimaging findings provided the course of NIID over an 11-year follow-up period.
Collapse
Affiliation(s)
- Gha-Hyun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Pusan, Republic of Korea
| | - Eugene Jung
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Pusan, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Medical Research Institute, Yangsan, Republic of Korea
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Pusan, Republic of Korea
| |
Collapse
|
56
|
Shi Y, Cao C, Zeng Y, Ding Y, Chen L, Zheng F, Chen X, Zhou F, Yang X, Li J, Xu L, Xu G, Lin M, Ishiura H, Tsuji S, Wang N, Wang Z, Chen WJ, Yang K. CGG repeat expansion in LOC642361/NUTM2B-AS1 typically presents as oculopharyngodistal myopathy. J Genet Genomics 2024; 51:184-196. [PMID: 38159879 DOI: 10.1016/j.jgg.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
CGG repeat expansions in LOC642361/NUTM2B-AS1 have recently been identified as a cause of oculopharyngeal myopathy with leukoencephalopathy. However, since only three patients from a single family were reported, it remains unknown whether their clinicopathological features are typical for CGG repeat expansions in LOC642361/NUTM2B-AS1. Here, using repeat-primed-polymerase chain reaction and long-read sequencing, we identify 12 individuals from 3 unrelated families with CGG repeat expansions in LOC642361/NUTM2B-AS1, typically presenting with oculopharyngodistal myopathy. The CGG repeat expansions range from 161 to 669 repeat units. Most of the patients present with ptosis, restricted eye movements, dysphagia, dysarthria, and diffuse limb muscle weakness. Only one patient shows T2-weighted hyperintensity in the cerebellar white matter surrounding the deep cerebellar nuclei on brain magnetic resonance imaging. Muscle biopsies from three patients show a myopathic pattern and rimmed vacuoles. Analyses of muscle biopsies suggest that CGG repeat expansions in LOC642361/NUTM2B-AS1 may deleteriously affect aggrephagic capacity, suggesting that RNA toxicity and mitochondrial dysfunction may contribute to pathogenesis. Our study thus expands the phenotypic spectrum for the CGG repeat expansion of LOC642361/NUTM2B-AS1 and indicates that this genetic variant typically manifests as oculopharyngodistal myopathy with chronic myopathic changes with rimmed vacuoles and filamentous intranuclear inclusions in muscle fibers.
Collapse
Affiliation(s)
- Yan Shi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Chunyan Cao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Yiheng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Yuanliang Ding
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Fuze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xuejiao Chen
- Department of Neurology, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Fanggui Zhou
- Department of Neurology, Jian'ou Municipal Hospital of Fujian Province, Jian'ou, Fujian 353100, China
| | - Xiefeng Yang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jinjing Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Liuqing Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Minting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Institute of Medical Genomics, International University of Health and Welfare, Chiba 286-0048, Japan
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zhiqiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| | - Kang Yang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| |
Collapse
|
57
|
Fraiman PHA, Silva TYT, Marussi VHR, de Oliveira JB, Barsottini OGP, Pedroso JL. Fragile X premutation mimicking late onset hereditary spastic paraplegia. Parkinsonism Relat Disord 2024; 119:105964. [PMID: 38177000 DOI: 10.1016/j.parkreldis.2023.105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Affiliation(s)
- Pedro Henrique Almeida Fraiman
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil
| | - Thiago Yoshinaga Tonholo Silva
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil
| | | | | | - Orlando G P Barsottini
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil; Hospital Israelita Albert Einstein, Laboratório Genomika, Sao Paulo, SP, Brazil
| | - José Luiz Pedroso
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil; Hospital Israelita Albert Einstein, Laboratório Genomika, Sao Paulo, SP, Brazil.
| |
Collapse
|
58
|
Uchigami H, Hamada M, Maekawa H, Ishiura H, Kodama S, Shirota Y, Takahashi M, Momose T, Toda T. Recovery after Prolonged Disturbance of Consciousness and Repeated Cerebral Perfusion Changes in Neuronal Intranuclear Inclusion Disease. Intern Med 2024; 63:333-336. [PMID: 37258170 PMCID: PMC10864064 DOI: 10.2169/internalmedicine.1015-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Encephalitic episodes are a clinical manifestation of neuronal intranuclear inclusion disease (NIID) and often show transient disturbance of consciousness. We herein report a genetically confirmed patient with NIID who initially presented progressive dementia and showed prolonged disturbance of consciousness preceded by an acute-onset headache. During that time, we performed N-isopropyl-p-[123I] iodoamphetamine single-photon-emission computed tomography twice and found that the blood flow increased in different regions. Prolonged disturbance of consciousness following an encephalitic episode may be associated with repeated hyperperfusion in various regions resulting from mitochondrial dysfunction. NIID patients presenting with encephalitic episodes can recover gradually and spontaneously even after prolonged disturbances of consciousness.
Collapse
Affiliation(s)
- Hirokazu Uchigami
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masashi Hamada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hirotaka Maekawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoshi Kodama
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yuichiro Shirota
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Clinical Laboratory, The University of Tokyo Hospital, Japan
| | - Miwako Takahashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Japan
| | - Toshimitsu Momose
- Department of Radiology, Faculty of Medicine, International University of Health and Welfare, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
59
|
Feng C, Chen Q, Luan X, Sun P, Cao Y, Wu J, Wang S, Sun X, Cao L, Tian G. Adult-onset neuronal intranuclear inclusion disease related retinal degeneration: a Chinese case series. Front Med (Lausanne) 2024; 11:1188193. [PMID: 38288273 PMCID: PMC10822994 DOI: 10.3389/fmed.2024.1188193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024] Open
Abstract
Purpose To evaluate adult-onset neuronal intranuclear inclusion disease (NIID)-related retinopathy with guanine-guanine-cytosine repeat expansions in NOTCH2NLC. Materials and methods Neuro-ophthalmic evaluations, including best-corrected visual acuity, slit-lamp biomicroscopy, intraocular pressure (IOP), ultrasound biomicroscopy, pupillometry, fundus photography, fundus autofluorescence (FAF), optical coherence tomography (OCT), Humphrey visual field, full-field electroretinography (ERG), and multifocal ERG (mf-ERG) were performed in patients with gene-proven NIID. Results Nine patients (18 eyes) were evaluated, with a median age of 62 years (55-68) and only one man was included in our study. Six patients presented with decreased visual acuity or night blindness, whereas the other three were asymptomatic. The visual acuity was measured from 20/200 to 20/20. Miosis was present in eight patients, four of whom had ciliary process hypertrophy and pronation, and three of whom had shallow anterior chambers. Fundus photography, FAF, and OCT showed consistent structural abnormalities mainly started from peripapillary areas and localized in the outer layer of photoreceptors and inner ganglion cell layer. ERG and mf-ERG also revealed retinal dysfunction in the corresponding regions. Conclusion Patients with NIID showed both structural and functional retinopathies which were unique and different from common cone-rod dystrophy or retinitis pigmentosa. Patients with miosis may have a potential risk of an angle-closure glaucoma attack. Neuro-ophthalmic evaluations is essential for evaluating patients with NIID, even without visual symptom.
Collapse
Affiliation(s)
- Chaoyi Feng
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
| | - Qian Chen
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ping Sun
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
| | - Yuwen Cao
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jingying Wu
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shige Wang
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li Cao
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Guohong Tian
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
60
|
Luo H, Gustavsson EK, Macpherson H, Dominik N, Zhelcheska K, Montgomery K, Anderson C, Yau WY, Efthymiou S, Turner C, DeTure M, Dickson DW, Josephs KA, Revesz T, Lashley T, Halliday G, Rowe DB, McCann E, Blair I, Lees AJ, Tienari PJ, Suomalainen A, Molina-Porcel L, Kovacs GG, Gelpi E, Hardy J, Haltia MJ, Tucci A, Jaunmuktane Z, Ryten M, Houlden H, Chen Z. Letter to the editor on: Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions by Park et al. (2022). Acta Neuropathol Commun 2024; 12:2. [PMID: 38167323 PMCID: PMC10759526 DOI: 10.1186/s40478-023-01706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Huihui Luo
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Hannah Macpherson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Natalia Dominik
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Kristina Zhelcheska
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Kylie Montgomery
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Claire Anderson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Wai Yan Yau
- The Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Stephanie Efthymiou
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Chris Turner
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Keith A Josephs
- Neurodegenerative Research Group, Mayo Clinic, Rochester, MN, USA
| | - Tamas Revesz
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Glenda Halliday
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Dominic B Rowe
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emily McCann
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew J Lees
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, Wakefield Street, London, UK
| | - Pentti J Tienari
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, 00290, Helsinki, Finland
- Neuroscience CenterHiLife, University of Helsinki, 00290, Helsinki, Finland
- HUSlab, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit. Neurology Service, Hospital ClínicFundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomediques August Pi I Sunyer (FRCB-IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Hospital Clinic-IFRCB-IDIBAPS-Biobank, Barcelona, Spain
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Hardy
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, Wakefield Street, London, UK
- Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Matti J Haltia
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Zhongbo Chen
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, University College London, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|
61
|
Wang H, Zheng Y, Yu J, Meng L, Zhang W, Hong D, Wang Z, Yuan Y, Deng J. Pathologic changes in neuronal intranuclear inclusion disease are linked to aberrant FUS interaction under hyperosmotic stress. Neurobiol Dis 2024; 190:106391. [PMID: 38145851 DOI: 10.1016/j.nbd.2023.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
CGG repeat expansion in NOTCH2NLC is the genetic cause of neuronal intranuclear inclusion disease (NIID). Previous studies indicated that the CGG repeats can be translated into polyglycine protein (N2CpolyG) which was toxic to neurons by forming intranuclear inclusions (IIs). However, little is known about the factors governing polyG IIs formation as well as its molecular pathogenesis. Considering that neurogenetic disorders usually involve interactions between genetic and environmental stresses, we investigated the effect of stress on the formation of IIs. Our results revealed that under hyperosmotic stress, N2CpolyG translocated from the cytoplasm to the nucleus and formed IIs in SH-SY5Y cells, recapitulating the pathological hallmark of NIID patients. Furthermore, N2CpolyG interacted/ co-localized with an RNA-binding protein FUS in the IIs of cellular model and NIID patient tissues, thereby disrupting stress granule formation in cytoplasm under hyperosmotic stress. Consequently, dysregulated expression of microRNAs was found both in NIID patients and cellular model, which could be restored by FUS overexpression in cultured cells. Overall, our findings indicate a mechanism of stress-induced pathological changes as well as neuronal damage, and a potential strategy for the treatment of NIID.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yilei Zheng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China.
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| |
Collapse
|
62
|
Wu XJ, Jiang YY, Chen LJ, Zhou GQ, Mo DC, Liu LY, Li JL, Li XL, Tang YL, Luo M. Neuronal intranuclear inclusion disease with cortical involvement in left hemisphere: a case report. Wien Klin Wochenschr 2024; 136:67-72. [PMID: 37389688 DOI: 10.1007/s00508-023-02232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Neuronal intranuclear inclusion disease (NIID) is a rare highly heterogeneous disease. In this paper, we present a case of NIID featured in cortical involvement in left hemisphere of brain and the imaging changes in the process of the disease. CASE PRESENTATION A 57-year-old female was hospitalized due to recurrent attacks of headache with cognitive impairment and tremor for 2 years. The symptoms of headache episodes were reversible. The characteristic radiologic change was high intensity signal involving the grey matter-white matter junction on the brain diffusion-weighted imaging (DWI), which existed in the frontal lobe and then extended backwards. Atypical features on fluid-attenuated inversion recovery (FLAIR) sequences showing small patchy high signals in the cerebellar vermis. High signals and edema were detected on FLAIR images along the cortex of the left occipito-parieto-temporal lobes, expanding and gradually shrinking in the follow-up visit. Besides, cerebral atrophy and bilateral symmetrical leukoencephalopathy were also detected. Skin biopsy and genetic testing confirmed the diagnosis of NIID. CONCLUSION Except for typical radiological change strongly suggesting NIID, it is also necessary to notice the insidious symptoms of NIID combining with some atypical imaging features to make an early diagnosis. Skin biopsies or genetic testing should be carried out early in patients with highly suspected NIID.
Collapse
Affiliation(s)
- Xiao-Ju Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yi-Ying Jiang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Li-Jie Chen
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Guo-Qiu Zhou
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Dong-Can Mo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Liu-Yu Liu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Jian-Li Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xiao-Ling Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yu-Lan Tang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China.
| | - Man Luo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021, Nanning, China.
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021, Nanning, China.
| |
Collapse
|
63
|
Shang L, Dong L, Huang X, Chu S, Jin W, Bao J, Wang T, Mao C, Gao J. Comorbidity of Dementia: A Cross-Sectional Study of PUMCH Dementia Cohort. J Alzheimers Dis 2024; 97:1313-1322. [PMID: 38217604 DOI: 10.3233/jad-231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND Comorbidities reduce quality of life for people with dementia and caregivers. Some comorbidities share a genetic basis with dementia. OBJECTIVE The objective of this study is to assess comorbidity in patients with different dementia subtypes in order to better understand the pathogenesis of dementias. METHODS A total of 298 patients with dementia were included. We collected some common comorbidities. We analyzed the differences in comorbidities among patients with dementia according to clinical diagnosis, age of onset (early-onset: < 65 and late-onset: ≥65 years old) and apolipoprotein (APOE) genotypes by using the univariate and multivariate approaches. RESULTS Among 298 participants, there were 183 Alzheimer's disease (AD), 40 vascular dementia (VaD), 37 frontotemporal dementia (FTLD), 20 Lewy body dementia (LBD), and 18 other types of dementia. Based on age of onset, 156 cases had early-onset dementia and 142 cases had late-onset dementia. The most common comorbidities observed in all dementia patients were hyperlipidemia (68.1%), hypertension (39.9%), insomnia (21.1%), diabetes mellitus (19.5%), and hearing impairment (18.1%). The prevalence of hypertension and cerebrovascular disease was found to be higher in patients with VaD compared to those with AD (p = 0.002, p < 0.001, respectively) and FTLD (p = 0.028, p = 0.004, respectively). Additionally, patients with late-onset dementia had a higher burden of comorbidities compared to those with early-onset dementia. It was observed that APOE ɛ4/ɛ4 carriers were less likely to have insomnia (p = 0.031). CONCLUSIONS Comorbidities are prevalent in patients with dementia, with hyperlipidemia, hypertension, insomnia, diabetes, and hearing impairment being the most commonly observed. Comorbidity differences existed among different dementia subtypes.
Collapse
Affiliation(s)
- Li Shang
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Liling Dong
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinying Huang
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shanshan Chu
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Jin
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jialu Bao
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tianyi Wang
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chenhui Mao
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jing Gao
- Neurological Department, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
64
|
Bao L, Zuo D, Yin Z, Mao Z, Yu C, Cui C, Sun W, Cui G, Chen H. Utility of labial salivary gland biopsy in the histological diagnosis of neuronal intranuclear inclusion disease. Eur J Neurol 2024; 31:e16102. [PMID: 37823700 PMCID: PMC11235644 DOI: 10.1111/ene.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND PURPOSE Neuronal intranuclear inclusion disease (NIID) poses a diagnostic challenge because of its diverse clinical manifestations. Detection of intranuclear inclusions remains the primary diagnostic criterion for NIID. Skin biopsies have traditionally been used, but concerns exist regarding postoperative complications and scarring. We sought to investigate the diagnostic utility of labial salivary gland biopsy, a less invasive alternative. METHODS This study included a total of 19 patients and 11 asymptomatic carriers who underwent labial gland biopsies, while 10 patients opted for skin biopsies. All these individuals were confirmed to have pathogenic GGC repeat expansions in the NOTCH2NLC gene. The control group comprised 20 individuals matched for age and sex, all with nonpathogenic GGC repeat expansions, and their labial gland tissue was sourced from oral surgery specimens. RESULTS Labial gland biopsies proved to be a highly effective diagnostic method in detecting eosinophilic intranuclear inclusions in NIID patients. The inclusions showed positive staining for p62 and ubiquitin, confirming their pathological significance. The presence of uN2CpolyG protein in the labial gland tissue further supported the diagnosis. Importantly, all patients who underwent lip gland biopsy experienced fast wound healing without any noticeable scarring. In contrast, skin biopsies led to varying degrees of scarring and one instance of a localized infection. CONCLUSION Labial salivary gland biopsy emerged as a minimally invasive, efficient diagnostic method for NIID, with rapid healing and excellent sensitivity.
Collapse
Affiliation(s)
- Lei Bao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| | - Dandan Zuo
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| | - Zichang Yin
- Department of Pathology GuangzhouGuangzhou KingMed Laboratory CenterGuangzhouChina
| | - Zhifeng Mao
- Neuroimmunology GroupKingMed Diagnostic LaboratoryGuangzhouChina
- Department of Clinical Medicine, Medical SchoolXiangnan UniversityChenzhouChina
| | - Changshun Yu
- Tianjin KingMed Center for Clinical LaboratoryTianjinChina
| | - Chenchen Cui
- Department of NeurosurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| | - Wen Sun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| | - Hao Chen
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| |
Collapse
|
65
|
Wang XJ, Qiu X. Neuronal intranuclear inclusion disease in a 66-year-old woman. Asian J Surg 2023; 46:5664-5665. [PMID: 37625964 DOI: 10.1016/j.asjsur.2023.08.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Affiliation(s)
- Xiao-Juan Wang
- Department of General Surgery, Zhaoyuan Branch of Shandong University Second Hospital, Shandong, 265 400, PR China.
| | - Xuan Qiu
- Department of General Surgery, Zhaoyuan Branch of Shandong University Second Hospital, Shandong, 265 400, PR China.
| |
Collapse
|
66
|
Tian Y, Hou X, Cao W, Zhou L, Jiao B, Zhang S, Xiao Q, Xue J, Wang Y, Weng L, Fang L, Yang H, Zhou Y, Yi F, Chen X, Du J, Xu Q, Feng L, Liu Z, Zeng S, Sun Q, Xie N, Luo M, Wang M, Zhang M, Zeng Q, Huang S, Yao L, Hu Y, Long H, Xie Y, Chen S, Huang Q, Wang J, Xie B, Zhou L, Long L, Guo J, Wang J, Yan X, Jiang H, Xu H, Duan R, Tang B, Zhang R, Shen L. Diagnostic value of nerve conduction study in NOTCH2NLC-related neuronal intranuclear inclusion disease. J Peripher Nerv Syst 2023; 28:629-641. [PMID: 37749855 DOI: 10.1111/jns.12599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND AND AIMS Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disorder mainly caused by abnormally expanded GGC repeats within the NOTCH2NLC gene. Most patients with NIID show polyneuropathy. Here, we aim to investigate diagnostic electrophysiological markers of NIID. METHODS In this retrospective dual-center study, we reviewed 96 patients with NOTCH2NLC-related NIID, 94 patients with genetically confirmed Charcot-Marie-Tooth (CMT) disease, and 62 control participants without history of peripheral neuropathy, who underwent nerve conduction studies between 2018 and 2022. RESULTS Peripheral nerve symptoms were presented by 53.1% of patients with NIID, whereas 97.9% of them showed peripheral neuropathy according to electrophysiological examinations. Patients with NIID were characterized by slight demyelinating sensorimotor polyneuropathy; some patients also showed mild axonal lesions. Motor nerve conduction velocity (MCV) of the median nerve usually exceeded 35 m/s, and were found to be negatively correlated with the GGC repeat sizes. Regarding the electrophysiological differences between muscle weakness type (n = 27) and non-muscle weakness type (n = 69) of NIID, nerve conduction abnormalities were more severe in the muscle weakness type involving both demyelination and axonal impairment. Notably, specific DWI subcortical lace sign was presented in only 33.3% of muscle weakness type, thus it was difficult to differentiate them from CMT. Combining age of onset, distal motor latency, and compound muscle action potential of the median nerve showed the optimal diagnostic performance to distinguish NIID from major CMT (AUC = 0.989, sensitivity = 92.6%, specificity = 97.4%). INTERPRETATION Peripheral polyneuropathy is common in NIID. Our study suggest that nerve conduction study is useful to discriminate NIID.
Collapse
Affiliation(s)
- Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Xiao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Yi
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sen Zeng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Nina Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lingyan Yao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yacen Hu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongwei Xu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
67
|
Neo S, Kaur J, Ng AS, Lim TC. Elderly woman with psychosis and unsteadiness. Pract Neurol 2023; 23:547-551. [PMID: 37419675 DOI: 10.1136/pn-2023-003731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Shermyn Neo
- Department of Neurology, National Neuroscience Institute, Singapore
| | | | - Adeline Sl Ng
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Tchoyoson Cc Lim
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| |
Collapse
|
68
|
Ren X, Tan D, Deng J, Wang Z, Hong D. Skin biopsy and neuronal intranuclear inclusion disease. J Dermatol 2023; 50:1367-1372. [PMID: 37718652 DOI: 10.1111/1346-8138.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disease with variable clinical phenotypes. There is a considerable delay in the definite diagnosis, which primarily depends on postmortem brain pathological examination. Although CGG repeat expansion in the 5'-untranslated region of NOTCH2NLC has been identified as a disease-associated variant, the pathological diagnosis is still required in certain NIID cases. Intranuclear inclusions found in the skin tissue of patients with NIID dramatically increased its early detection rate. Skin biopsy, as a minimally invasive method, has become widely accepted as a routine examination to confirm the pathogenicity of the repeat expansion in patients with suspected NIID. In addition, the shared developmental origin of the skin and nerve system provided a new insight into the pathological changes observed in patients with NIID. In this review, we systematically discuss the role of skin biopsy for NIID diagnosis, the procedure of skin biopsy, and the pathophysiological mechanism of intranuclear inclusion in the skin.
Collapse
Affiliation(s)
- Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
69
|
Liu M, Gao Y, Yuan Y, Liu X, Wang Y, Li L, Zhang X, Jiang C, Wang Q, Wang Y, Shi C, Xu Y, Yang J. A comprehensive study of clinicopathological and genetic features of neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:3545-3556. [PMID: 37184590 DOI: 10.1007/s10072-023-06845-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The discovery of skin intranuclear inclusions and GGC repeat expansion of NOTCH2NLC has greatly promoted the diagnosis of neuronal intranuclear inclusion disease (NIID). With highly heterogeneous clinical manifestations, NIID patients tend to be underdiagnosed at early stages. METHODS This study comprehensively studied clinical manifestations, magnetic resonance imaging (MRI), and peripheral nerve conduction in 24 NIID and 166 other neurodegenerative disease (ND) subjects. The nomogram was plotted using the "rms" package, and the t-distributed stochastic neighbor embedding algorithm was performed. Associations between skin intranuclear inclusions and NOTCH2NLC GGC repeats were further analyzed. RESULTS The clinical, MRI, and peripheral nerve conduction features seriously overlapped in NIID and ND patients; they were assigned variables according to their frequency and specificity in NIID patients. A nomogram that could distinguish NIID from ND was constructed according to the assigned variables and cutoff values of the above features. The occurrence of skin intranuclear inclusions and NOTCH2NLC GGC repeats ≥ 60 showed 100% consistency, and intranuclear inclusion frequency positively correlated with NOTCH2NLC GGC repeats. A hierarchical diagnostic flowchart for definite NIID was further established. CONCLUSION We provide a novel nomogram with the potential to realize early identification and update the diagnostic flowchart for definitive diagnosis. Moreover, this is the first study to define the association between skin pathology and NOTCH2NLC genetics in NIID.
Collapse
Affiliation(s)
- Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
70
|
Zhang Z, Xu Q, Li J, Zhang C, Bai Z, Chai X, Xu K, Xiao C, Chen F, Liu T, Gu H, Xing W, Lu G, Zhang Z. MRI features of neuronal intranuclear inclusion disease, combining visual and quantitative imaging investigations. J Neuroradiol 2023:S0150-9861(23)00245-6. [PMID: 37758172 DOI: 10.1016/j.neurad.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To observe the radiological characteristics of Neuronal Intranuclear Inclusion Disease (NIID) on lesion locations and diffusion property using quantitative imaging analysis. METHODS Visual inspection and quantitative analyses were performed on MRI data from 31 retrospectively included patients with NIID. Frequency heatmaps of lesion locations on T2WI and DWI were generated using voxel-wise analysis. Gray matter volume (GMV), white matter volume (WMV) and diffusion property of apparent diffusion coefficient (ADC) values of patients were voxel-wisely compared with healthy controls. Moreover, the ADC values within the DWI-detected lesion were compared with those within the adjacent cortical gray matter and white matter. Voxel-based lesion symptom mapping (VLSM) techniques, were used to determine the relationship between DWI lesion location and disease durations. RESULTS By visual inspection on the imaging findings, we proposed an "cockscomb flower sign" for describing the radiological feature of DWI hyperintensity within the corticomedullary junction. A "T2WI-DWI mismatch of spatial distribution" pattern was also revealed with visual inspection and frequency heatmaps, for describing the feature of a wider lesion distribution covering white matter shown on T2WI than that on DWI. Voxel-based morphometry comparison revealed that wildly reduced GMV and WMV, both the lesion areas detected by DWI and T2WI demonstrated ADC increase in patients. Furthermore, the ADC values within the DWI-detected lesion were intermediate between the adjacent cortex and the deep white matter with highest ADC. VLSM analysis revealed that frontal lobe, parietal lobe and internal capsule damage were associated with higher NIID durations. CONCLUSION NIID features with "cockscomb flower-like" DWI hyperintensity in area of corticomedullary junction, based on a "T2WI-DWI mismatch of spatial distribution" of lesion locations. The pathological substrate of corticomedullary junction hyperintensity on DWI, can not be explained as diffusion restriction. These typical radiological features of brain MRI would be helpful for diagnosis of NIID.
Collapse
Affiliation(s)
- Zixuan Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Qiang Xu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianrui Li
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Chao Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China; Department of Medical Imaging, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Zhuojie Bai
- Department of Medical Imaging, Nanjing Jiangbei Hospital, Nanjing 210000, China
| | - Xue Chai
- Department of Medical Imaging, Nanjing Brain Hospital, Nanjing 210029, China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China; Department of Medical Imaging, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Chaoyong Xiao
- Department of Medical Imaging, Nanjing Brain Hospital, Nanjing 210029, China
| | - Feng Chen
- Department of Medical Imaging, Hainan General Hospital, Hainan 570311, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital, Haikou 570311, China
| | - Hongmei Gu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wei Xing
- Department of Medical Imaging, The first people's hospital of Changzhou. Changzhou 213200, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
71
|
Yan Y, Cao L, Gu L, Xu C, Fang W, Tian J, Yin X, Zhang B, Zhao G. The clinical characteristics of neuronal intranuclear inclusion disease and its relation with inflammation. Neurol Sci 2023; 44:3189-3197. [PMID: 37099235 DOI: 10.1007/s10072-023-06822-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Neuronal intranuclear inclusion disease (NIID) is a great imitator with a broad spectrum of clinical manifestations that include dementia, parkinsonism, paroxysmal symptoms, peripheral neuropathy, and autonomic dysfunction. Hence, it may also masquerade as other diseases such as Alzheimer's disease, Parkinson's disease, and Charcot-Marie-Tooth disease. Recent breakthroughs on neuroimaging, skin biopsy, and genetic testing have facilitated the diagnosis. However, early identification and effective treatment are still difficult in cases of NIID. OBJECTIVE To further study the clinical characteristics of NIID and investigate the relationship between NIID and inflammation. METHODS We systematically evaluated the clinical symptoms, signs, MRI and electromyographical findings, and pathological characteristics of 20 NIID patients with abnormal GGC repeats in the NOTCH2NLC gene. Some inflammatory factors in the patients were also studied. RESULTS Paroxysmal symptoms such as paroxysmal encephalopathy, stroke-like episodes, and mitochondrial encephalomyopathy lactic acidosis and stroke (MELAS)-like episode were the most common phenotypes. Other symptoms such as cognitive dysfunction, neurogenic bladder, tremor, and vision disorders were also suggestive of NIID. Interestingly, not all patients showed apparent diffusion-weighted imaging (DWI) abnormality or intranuclear inclusions, while abnormal GGC repeats of NOTCH2NLC were seen in all patients. And fevers were noticed in some patients during encephalitic episodes, usually with increasing leukocyte counts and neutrophil ratios. Both IL-6 (p = 0.019) and TNF-α (p = 0.027) levels were significantly higher in the NIID group than in normal controls. CONCLUSION Genetic testing of NOTCH2NLC may be the best choice in the diagnosis of NIID. Inflammation might be involved in the pathogenesis of NIID.
Collapse
Affiliation(s)
- Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Congying Xu
- Department of Neurology, The Second People's Hospital of Jiaxing, Jiaxing, 314099, Zhejiang Province, China
| | - Wei Fang
- Department of Neurology, Hangzhou Traditional Chinese Medicine Hospital, Hangzhou, 310007, Zhejiang Province, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| | - Guohua Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China.
| |
Collapse
|
72
|
Gu X, Jiao K, Yue D, Wang X, Qiao K, Gao M, Lin J, Sun C, Zhao C, Zhu W, Xi J. Intrafamilial phenotypic heterogeneity in GIPC1-related oculopharyngodistal myopathy type 2: a case report. Neuromuscul Disord 2023; 33:93-97. [PMID: 37550168 DOI: 10.1016/j.nmd.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease characterized by ocular, facial, bulbar and distal limb muscle weakness. Here, we presented a pair of siblings with OPDM2 displaying marked intrafamilial phenotypic heterogeneity. In addition to muscle weakness, the proband also demonstrated tremor and visual disturbance that have not been reported previously in OPDM2. Electrophysiological and pathological studies further suggested the presence of neurogenic impairment in the proband. Repeat-primed polymerase chain reaction (RP-PCR) and fluorescence amplicon length analysis polymerase chain reaction (AL-PCR) confirmed the molecular diagnosis of OPDM2 in the siblings. Given the rarity of the case, the association between OPDM2 and tremor, visual disturbance, or neurogenic impairment remained to be explored.
Collapse
Affiliation(s)
- Xinyu Gu
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Dongyue Yue
- Department of Neurology, Jing' an District Center Hospital of Shanghai, Shanghai, China
| | - Xilu Wang
- Department of Anthropology and Human Genetics, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, China
| | - Kai Qiao
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China.
| |
Collapse
|
73
|
Deng Y, Xie M, Zeng L. Neuronal Intra-nuclear Inclusion Disease. Neurol India 2023; 71:1100-1101. [PMID: 37929491 DOI: 10.4103/0028-3886.388068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Affiliation(s)
- Yuxin Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Mingguo Xie
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Lichuan Zeng
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| |
Collapse
|
74
|
Pan Y, Jiang Y, Wan J, Hu Z, Jiang H, Shen L, Tang B, Tian Y, Liu Q. Expression of expanded GGC repeats within NOTCH2NLC causes cardiac dysfunction in mouse models. Cell Biosci 2023; 13:157. [PMID: 37644522 PMCID: PMC10466825 DOI: 10.1186/s13578-023-01111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized by widespread intranuclear inclusions in the nervous system as well as multiple visceral organs. In 2019, expanded GGC repeats within the 5' untranslated region of the NOTCH2NLC gene was identified as the causative factor. NIID is a heterogeneous disorder with variable clinical manifestations including cognitive impairment, cerebellar ataxia, parkinsonism, paroxysmal symptoms, autonomic dysfunction, and muscle weakness. Although NIID primarily affects the central and peripheral nervous systems, growing evidence suggests potential cardiac abnormalities in NIID. However, the link between expanded GGC repeats within NOTCH2NLC and cardiac dysfunction remains uncertain. RESULTS In this study, we utilized two transgenic mouse models, expressing NOTCH2NLC-(GGC)98 ubiquitously or specifically in cardiomyocytes, and identified p62 (also known as sequestosome 1, SQSTM1)-positive intranuclear NOTCH2NLC-polyG inclusions in cardiomyocytes in two mouse models. We observed that both models exhibited cardiac-related pathological and echocardiographic changes, albeit exhibiting varying degrees of severity. Transcriptomic analysis revealed shared downregulation of genes related to ion channels and mitochondria in both models, with the cardiomyocyte-specific mice showing a more pronounced downregulation of mitochondria and energy metabolism-related pathways. Further investigations revealed decreased expression of mitochondria-related genes and electron transport chain activity. At last, we conducted a retrospective review of cardiac-related examination results from NIID patients at our hospital and also identified some cardiac abnormalities in NIID patients. CONCLUSIONS Our study provided the first in vivo evidence linking GGC repeat expansions within NOTCH2NLC to cardiac abnormalities and highlighted the contribution of mitochondrial dysfunction in the development of cardiac abnormalities.
Collapse
Affiliation(s)
- Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
| | - Ying Jiang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Juan Wan
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhengmao Hu
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yun Tian
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
75
|
Xu L, Zhang H, Yuan H, Xie L, Zhang J, Liang Z. Not your usual neurodegenerative disease: a case report of neuronal intranuclear inclusion disease with unconventional imaging patterns. Front Neurosci 2023; 17:1247403. [PMID: 37638306 PMCID: PMC10447982 DOI: 10.3389/fnins.2023.1247403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative illness with characteristic brain magnetic resonance imaging (MRI) manifestations: diffuse symmetric white-matter hyperintensities in lateral cerebral ventricle areas in fluid-attenuated inversion recovery (FLAIR) and high-intensity signals along the corticomedullary junction of the frontal-parietal-temporal lobes in diffusion weighted imaging (DWI). Here, we report a case of adult-onset NIID who was misdiagnosed with Susac syndrome (SS) due to unusual corpus callosum imaging findings. Case presentation A 39-year-old man presented with chronic headache, blurred vision, tinnitus, and numbness in the hands as initial symptoms, accompanied by cognitive slowing and decreased memory. Brain MRI revealed round hypointense lesions on T1-weighted imaging (T1WI) and hyperintense lesions on T2WI/FLAIR/DWI in the genu and splenium of the corpus callosum. An initial diagnosis of SS was made based on the presence of the SS-typical symptoms and SS-characteristic radiology changes. Furthermore, the patient's symptoms improved upon completion of a combined pharmacotherapy plan. However, no significant changes were evident 18 months after the brain MRI scan. Eventually, the patient was then diagnosed with NIID based on a skin biopsy and detection of expanded GGC (guanine, guanine, cytosine) repeats in the NOTCH2NLC gene. Conclusion The present NIID case in which there was simultaneous onset of altered nervous and visual system functioning and atypical imaging findings, the atypical imaging findings may reflect an initial change of NIID leukoencephalopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhigang Liang
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
76
|
Ando M, Higuchi Y, Yuan JH, Yoshimura A, Dozono M, Hobara T, Kojima F, Noguchi Y, Takeuchi M, Takei J, Hiramatsu Y, Nozuma S, Nakamura T, Sakiyama Y, Hashiguchi A, Matsuura E, Okamoto Y, Sone J, Takashima H. Clinical phenotypic diversity of NOTCH2NLC-related disease in the largest case series of inherited peripheral neuropathy in Japan. J Neurol Neurosurg Psychiatry 2023; 94:622-630. [PMID: 36948577 DOI: 10.1136/jnnp-2022-330769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND NOTCH2NLC GGC repeat expansions have been associated with various neurogenerative disorders, including neuronal intranuclear inclusion disease and inherited peripheral neuropathies (IPNs). However, only a few NOTCH2NLC-related disease studies in IPN have been reported, and the clinical and genetic spectra remain unclear. Thus, this study aimed to describe the clinical and genetic manifestations of NOTCH2NLC-related IPNs. METHOD Among 2692 Japanese patients clinically diagnosed with IPN/Charcot-Marie-Tooth disease (CMT), we analysed NOTCH2NLC repeat expansion in 1783 unrelated patients without a genetic diagnosis. Screening and repeat size determination of NOTCH2NLC repeat expansion were performed using repeat-primed PCR and fluorescence amplicon length analysis-PCR. RESULTS NOTCH2NLC repeat expansions were identified in 26 cases of IPN/CMT from 22 unrelated families. The mean median motor nerve conduction velocity was 41 m/s (range, 30.8-59.4), and 18 cases (69%) were classified as intermediate CMT. The mean age of onset was 32.7 (range, 7-61) years. In addition to motor sensory neuropathy symptoms, dysautonomia and involuntary movements were common (44% and 29%). Furthermore, the correlation between the age of onset or clinical symptoms and the repeat size remains unclear. CONCLUSIONS These findings of this study help us understand the clinical heterogeneity of NOTCH2NLC-related disease, such as non-length-dependent motor dominant phenotype and prominent autonomic involvement. This study also emphasise the importance of genetic screening, regardless of the age of onset and type of CMT, particularly in patients of Asian origin, presenting with intermediate conduction velocities and dysautonomia.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mika Dozono
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takahiro Hobara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yutaka Noguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mika Takeuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Physical Therapy, Kagoshima University of School of Health Sciences, Kagoshima, Japan
| | - Jun Sone
- Department of Neuropathology, Aichi Medical University, Aichi, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
77
|
Morita K, Shinzato T, Endo Y, Suzuki M, Yoshida H, Sone J, Nagai K. A case of unusual renal manifestation in a patient with neuronal intranuclear inclusion disease treated with steroids. Clin Case Rep 2023; 11:e7730. [PMID: 37564608 PMCID: PMC10410123 DOI: 10.1002/ccr3.7730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disorder characterized by intranuclear inclusions. Kidney injury involvement and successful treatment for NIID have rarely been reported. A NIID patient developed crescentic IgA nephropathy. Steroid therapy resolved digestive symptoms and recovered renal function. Steroids are considered for concomitant symptoms of NIID.
Collapse
Affiliation(s)
- Keisuke Morita
- Department of Nephrology Shizuoka General Hospital Shizuoka Japan
| | | | - Yuzo Endo
- Department of Diagnostic Pathology Shizuoka General Hospital Shizuoka Japan
| | - Makoto Suzuki
- Department of Diagnostic Pathology Shizuoka General Hospital Shizuoka Japan
| | - Hidefumi Yoshida
- Department of Neurology Shizuoka General Hospital Shizuoka Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging Aichi Medical University Aichi Japan
| | - Kojiro Nagai
- Department of Nephrology Shizuoka General Hospital Shizuoka Japan
| |
Collapse
|
78
|
Muthusamy K, Sivadasan A, Dixon L, Sudhakar S, Thomas M, Danda S, Wszolek ZK, Wierenga K, Dhamija R, Gavrilova R. Adult-onset leukodystrophies: a practical guide, recent treatment updates, and future directions. Front Neurol 2023; 14:1219324. [PMID: 37564735 PMCID: PMC10410460 DOI: 10.3389/fneur.2023.1219324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023] Open
Abstract
Adult-onset leukodystrophies though individually rare are not uncommon. This group includes several disorders with isolated adult presentations, as well as several childhood leukodystrophies with attenuated phenotypes that present at a later age. Misdiagnoses often occur due to the clinical and radiological overlap with common acquired disorders such as infectious, immune, inflammatory, vascular, metabolic, and toxic etiologies. Increased prevalence of non-specific white matter changes in adult population poses challenges during diagnostic considerations. Clinico-radiological spectrum and molecular landscape of adult-onset leukodystrophies have not been completely elucidated at this time. Diagnostic approach is less well-standardized when compared to the childhood counterpart. Absence of family history and reduced penetrance in certain disorders frequently create a dilemma. Comprehensive evaluation and molecular confirmation when available helps in prognostication, early initiation of treatment in certain disorders, enrollment in clinical trials, and provides valuable information for the family for reproductive counseling. In this review article, we aimed to formulate an approach to adult-onset leukodystrophies that will be useful in routine practice, discuss common adult-onset leukodystrophies with usual and unusual presentations, neuroimaging findings, recent advances in treatment, acquired mimics, and provide an algorithm for comprehensive clinical, radiological, and genetic evaluation that will facilitate early diagnosis and consider active treatment options when available. A high index of suspicion, awareness of the clinico-radiological presentations, and comprehensive genetic evaluation are paramount because treatment options are available for several disorders when diagnosed early in the disease course.
Collapse
Affiliation(s)
- Karthik Muthusamy
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Ajith Sivadasan
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Luke Dixon
- Department of Radiology, Imperial College, NHS Trust, London, United Kingdom
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Maya Thomas
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Klaas Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Radhika Dhamija
- Department of Clinical Genomics and Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Ralitza Gavrilova
- Department of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
79
|
Liu D, Chen K, Tan S, Yin LL, Li M, Wang YS. Longitudinal course of hyperintensity on diffusion weighted imaging in adult-onset neuronal intranuclear inclusion disease patients. Front Neurol 2023; 14:1178307. [PMID: 37404945 PMCID: PMC10315630 DOI: 10.3389/fneur.2023.1178307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Background High signals on diffusion weighted imaging along the corticomedullary junction (CMJ) have demonstrated excellent diagnostic values for adult-onset neuronal intranuclear inclusion disease (NIID). However, the longitudinal course of diffusion weighted imaging high intensities in adult-onset NIID patients has rarely been investigated. Methods We described four NIID cases that had been discovered using skin biopsy and NOTCH2NLC gene testing, after diffusion weighted imaging exhibiting the distinctive corticomedullary junction high signals. Then using complete MRI data from NIID patients, we analyzed the chronological diffusion weighted imaging alterations of those individuals that had been published in Pub Med. Results We discussed 135 NIID cases with comprehensive MRI data, including our four cases, of whom 39 had follow-up outcomes. The following are the four primary diffusion weighted imaging dynamic change patterns: (1) high signal intensities in the corticomedullary junction were negative on diffusion weighted imaging even after an 11-year follow-up (7/39); (2) diffusion weighted imagings were initially negative but subsequently revealed typical findings (9/39); (3) high signal intensities vanished during follow-up (3/39); (4) diffusion weighted imagings were positive at first and developed in a step-by-step manner (20/39). We discovered that NIID lesions eventually damaged the deep white matter, which comprises the cerebral peduncles, brain stem, middle cerebellar peduncles, paravermal regions, and cerebellar white matter. Conclusion The longitudinal dynamic changes in NIID of diffusion weighted imaging are highly complex. We find that there are four main patterns of dynamic changes on diffusion weighted imaging. Furthermore, as the disease progressed, NIID lesions eventually involved the deep white matter.
Collapse
Affiliation(s)
- Dan Liu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Chen
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Long-Lin Yin
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mou Li
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Shuang Wang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
80
|
Fitrah YA, Higuchi Y, Hara N, Tokutake T, Kanazawa M, Sanpei K, Taneda T, Nakajima A, Koide S, Tsuboguchi S, Watanabe M, Fukumoto J, Ando S, Sato T, Iwafuchi Y, Sato A, Hayashi H, Ishiguro T, Takeda H, Takahashi T, Fukuhara N, Kasuga K, Miyashita A, Onodera O, Ikeuchi T. Heterogenous Genetic, Clinical, and Imaging Features in Patients with Neuronal Intranuclear Inclusion Disease Carrying NOTCH2NLC Repeat Expansion. Brain Sci 2023; 13:955. [PMID: 37371433 DOI: 10.3390/brainsci13060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder that is caused by the abnormal expansion of non-coding trinucleotide GGC repeats in NOTCH2NLC. NIID is clinically characterized by a broad spectrum of clinical presentations. To date, the relationship between expanded repeat lengths and clinical phenotype in patients with NIID remains unclear. Thus, we aimed to clarify the genetic and clinical spectrum and their association in patients with NIID. For this purpose, we genetically analyzed Japanese patients with adult-onset NIID with characteristic clinical and neuroimaging findings. Trinucleotide repeat expansions of NOTCH2NLC were examined by repeat-primed and amplicon-length PCR. In addition, long-read sequencing was performed to determine repeat size and sequence. The expanded GGC repeats ranging from 94 to 361 in NOTCH2NLC were found in all 15 patients. Two patients carried biallelic repeat expansions. There were marked heterogenous clinical and imaging features in NIID patients. Patients presenting with cerebellar ataxia or urinary dysfunction had a significantly larger GGC repeat size than those without. This significant association disappeared when these parameters were compared with the total trinucleotide repeat number. ARWMC score was significantly higher in patients who had a non-glycine-type trinucleotide interruption within expanded poly-glycine motifs than in those with a pure poly-glycine expansion. These results suggested that the repeat length and sequence in NOTCH2NLC may partly modify some clinical and imaging features of NIID.
Collapse
Affiliation(s)
- Yusran Ady Fitrah
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yo Higuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Joetsu General Hospital, Joetsu 943-0172, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kazuhiro Sanpei
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Tomone Taneda
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akihiko Nakajima
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shin Koide
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shintaro Tsuboguchi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Midori Watanabe
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Junki Fukumoto
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shoichiro Ando
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Tomoe Sato
- Department of Neurology, Tsubame Rosai Hospital, Tsubame 959-1228, Japan
| | - Yohei Iwafuchi
- Department of Neurology, Niigata City General Hospital, Niigata 950-1197, Japan
| | - Aki Sato
- Department of Neurology, Niigata City General Hospital, Niigata 950-1197, Japan
| | - Hideki Hayashi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Takanobu Ishiguro
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Hayato Takeda
- Department of Neurology, Tsukuba University, Tsukuba 950-1197, Japan
| | | | - Nobuyoshi Fukuhara
- Department of Neurology, Joetsu General Hospital, Joetsu 943-0172, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
81
|
Zhou L, Tian Y, Zhang S, Jiao B, Liao X, Zhou Y, Xiao Q, Xue J, Duan R, Tang B, Shen L. Characteristics of autonomic dysfunction in neuronal intranuclear inclusion disease. Front Neurol 2023; 14:1168904. [PMID: 37388545 PMCID: PMC10300412 DOI: 10.3389/fneur.2023.1168904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Background This study aimed to investigate the features of autonomic dysfunction (AutD) in a large cohort of patients with neuronal intranuclear inclusion disease (NIID). Methods A total of 122 patients with NIID and 122 controls were enrolled. All participants completed the Scales for Outcomes in Parkinson's Disease-Autonomic Questionnaire (SCOPA-AUT) and genetic screening for GGC expanded repeats within the NOTCH2NLC gene. All patients underwent neuropsychological and clinical assessments. SCOPA-AUT was performed to compare AutD between patients and controls. The associations between AutD and disease-related characteristics of NIID were studied. Results 94.26% of patients had AutD. Compared with controls, patients had more severe AutD in total SCOPA-AUT, gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor and sexual domains (all p < 0.05). The area under the curve (AUC) value for the total SCOPA-AUT (AUC = 0.846, sensitivity = 69.7%, specificity = 85.2%, cutoff value = 4.5) was high in differentiating AtuD of patients with NIID from controls. The total SCOPA-AUT was significantly and positively associated with age (r = 0.185, p = 0.041), disease duration (r = 0.207, p = 0.022), Neuropsychiatric Inventory (NPI) (r = 0.446, p < 0.01), and Activities of Daily Living (ADL) (r = 0.390, p < 0.01). Patients with onset-of-AutD had higher SCOPA-AUT scores than patients without onset-of-AutD (p < 0.001), especially in the urinary system (p < 0.001) and male sexual dysfunction (p < 0.05). Conclusion SCOPA-AUT can be used as a diagnostic and quantitative tool for autonomic dysfunction in NIID. The high prevalence of AutD in patients suggests that NIID diagnosis should be considered in patients with AutD, especially in those with unexplained AutD alone. AutD in patients is related to age, disease duration, impairment of daily living ability, and psychiatric symptoms.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, Hunan, China
| | - Xinxin Liao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yafang Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiao Xiao
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jin Xue
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ranhui Duan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
82
|
Bu JT, Torres D, Robinson A, Malone C, Vera JC, Daghighi S, Dunn-Pirio A, Khoromi S, Nowell J, Léger GC, Ciacci JD, Goodwill VS, Estrella M, Coughlin DG, Guo Y, Farid N. Case report: Neuronal intranuclear inclusion disease presenting with acute encephalopathy. Front Neurol 2023; 14:1184612. [PMID: 37332983 PMCID: PMC10272712 DOI: 10.3389/fneur.2023.1184612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID), a neurodegenerative disease previously thought to be rare, is increasingly recognized despite heterogeneous clinical presentations. NIID is pathologically characterized by ubiquitin and p-62 positive intranuclear eosinophilic inclusions that affect multiple organ systems, including the brain, skin, and other tissues. Although the diagnosis of NIID is challenging due to phenotypic heterogeneity, a greater understanding of the clinical and imaging presentations can improve accurate and early diagnosis. Here, we present three cases of pathologically proven adult-onset NIID, all presenting with episodes of acute encephalopathy with protracted workups and lengthy time between symptom onset and diagnosis. Case 1 highlights challenges in the diagnosis of NIID when MRI does not reveal classic abnormalities and provides a striking example of hyperperfusion in the setting of acute encephalopathy, as well as unique pathology with neuronal central chromatolysis, which has not been previously described. Case 2 highlights the progression of MRI findings associated with multiple NIID-related encephalopathic episodes over an extended time period, as well as the utility of skin biopsy for antemortem diagnosis.
Collapse
Affiliation(s)
- Julia Ting Bu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Dolores Torres
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Adam Robinson
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Corey Malone
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Juan Carlos Vera
- Sharp Rees-Stealy, Department of Radiology, San Diego, CA, United States
| | - Shadi Daghighi
- Department of Radiology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anastasie Dunn-Pirio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Suzan Khoromi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Justin Nowell
- Sharp Rees-Stealy, Department of Neurology, San Diego, CA, United States
| | - Gabriel C. Léger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Joseph D. Ciacci
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Vanessa S. Goodwill
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Melanie Estrella
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - David G. Coughlin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Yueyang Guo
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Nikdokht Farid
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
83
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
84
|
Wu C, Wang M, Wang X, Li W, Li S, Chen B, Niu S, Tai H, Pan H, Zhang Z. The genetic and phenotypic spectra of adult genetic leukoencephalopathies in a cohort of 309 patients. Brain 2023; 146:2364-2376. [PMID: 36380532 PMCID: PMC10232248 DOI: 10.1093/brain/awac426] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 08/12/2023] Open
Abstract
Genetic leukoencephalopathies (gLEs) are a highly heterogeneous group of rare genetic disorders. The spectrum of gLEs varies among patients of different ages. Distinct from the relatively more abundant studies of gLEs in children, only a few studies that explore the spectrum of adult gLEs have been published, and it should be noted that the majority of these excluded certain gLEs. Thus, to date, no large study has been designed and conducted to characterize the genetic and phenotypic spectra of gLEs in adult patients. We recruited a consecutive series of 309 adult patients clinically suspected of gLEs from Beijing Tiantan Hospital between January 2014 and December 2021. Whole-exome sequencing, mitochondrial DNA sequencing and repeat analysis of NOTCH2NLC, FMR1, DMPK and ZNF9 were performed for patients. We describe the genetic and phenotypic spectra of the set of patients with a genetically confirmed diagnosis and summarize their clinical and radiological characteristics. A total of 201 patients (65%) were genetically diagnosed, while 108 patients (35%) remained undiagnosed. The most frequent diseases were leukoencephalopathies related to NOTCH3 (25%), NOTCH2NLC (19%), ABCD1 (9%), CSF1R (7%) and HTRA1 (5%). Based on a previously proposed pathological classification, the gLEs in our cohort were divided into leukovasculopathies (35%), leuko-axonopathies (31%), myelin disorders (21%), microgliopathies (7%) and astrocytopathies (6%). Patients with NOTCH3 mutations accounted for 70% of the leukovasculopathies, followed by HTRA1 (13%) and COL4A1/2 (9%). The leuko-axonopathies contained the richest variety of associated genes, of which NOTCH2NLC comprised 62%. Among myelin disorders, demyelinating leukoencephalopathies (61%)-mainly adrenoleukodystrophy and Krabbe disease-accounted for the majority, while hypomyelinating leukoencephalopathies (2%) were rare. CSF1R was the only mutated gene detected in microgliopathy patients. Leukoencephalopathy with vanishing white matter disease due to mutations in EIF2B2-5 accounted for half of the astrocytopathies. We characterized the genetic and phenotypic spectra of adult gLEs in a large Chinese cohort. The most frequently mutated genes were NOTCH3, NOTCH2NLC, ABCD1, CSF1R and HTRA1.
Collapse
Affiliation(s)
- Chujun Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Mengwen Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 350005 Fuzhou, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Shaowu Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| |
Collapse
|
85
|
Zhu Y, Yang Q, Tian Y, Fan W, Mao X. Rapidly progressive adult-onset neuronal intranuclear inclusion disease beginning with autonomic symptoms: a case report. Front Neurol 2023; 14:1190981. [PMID: 37305750 PMCID: PMC10248219 DOI: 10.3389/fneur.2023.1190981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Background Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disease that can affect the nervous and other systems of the body. Its clinical manifestations are complex and easily misdiagnosed. Adult-onset NIID beginning with autonomic symptoms such as recurrent hypotension, profuse sweating, and syncope has not been reported. Case presentation An 81-year-old male was admitted to the hospital in June 2018 due to repeated episodes of hypotension, profuse sweating, pale complexion, and syncope for 3 years, and progressive dementia for 2 years. DWI was not possible due to the presence of metal residues in the body. Cutaneous histopathology revealed sweat gland cell nuclear inclusions and immunohistochemistry showed p62 nuclear immunoreactivity. Blood RP-PCR identified an abnormal GGC repeat expansion in the 5'UTR of the NOTCH2NLC gene. Accordingly, this case was diagnosed as adult-onset NIID in August 2018. The patient subsequently received vitamin C nutritional support, rehydration, and other vital signs maintenance treatments during hospitalization, but the above symptoms still recurred after discharge. With the development of the disease, lower extremity weakness, slow movement, dementia, repeated constipation, and vomiting appeared successively. In April 2019, he was hospitalized again for severe pneumonia, and died of multiple organ failure in June 2019. Conclusion The presented case exemplifies great clinical heterogeneity of NIID. Some patients may have neurological symptoms and other systemic symptoms simultaneously. This patient started with autonomic symptoms, including recurrent episodes of hypotension, profuse sweating, pallor, and syncope, which progressed rapidly. This case report provides new information for the diagnosis of NIID.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Qian Yang
- Department of Neurology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weibing Fan
- Department of Neurology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
86
|
Sone J, Ueno S, Akagi A, Miyahara H, Tamai C, Riku Y, Yabata H, Koizumi R, Hattori T, Hirose H, Koyanagi Y, Kobayashi R, Okada H, Kishimoto Y, Hashizume Y, Sobue G, Yoshida M, Iwasaki Y. NOTCH2NLC GGC repeat expansion causes retinal pathology with intranuclear inclusions throughout the retina and causes visual impairment. Acta Neuropathol Commun 2023; 11:71. [PMID: 37131242 PMCID: PMC10152767 DOI: 10.1186/s40478-023-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
The retinal pathology of genetically confirmed neuronal intranuclear inclusion disease (NIID) is yet unknown. We report the ocular findings in four NIID patients with NOTCH2NLC GGC repeat expansion to investigate the pathology of retinopathy. All four NIID patients were diagnosed by skin biopsy and NOTCH2NLC GGC repeat analysis. Ocular findings in patients with NIID were studied using fundus photographs, optical coherence tomographic images (OCT), and full-field electroretinograms (ERGs). The histopathology of the retina was studied on autopsy samples from two cases with immunohistochemistry. All patients had an expansion of the GGC repeat (87-134 repeats) in the NOTCH2NLC. Two patients were legally blind and had been diagnosed with retinitis pigmentosa prior to the diagnosis of NIID and assessed with whole exome sequencing to rule out comorbidity with other retinal diseases. Fundus photographs around the posterior pole showed chorioretinal atrophy in the peripapillary regions. OCT showed thinning of the retina. ERGs showed various abnormalities in cases. The histopathology of autopsy samples showed diffusely scattered intranuclear inclusions throughout the retina from the retinal pigment epithelium to the ganglion cell layer, and optic nerve glial cells. And severe gliosis was observed in retina and optic nerve. The NOTCH2NLC GGC repeat expansion causes numerous intranuclear inclusions in the retina and optic nerve cells and gliosis. Visual dysfunction could be the first sign of NIID. We should consider NIID as one of the causes of retinal dystrophy and investigate the GGC repeat expansion in NOTCH2NLC.
Collapse
Affiliation(s)
- Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan.
- Department of Neurology, National Hospital Organization Suzuka National Hospital, 3-2-1, Kasado, Suzuka, Mie, 513-8501, Japan.
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan.
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, Aomori, 036-8562, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Chisato Tamai
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Shiga University of Medical Science. Seta-Tsukinowa, Otsu, 520-2192, Japan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 22-2 Seto, Kanazawa-Ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Tomohiro Hattori
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Hiroshi Hirose
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Rei Kobayashi
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Hisashi Okada
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Yoshiyuki Kishimoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, 19-14, Yamanaka, Noyori, Toyohashi, Aichi, 441-8124, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
87
|
Tai H, Wang A, Zhang Y, Liu S, Pan Y, Li K, Zhao G, Wang M, Wu G, Niu S, Pan H, Chen B, Li W, Wang X, Dong G, Li W, Zhang Y, Guo S, Liu X, Li M, Liang H, Huang M, Chen W, Zhang Z. Clinical Features and Classification of Neuronal Intranuclear Inclusion Disease. NEUROLOGY GENETICS 2023; 9:e200057. [PMID: 37090934 PMCID: PMC10117695 DOI: 10.1212/nxg.0000000000200057] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 03/04/2023]
Abstract
Background and ObjectivesNeuronal intranuclear inclusion body disease (NIID) is a neurodegenerative disease with highly heterogeneous clinical manifestations. The present study aimed to characterize clinical features and propose a classification system based on a large cohort of NIID in China.MethodsThe Chinese NIID registry was launched from 2017, and participants' demographics and clinical features were recorded. Brain MRI, skin pathologies, and the number of GGC repeat expansions in the 5′ untranslated region of theNOTCH2NLCgene were evaluated in all patients.ResultsIn total, 223 patients (64.6% female) were recruited; the mean (SD) onset age was 56.7 (10.3) years. The most common manifestations were cognitive impairment (78.5%) and autonomic dysfunction (70.9%), followed by episodic symptoms (51.1%), movement disorders (50.7%), and muscle weakness (25.6%). Imaging markers included hyperintensity signals along the corticomedullary junction on diffusion-weighted imaging (96.6%), white matter lesions (98.1%), paravermis (55.0%), and focal cortical lesions (10.1%). The median size of the expanded GGC repeats in these patients was 115 (range, 70–525), with 2 patients carrying >300 GGC repeats. A larger number of GGC repeats was associated with younger age at onset (r= −0.329,p< 0.0001). According to the proposed clinical classification based on the most prominent manifestations, the patients were designated into 5 distinct types: cognitive impairment-dominant type (34.1%, n = 76), episodic neurogenic event-dominant type (32.3%, n = 72), movement disorder-dominant type (17.5%, n = 39), autonomic dysfunction-dominant type (8.5%, n = 19), and neuromuscular disease-dominant type (7.6%, n = 17). Notably, 32.3% of the episodic neurogenic event-dominant type of NIID has characteristic focal cortical lesions on brain MRI presenting localized cortical edema or atrophy. The mean onset age of the neuromuscular disease-dominant type was 47.2 (17.6) years, younger than the other types (p< 0.001). There was no significant difference in the sizes of GGC repeats among the patients in the 5 types (p= 0.547, Kruskal-Wallis test).DiscussionThis observational study of NIID establishes an overall picture of the disease regarding clinical, imaging, and genetic characteristics. The proposed clinical classification of NIID based on the most prominent manifestation divides patients into 5 types.
Collapse
Affiliation(s)
- Hongfei Tai
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - An Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Yumei Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Shaocheng Liu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Yunzhu Pan
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Kai Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Guixian Zhao
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Mengwen Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Guode Wu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Songtao Niu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Hua Pan
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Bin Chen
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Xingao Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Gehong Dong
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Ying Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Sheng Guo
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaoyun Liu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Mingxia Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Hui Liang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Ming Huang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei'an Chen
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Zaiqiang Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
88
|
Shang L, Dong L, Huang X, Wang T, Mao C, Li J, Wang J, Liu C, Gao J. Association of APOE ε4/ε4 with fluid biomarkers in patients from the PUMCH dementia cohort. Front Aging Neurosci 2023; 15:1119070. [PMID: 37065463 PMCID: PMC10103647 DOI: 10.3389/fnagi.2023.1119070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundApolipoprotein-E (APOE) ε4 is a major genetic risk factor for Alzheimer’s disease (AD). Current studies, which were mainly based on the clinical diagnosis rather than biomarkers, come to inconsistent conclusions regarding the associations of APOE ε4 homozygotes (APOE ε4/ε4) and cerebrospinal fluid (CSF) biomarkers of AD. In addition, few studies have explored the associations of APOE ε4/ε4 with plasma biomarkers. Therefore, we aimed to investigate the associations of APOE ε4/ε4 with fluid biomarkers in dementia and biomarker-diagnosed AD.MethodsA total of 297 patients were enrolled. They were classified into Alzheimer’s continuum, AD, and non-AD, according to CSF biomarkers and/or β amyloid PET results. AD was a subgroup of the AD continuum. Plasma Amyloid β (Aβ) 40, Aβ42, glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), and phosphorylated tau (P-tau)181 were quantified in 144 of the total population using an ultra-sensitive Simoa technology. We analyzed the associations of APOE ε4/ε4 on CSF and plasma biomarkers in dementia and biomarker diagnosed AD.ResultsBased on the biomarker diagnostic criteria, 169 participants were diagnosed with Alzheimer’s continuum and 128 individuals with non-AD, and among the former, 120 patients with AD. The APOE ε4/ε4 frequencies were 11.8% (20/169), 14.2% (17/120), and 0.8% (1/128) in Alzheimer’s continuum, AD and non-AD, respectively. Only CSF Aβ42 was shown to be decreased in APOE ε4/ε4 carriers than in non-carriers for patients with AD (p = 0.024). Furthermore, we did not find any associations of APOE ε4 with plasma biomarkers of AD and non-AD. Interestingly, we found that in non-AD patients, APOE ε4 carriers had lower CSF Aβ42 (p = 0.018) and higher T-tau/Aβ42 ratios (p < 0.001) and P-tau181/Aβ42 ratios (p = 0.002) than non-carriers.ConclusionOur data confirmed that of the three groups (AD continuum, AD, and non-AD), those with AD had the highest frequency of APOE ɛ4/ɛ4 genotypes. The APOE ɛ4/ɛ4 was associated with CSF levels of Aβ42 but not tau for AD and non-AD, suggesting that APOE ɛ4/ɛ4 affected the Aβ metabolism of both. No associations between APOE ε4/ɛ4 and plasma biomarkers of AD and non-AD were found.
Collapse
|
89
|
Kong Y, Chen H, Zhang J. Neuronal intranuclear inclusion disease with neuroimaging mimicking MELAS. Neurol Sci 2023:10.1007/s10072-023-06725-9. [PMID: 36913146 DOI: 10.1007/s10072-023-06725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Affiliation(s)
- Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Quanshan District, Xuzhou, China.
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, China.
| |
Collapse
|
90
|
Neuronal intranuclear inclusion disease: a case report and literature review. Acta Neurol Belg 2023:10.1007/s13760-023-02210-4. [PMID: 36897506 DOI: 10.1007/s13760-023-02210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 03/11/2023]
|
91
|
Kurihara M, Komatsu H, Sengoku R, Shibukawa M, Morimoto S, Matsubara T, Arakawa A, Orita M, Ishibashi K, Mitsutake A, Shibata S, Ishiura H, Adachi K, Ohse K, Hatano K, Ihara R, Higashihara M, Nishina Y, Tokumaru AM, Ishii K, Saito Y, Murayama S, Kanemaru K, Iwata A. CSF P-Tau181 and Other Biomarkers in Patients With Neuronal Intranuclear Inclusion Disease. Neurology 2023; 100:e1009-e1019. [PMID: 36517236 PMCID: PMC9990848 DOI: 10.1212/wnl.0000000000201647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES CSF tau phosphorylated at threonine 181 (p-tau181) is a widely used biomarker for Alzheimer disease (AD) and has recently been regarded to reflect β-amyloid and/or p-tau deposition in the AD brain. Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by intranuclear inclusions in neurons, glial cells, and other somatic cells. Symptoms include dementia, neuropathy, and others. CSF biomarkers were not reported. The objective of this study was to investigate whether CSF biomarkers including p-tau181 are altered in patients with NIID. METHODS This was a retrospective observational study. CSF concentrations of p-tau181, total tau, amyloid-beta 1-42 (Aβ42), monoamine metabolites homovanillic acid (HVA), and 5-hydroxyindole acetic acid (5-HIAA) were compared between 12 patients with NIID, 120 patients with Alzheimer clinical syndrome biologically confirmed based on CSF biomarker profiles, and patients clinically diagnosed with other neurocognitive disorders (dementia with Lewy bodies [DLB], 24; frontotemporal dementia [FTD], 13; progressive supranuclear palsy [PSP], 21; and corticobasal syndrome [CBS], 13). Amyloid PET using Pittsburgh compound B (PiB) was performed in 6 patients with NIID. RESULTS The mean age of patients with NIID, AD, DLB, FTD, PSP, and CBS was 71.3, 74.6, 76.8, 70.2, 75.5, and 71.9 years, respectively. CSF p-tau181 was significantly higher in NIID (72.7 ± 24.8 pg/mL) compared with DLB, PSP, and CBS and was comparable between NIID and AD. CSF p-tau181 was above the cutoff value (50.0 pg/mL) in 11 of 12 patients with NIID (91.7%). Within these patients, only 2 patients showed decreased CSF Aβ42, and these patients showed negative or mild local accumulation in PiB PET, respectively. PiB PET scans were negative in the remaining 4 patients tested. The proportion of patients with increased CSF p-tau181 and normal Aβ42 (A-T+) was significantly higher in NIID (75%) compared with DLB, PSP, and CBS (4.2%, 4.8%, and 7.7%, respectively). CSF HVA and 5-HIAA concentrations were significantly higher in patients with NIID compared with disease controls. DISCUSSION CSF p-tau181 was increased in patients with NIID without amyloid accumulation. Although the deposition of p-tau has not been reported in NIID brains, the molecular mechanism of tau phosphorylation or secretion of p-tau may be altered in NIID.
Collapse
Affiliation(s)
- Masanori Kurihara
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Hiroki Komatsu
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Renpei Sengoku
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Mari Shibukawa
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Satoru Morimoto
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Tomoyasu Matsubara
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Akira Arakawa
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Makoto Orita
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kenji Ishibashi
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Akihiko Mitsutake
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Shota Shibata
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Hiroyuki Ishiura
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kaori Adachi
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kensuke Ohse
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Keiko Hatano
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Ryoko Ihara
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Mana Higashihara
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Yasushi Nishina
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Aya Midori Tokumaru
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kenji Ishii
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Yuko Saito
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Shigeo Murayama
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kazutomi Kanemaru
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Atsushi Iwata
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan.
| |
Collapse
|
92
|
Ishiura H, Tsuji S, Toda T. Recent advances in CGG repeat diseases and a proposal of fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, and oculophryngodistal myopathy (FNOP) spectrum disorder. J Hum Genet 2023; 68:169-174. [PMID: 36670296 PMCID: PMC9968658 DOI: 10.1038/s10038-022-01116-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
While whole genome sequencing and long-read sequencing have become widely available, more and more focuses are on noncoding expanded repeats. Indeed, more than half of noncoding repeat expansions related to diseases have been identified in the five years. An exciting aspect of the progress in this field is an identification of a phenomenon called repeat motif-phenotype correlation. Repeat motif-phenotype correlation in noncoding repeat expansion diseases is first found in benign adult familial myoclonus epilepsy. The concept is extended in the research of CGG repeat expansion diseases. In this review, we focus on newly identified CGG repeat expansion diseases, update the concept of repeat motif-phenotype correlation in CGG repeat expansion diseases, and propose a clinical concept of FNOP (fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, and oculopharyngodistal myopathy)-spectrum disorder, which shares clinical features and thus probably share some common disease pathophysiology, to further facilitate discussion and progress in this field.
Collapse
Affiliation(s)
- Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
93
|
Furuta M, Sato M, Kasahara H, Tsukagoshi S, Hirayanagi K, Fujita Y, Takai E, Aihara Y, Okamoto K, Ikeda Y. Clinical, radiological, and molecular analyses of neuronal intranuclear inclusion disease with polyglycine inclusions. J Neurol Sci 2023; 448:120618. [PMID: 37001413 DOI: 10.1016/j.jns.2023.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a clinically complex neurological disorder that appears sporadically or autosomally. Expansions of intronic GGC trinucleotide repeats in the NOTCH2 N-terminal-like C (NOTCH2NLC) gene cause NIID. In this study, to clarify the clinical characteristics useful for the differential diagnosis of NIID, clinical data of neurological examination, neuroimaging, and nerve conduction studies of six NIID patients diagnosed by pathological or genetic investigations were analyzed. Clinically useful characteristics for diagnosing NIID include general hyporeflexia, episodic disturbance of consciousness, sensory disturbance, miosis, and dementia. Furthermore, neuroimaging findings, such as leukoencephalopathy in T2-weighted magnetic resonance imaging and a linear high intensity of subcortical U-fibers in diffusion-weighted imaging (DWI), as well as decreased motor nerve conduction velocity, are especially important biomarkers for NIID. However, it is necessary to remember that these features may not always be present, as shown in one of the cases who did not have a DWI abnormality in this study. This study also investigated whether expanded GGC repeats were translated into polyglycine. Immunohistochemical analysis using a custom antibody raised against putative C-terminal polypeptides followed by polyglycine of uN2CpolyG revealed that polyglycines were localized in the intranuclear inclusions in skin biopsy specimens from all six patients, suggesting its involvement in the pathogenesis of NIID.
Collapse
|
94
|
The clinical and neuroimaging features of sporadic adult-onset neuronal intranuclear inclusion disease. Can J Neurol Sci 2023; 50:243-248. [PMID: 35125125 DOI: 10.1017/cjn.2021.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neuronal intranuclear inclusion disease (NIID) is a rare slowly progressive neurodegenerative disorder that is characterized pathologically by the presence of eosinophilic intranuclear inclusions. NIID is a heterogeneous disease with diverse clinical manifestations, making diagnosis difficult. Here, we analyzed the clinical, pathological, and radiological features of Chinese NIID patients to improve our understanding of NIID. METHODS A total of 17 patients with sporadic NIID were recruited from the Ruijin Hospital Database between 2014 and 2021. Clinical patient information and brain MRI data were collected. All of the patients underwent standard skin biopsy procedures. RESULTS The average age of onset for symptoms was 60.18 years, and the average duration of illness was 4.06 years. All patients were diagnosed with NIID due to the presence of intranuclear inclusions confirmed by skin biopsy. Tremor was the most common initial symptom. The average ages at onset and at diagnosis were both lower in patients with tremor than in patients without tremor. NIID may be a systemic disease that affects multiple organs, for one patient had a history of chronic renal insufficiency for more than 10 years. In addition to high-intensity U-fibers signals on diffusion-weighted imaging, there were several other MRI findings, such as focal leukoencephalopathy and cortical swelling. Encephalitic episodes followed by reversible leukoencephalopathy was another important imaging feature of NIID. CONCLUSION The clinical manifestations of NIID are highly variable. Tremor may be the most common initial symptom in certain cohorts. Encephalitic episodes followed by reversible asymmetric leukoencephalopathy may also indicate this disease.
Collapse
|
95
|
Cai N, Lin J, Zhu J. Reversible Diffusion-Weighted Imaging High Intensity Signal in Wilson Disease. Neurology 2023; 100:437-438. [PMID: 36456202 PMCID: PMC9990432 DOI: 10.1212/wnl.0000000000201631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Naiqing Cai
- From the Department of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jie Lin
- From the Department of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiting Zhu
- From the Department of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
96
|
Autonomic dysfunction-dominant phenotype in a Chinese family with biallelic GGC repeat expansions in NOTCH2NLC. Neurol Sci 2023; 44:1769-1772. [PMID: 36809423 DOI: 10.1007/s10072-023-06688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
The GGC repeat expansions in the NOTCH2NLC gene are associated with multiple neurodegenerative disorders. Herein, we report the clinical phenotype in a family with biallelic GGC expansions in NOTCH2NLC. Autonomic dysfunction was a prominent clinical manifestation in three genetically confirmed patients without dementia, parkinsonism, and cerebellar ataxia for > 12 years. A 7-T brain magnetic resonance imaging in two patients revealed a change in the small cerebral veins. The biallelic GGC repeat expansions may not modify the disease progression in neuronal intranuclear inclusion disease. Autonomic dysfunction-dominant may expand the clinical phenotype of NOTCH2NLC.
Collapse
|
97
|
Kwan JR, Moy WL, Narasimhalu K, Yong KP. Neuronal intranuclear inclusion disease. Pract Neurol 2023; 23:246-248. [PMID: 36808080 DOI: 10.1136/pn-2022-003582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 02/22/2023]
Abstract
Neuronal intranuclear inclusion disease is a rare genetic condition, previously diagnosed only at postmortem, but its characteristic radiological features now allow its diagnosis in life. The clinical presentation is variable and we hope this case report will raise awareness of this condition.
Collapse
Affiliation(s)
- Jia Rui Kwan
- General Medicine, Sengkang General Hospital, Singapore
| | - Wai Lun Moy
- General Medicine, Sengkang General Hospital, Singapore
| | | | - Kok Pin Yong
- Neurology, National Neuroscience Institute, Singapore
| |
Collapse
|
98
|
Current advances in neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:1881-1889. [PMID: 36795299 DOI: 10.1007/s10072-023-06677-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare but probably underdiagnosed neurodegenerative disorder due to pathogenic GGC expansions in the NOTCH2NLC gene. In this review, we summarize recent developments in the inheritance features, pathogenesis, and histopathologic and radiologic features of NIID that subvert the previous perceptions of NIID. GGC repeat sizes determine the age of onset and clinical phenotypes of NIID patients. Anticipation may be absent in NIID but paternal bias is observed in NIID pedigrees. Eosinophilic intranuclear inclusions in skin tissues once considered pathological hallmarks of NIID can also present in other GGC repeat diseases. Diffusion-weighted imaging (DWI) hyperintensity along the corticomedullary junction once considered the imaging hallmark of NIID can frequently be absent in muscle weakness and parkinsonism phenotype of NIID. Besides, DWI abnormalities can appear years after the onset of predominant symptoms and may even disappear completely with disease progression. Moreover, continuous reports of NOTCH2NLC GGC expansions in patients with other neurodegenerative diseases lead to the proposal of a new concept of NOTCH2NLC-related GGC repeat expansion disorders (NRED). However, by reviewing the previous literature, we point out the limitations of these studies and provide evidence that these patients are actually suffering from neurodegenerative phenotypes of NIID.
Collapse
|
99
|
Fu J, Zhao C, Hou G, Liu X, Zheng M, Zhang Y, Zhang S, Zheng D, Zhang Y, Huang X, Ye S, Fan D. A case report of neuronal intranuclear inclusion disease with paroxysmal peripheral neuropathy-like onset lacking typical signs on diffusion-weighted imaging. Front Neurol 2023; 14:1117243. [PMID: 36846128 PMCID: PMC9950388 DOI: 10.3389/fneur.2023.1117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Background Neuronal intranuclear inclusion disease (NIID) is a slowly progressive neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions and the GGC repeats in the 5'-untranslated region of NOTCH2NLC. The prevalent presence of high-intensity signal along the corticomedullary junction on diffusion-weighted imaging (DWI) helps to recognize this heterogeneous disease despite of highly variable clinical manifestations. However, patients without the typical sign on DWI are often misdiagnosed. Besides, there are no reports of NIID patients presenting with paroxysmal peripheral neuropathy-like onset to date. Case presentation We present a patient with NIID who suffered recurrent transient numbness in arms for 17 months. Magnetic resonance imaging (MRI) showed diffuse, bilateral white matter lesions without typical subcortical DWI signals. Electrophysiological studies revealed mixed demyelinating and axonal sensorimotor polyneuropathies involving four extremities. After excluding differential diagnosis of peripheral neuropathy through body fluid tests and a sural nerve biopsy, NIID was confirmed by a skin biopsy and the genetic analysis of NOTCH2NLC. Conclusion This case innovatively demonstrates that NIID could manifest as paroxysmal peripheral neuropathy-like onset, and addresses the electrophysiological characteristics of NIID in depth. We broaden the clinical spectrum of NIID and provide new insights into its differential diagnosis from the perspective of peripheral neuropathy.
Collapse
Affiliation(s)
- Jiayu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Chen Zhao
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Guanghao Hou
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Mei Zheng
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Shuo Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Danfeng Zheng
- Department of Pathology, Peking University Third Hospital, Beijing, China
| | - Yixuan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiao Huang
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China,*Correspondence: Dongsheng Fan ✉
| |
Collapse
|
100
|
Hong D, Wang H, Zhu M, Peng Y, Huang P, Zheng Y, Yu M, Meng L, Li F, Yu J, Zhou M, Deng J, Wang Z, Yuan Y. Subclinical peripheral neuropathy is common in neuronal intranuclear inclusion disease with dominant encephalopathy. Eur J Neurol 2023; 30:527-537. [PMID: 36263606 DOI: 10.1111/ene.15606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Neuronal intranuclear inclusion disease (NIID) is associated with CGG repeat expansion in the NOTCH2NLC gene. Although pure or dominant peripheral neuropathy has been described as a subtype of NIID in a few patients, most NIID patients predominantly show involvements of the central nervous system (CNS). It is necessary to further explore whether these patients have subclinical peripheral neuropathy. METHODS Twenty-eight NIID patients, clinically characterized by CNS-dominant involvements, were recruited from two tertiary hospitals. Standard nerve conduction studies were performed in all patients. Skin and sural nerve biopsies were performed in 28 and 15 patients, respectively. Repeat-primed polymerase chain reaction and amplicon length polymerase chain reaction were used to screen the CGG repeat expansion in NOTCH2NLC. RESULTS All 28 patients can be diagnosed with NIID based on skin pathological and genetic changes. All patients predominantly showed CNS symptoms mainly characterized by episodic encephalopathy and cognitive impairments, but no clinical symptoms of peripheral neuropathy could be observed initially. Electrophysiological abnormalities were found in 96.4% (27/28) of these patients, indicating that subclinical peripheral neuropathy is common in NIID patients with CNS-dominant type. Electrophysiological and neuropathological studies revealed that demyelinating degeneration was the main pathological pattern in these patients, although mild axonal degeneration was also observed in some patients. No significant association between CGG repeat size and the change of nerve conduction velocity was found in these patients. CONCLUSIONS This study demonstrated that most patients with CNS-dominant NIID had subclinical peripheral neuropathy. Electrophysiological examination should be the routinely diagnostic workflow for every NIID patient.
Collapse
Affiliation(s)
- Daojun Hong
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Min Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yilei Zheng
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Meihong Zhou
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|