51
|
Developmental HCN channelopathy results in decreased neural progenitor proliferation and microcephaly in mice. Proc Natl Acad Sci U S A 2021; 118:2009393118. [PMID: 34429357 DOI: 10.1073/pnas.2009393118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a role for HCN channel subunits as a part of a general mechanism influencing cortical development in mammals.
Collapse
|
52
|
Bleakley LE, McKenzie CE, Soh MS, Forster IC, Pinares-Garcia P, Sedo A, Kathirvel A, Churilov L, Jancovski N, Maljevic S, Berkovic SF, Scheffer IE, Petrou S, Santoro B, Reid CA. Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy. Brain 2021; 144:2060-2073. [PMID: 33822003 PMCID: PMC8370418 DOI: 10.1093/brain/awab145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023] Open
Abstract
Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.
Collapse
Affiliation(s)
- Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Chaseley E McKenzie
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ming S Soh
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ian C Forster
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paulo Pinares-Garcia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alicia Sedo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Anirudh Kathirvel
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
- Melbourne Medical School, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nikola Jancovski
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Ingrid E Scheffer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bina Santoro
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
53
|
Porro A, Abbandonato G, Veronesi V, Russo A, Binda A, Antolini L, Granata T, Castellotti B, Marini C, Moroni A, DiFrancesco JC, Rivolta I. Do the functional properties of HCN1 mutants correlate with the clinical features in epileptic patients? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:147-155. [PMID: 34310985 DOI: 10.1016/j.pbiomolbio.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
The altered function of the Hyperpolarization-activated Cyclic-Nucleotide-gated (HCN) ion channels plays an important role in the pathogenesis of epilepsy in humans. In particular, HCN1 missense mutations have been recently identified in patients with different epileptic phenotypes, varying from mild to severe. Their electrophysiological characterization shows that mutated channels can act both with loss-of-function and gain-of-function mechanisms of action, without an evident correlation with the phenotype. In search for a correlation between clinical features and biophysical properties of the mutations, in this work we considered sixteen HCN1 mutations, found in eighteen Early Infantile Epileptic Encephalopathy (EIEE) patients. Statistical analysis did not establish any significant correlation between the clinical parameters and the current properties of the mutant channels. The lack of significance of our results could depend on the small number of mutations analyzed, epilepsy-associated with certainty. With the progressive increase of Next Generation Sequencing in patients with early-onset epilepsy, it is expected that the number of patients with HCN1 mutations will grow steadily. Functional characterization of epilepsy-associated HCN1 mutations remains a fundamental tool for a better understanding of the pathogenetic mechanisms leading to the disease in humans.
Collapse
Affiliation(s)
| | | | - Valentina Veronesi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Alberto Russo
- Department of Biosciences, University of Milan, Milan, Italy.
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Laura Antolini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Carla Marini
- Department of Child Neuropsychiatry, Children's Hospital, Ancona, Italy.
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy.
| | - Jacopo C DiFrancesco
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Neurology, Epilepsy Center, ASST San Gerardo Hospital, University of Milano- Bicocca, Monza, Italy.
| | - Ilaria Rivolta
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
54
|
Biophysical analysis of an HCN1 epilepsy variant suggests a critical role for S5 helix Met-305 in voltage sensor to pore domain coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:156-172. [PMID: 34298002 DOI: 10.1016/j.pbiomolbio.2021.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Hyperpolarization-gated, cyclic nucleotide-activated (HCN1-4) channels are inwardly rectifying cation channels that display voltage dependent activation and de-activation. Pathogenic variants in HCN1 are associated with severe developmental and epileptic encephalopathies including the de novo HCN1 M305L variant. M305 is located in the S5 domain that is implicated in coupling voltage sensor domain movement to pore opening. This variant lacks voltage-dependent activation and de-activation and displays normal cation selectivity. To elucidate the impact of the mutation on the channel structure-function relations, molecular dynamics simulations of the wild type and mutant homotetramers were compared and identified a sulphur-aromatic interaction between M305 and F389 that contributes to the coupling of the voltage-sensing domain to the pore domain. To mimic the heterozygous condition as a heterotetrameric channel assembly, Xenopus oocytes were co-injected with various ratios of wild-type and mutant subunit cRNAs and the biophysical properties of channels with different subunit stoichiometries were determined. The results showed that a single mutated subunit was sufficient to significantly disrupt the voltage dependence of activation. The functional data were qualitatively consistent with predictions of a model that assumes independent activation of the voltage sensing domains allosterically controlling the closed to open transition of the pore. Overall, the M305L mutation results in an HCN1 channel that lacks voltage dependence and facilitates excitatory cation flow at membrane potentials that would normally close the channel. Our findings provide molecular insights into HCN1 channels and reveal the structural and biophysical basis of the severe epilepsy phenotype associated with the M305L mutation.
Collapse
|
55
|
Dendrites of Neocortical Pyramidal Neurons: The Key to Understand Intellectual Disability. Cell Mol Neurobiol 2021; 42:147-153. [PMID: 34216332 PMCID: PMC8732981 DOI: 10.1007/s10571-021-01123-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/27/2021] [Indexed: 12/02/2022]
Abstract
Pyramidal neurons (PNs) are the most abundant cells of the neocortex and display a vast dendritic tree, divided into basal and apical compartments. Morphological and functional anomalies of PN dendrites are at the basis of virtually all neurological and mental disorders, including intellectual disability. Here, we provide evidence that the cognitive deficits observed in different types of intellectual disability might be sustained by different parts of the PN dendritic tree, or by a dysregulation of their interaction.
Collapse
|
56
|
Abstract
This scientific commentary refers to ‘Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy’ by Bleakley et al. (doi:10.1093/brain/awab145).
Collapse
Affiliation(s)
- Mala M Shah
- UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
57
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
58
|
Hui T, Jing H, Lai X. Neuromuscular junction-specific genes screening by deep RNA-seq analysis. Cell Biosci 2021; 11:81. [PMID: 33933147 PMCID: PMC8088568 DOI: 10.1186/s13578-021-00590-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 01/17/2023] Open
Abstract
Background Neuromuscular junctions (NMJs) are chemical synapses formed between motor neurons and skeletal muscle fibers and are essential for controlling muscle contraction. NMJ dysfunction causes motor disorders, muscle wasting, and even breathing difficulties. Increasing evidence suggests that many NMJ disorders are closely related to alterations in specific gene products that are highly concentrated in the synaptic region of the muscle. However, many of these proteins are still undiscovered. Thus, screening for NMJ-specific proteins is essential for studying NMJ and the pathogenesis of NMJ diseases. Results In this study, synaptic regions (SRs) and nonsynaptic regions (NSRs) of diaphragm samples from newborn (P0) and adult (3-month-old) mice were used for RNA-seq. A total of 92 and 182 genes were identified as differentially expressed between the SR and NSR in newborn and adult mice, respectively. Meanwhile, a total of 1563 genes were identified as differentially expressed between the newborn SR and adult SR. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) of the DEGs were performed. Protein–protein interaction (PPI) networks were constructed using STRING and Cytoscape. Further analysis identified some novel proteins and pathways that may be important for NMJ development, maintenance and maturation. Specifically, Sv2b, Ptgir, Gabrb3, P2rx3, Dlgap1 and Rims1 may play roles in NMJ development. Hcn1 may localize to the muscle membrane to regulate NMJ maintenance. Trim63, Fbxo32 and several Asb family proteins may regulate muscle developmental-related processes. Conclusion Here, we present a complete dataset describing the spatiotemporal transcriptome changes in synaptic genes and important synaptic pathways. The neuronal projection-related pathway, ion channel activity and neuroactive ligand-receptor interaction pathway are important for NMJ development. The myelination and voltage-gated ion channel activity pathway may be important for NMJ maintenance. These data will facilitate the understanding of the molecular mechanisms underlying the development and maintenance of NMJ and the pathogenesis of NMJ disorders.
Collapse
Affiliation(s)
- Tiankun Hui
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Hongyang Jing
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China. .,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
59
|
Fitzgerald E, Boardman JP, Drake AJ. Early life stress and LPS interact to modify the mouse cortical transcriptome in the neonatal period. Brain Behav Immun Health 2021; 13:100219. [PMID: 34589738 PMCID: PMC8474587 DOI: 10.1016/j.bbih.2021.100219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Preterm birth (PTB) is closely associated with atypical cerebral cortical development and cognitive impairment. Early exposure to extrauterine life often results in atypical environmental and biological experiences that co-occur, including early life stress (ELS) and systemic inflammation. Understanding how these experiences interact to shape cortical development is an essential prerequisite to developing therapeutic interventions that will work in the complex postnatal environment of the preterm infant. Here, we studied the effects of a murine model of infection and ELS on the neonatal cortex transcriptome. METHODS We used a mouse model of infection (1 mg/kg LPS at postnatal day (P)3) +/- ELS (modified maternal separation; MMS on days P4-P6) at timepoints with neurodevelopmental relevance to PTB. We used 4 groups: control, LPS, MMS and LPS + MMS. Cortices were dissected at P6 for 3'RNA sequencing. RESULTS LPS exposure resulted in reduced weight gain and increased expression of inflammation-associated genes in the brain. More genes were differentially expressed following LPS (15) and MMS (29) than with LPS + MMS (8). There was significant overlap between the LPS and MMS datasets, particularly amongst upregulated genes, and when comparing LPS and MMS datasets with LPS + MMS. Gene Ontology terms related to the extracellular matrix and cytokine response were enriched following MMS, but not following LPS or LPS + MMS. 26 Reactome pathways were enriched in the LPS group, none of which were enriched in the LPS + MMS group. Finally, a rank-rank hypergeometric overlap test showed similarities, particularly in upregulated genes, in the LPS and MMS conditions, indicating shared mechanisms. CONCLUSION LPS and MMS interact to modify the cortical transcriptome in the neonatal period. This has important implications for understanding the neural basis of atypical cortical development associated with early exposure to extrauterine life.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - James P. Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Amanda J. Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
60
|
Concepcion FA, Khan MN, Ju Wang JD, Wei AD, Ojemann JG, Ko AL, Shi Y, Eng JK, Ramirez JM, Poolos NP. HCN Channel Phosphorylation Sites Mapped by Mass Spectrometry in Human Epilepsy Patients and in an Animal Model of Temporal Lobe Epilepsy. Neuroscience 2021; 460:13-30. [PMID: 33571596 DOI: 10.1016/j.neuroscience.2021.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Because hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels modulate the excitability of cortical and hippocampal principal neurons, these channels play a key role in the hyperexcitability that occurs during the development of epilepsy after a brain insult, or epileptogenesis. In epileptic rats generated by pilocarpine-induced status epilepticus, HCN channel activity is downregulated by two main mechanisms: a hyperpolarizing shift in gating and a decrease in amplitude of the current mediated by HCN channels, Ih. Because these mechanisms are modulated by various phosphorylation signaling pathways, we hypothesized that phosphorylation changes occur at individual HCN channel amino acid residues (phosphosites) during epileptogenesis. We collected CA1 hippocampal tissue from male Sprague Dawley rats made epileptic by pilocarpine-induced status epilepticus, and age-matched naïve controls. We also included resected human brain tissue containing epileptogenic zones (EZs) where seizures arise for comparison to our chronically epileptic rats. After enrichment for HCN1 and HCN2 isoforms by immunoprecipitation and trypsin in-gel digestion, the samples were analyzed by mass spectrometry. We identified numerous phosphosites from HCN1 and HCN2 channels, representing a novel survey of phosphorylation sites within HCN channels. We found high levels of HCN channel phosphosite homology between humans and rats. We also identified a novel HCN1 channel phosphosite S791, which underwent significantly increased phosphorylation during the chronic epilepsy stage. Heterologous expression of a phosphomimetic mutant, S791D, replicated a hyperpolarizing shift in Ih gating seen in neurons from chronically epileptic rats. These results show that HCN1 channel phosphorylation is altered in epilepsy and may be of pathogenic importance.
Collapse
Affiliation(s)
- F A Concepcion
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - M N Khan
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - J-D Ju Wang
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - A D Wei
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - J G Ojemann
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - A L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Y Shi
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - J K Eng
- Proteomics Resource, University of Washington, Seattle, WA, United States
| | - J-M Ramirez
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - N P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States.
| |
Collapse
|
61
|
Sawires R, Buttery J, Fahey M. A Review of Febrile Seizures: Recent Advances in Understanding of Febrile Seizure Pathophysiology and Commonly Implicated Viral Triggers. Front Pediatr 2021; 9:801321. [PMID: 35096712 PMCID: PMC8793886 DOI: 10.3389/fped.2021.801321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Febrile seizures are one of the commonest presentations in young children, with a 2-5% incidence in Western countries. Though they are generally benign, with rare long-term sequelae, there is much to be learned about their pathophysiology and risk factors. Febrile seizures are propagated by a variety of genetic and environmental factors, including viruses and vaccines. These factors must be taken into consideration by a clinician aiming to assess, diagnose and treat a child presenting with fevers and seizures, as well as to explain the sequelae of the febrile seizures to the concerned parents of the child. Our article provides an overview of this common childhood condition, outlining both the underlying mechanisms and the appropriate clinical approach to a child presenting with febrile seizures.
Collapse
Affiliation(s)
- Rana Sawires
- Department of Paediatrics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jim Buttery
- Department of Paediatrics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Child Health Informatics, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Michael Fahey
- Department of Neurology, Monash Children's Hospital, Clayton, VIC, Australia.,Neurogenetics Department, Monash Paediatrics, Monash University, Clayton, VIC, Australia
| |
Collapse
|
62
|
Testing broad-spectrum and isoform-preferring HCN channel blockers for anticonvulsant properties in mice. Epilepsy Res 2020; 168:106484. [DOI: 10.1016/j.eplepsyres.2020.106484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
|
63
|
Santoro B, Shah MM. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders. Annu Rev Pharmacol Toxicol 2020; 60:109-131. [PMID: 31914897 DOI: 10.1146/annurev-pharmtox-010919-023356] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits (HCN1-4) have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.
Collapse
Affiliation(s)
- Bina Santoro
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mala M Shah
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, United Kingdom;
| |
Collapse
|
64
|
Cerulli Irelli E, Morano A, Barone FA, Fisco G, Fanella M, Orlando B, Fattouch J, Manfredi M, Giallonardo AT, Di Bonaventura C. Persistent treatment resistance in genetic generalized epilepsy: A long‐term outcome study in a tertiary epilepsy center. Epilepsia 2020; 61:2452-2460. [DOI: 10.1111/epi.16708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Emanuele Cerulli Irelli
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Alessandra Morano
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Francesca A. Barone
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Giacomo Fisco
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Martina Fanella
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Biagio Orlando
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Jinane Fattouch
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Mario Manfredi
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Anna Teresa Giallonardo
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit Department of Human Neurosciences Policlinico “Umberto I”, “Sapienza” University Rome Italy
| |
Collapse
|
65
|
Gabapentin treatment in a patient with KCNQ2 developmental epileptic encephalopathy. Pharmacol Res 2020; 160:105200. [DOI: 10.1016/j.phrs.2020.105200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
|
66
|
Takai A, Yamaguchi M, Yoshida H, Chiyonobu T. Investigating Developmental and Epileptic Encephalopathy Using Drosophila melanogaster. Int J Mol Sci 2020; 21:ijms21176442. [PMID: 32899411 PMCID: PMC7503973 DOI: 10.3390/ijms21176442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are the spectrum of severe epilepsies characterized by early-onset, refractory seizures occurring in the context of developmental regression or plateauing. Early infantile epileptic encephalopathy (EIEE) is one of the earliest forms of DEE, manifesting as frequent epileptic spasms and characteristic electroencephalogram findings in early infancy. In recent years, next-generation sequencing approaches have identified a number of monogenic determinants underlying DEE. In the case of EIEE, 85 genes have been registered in Online Mendelian Inheritance in Man as causative genes. Model organisms are indispensable tools for understanding the in vivo roles of the newly identified causative genes. In this review, we first present an overview of epilepsy and its genetic etiology, especially focusing on EIEE and then briefly summarize epilepsy research using animal and patient-derived induced pluripotent stem cell (iPSC) models. The Drosophila model, which is characterized by easy gene manipulation, a short generation time, low cost and fewer ethical restrictions when designing experiments, is optimal for understanding the genetics of DEE. We therefore highlight studies with Drosophila models for EIEE and discuss the future development of their practical use.
Collapse
Affiliation(s)
- Akari Takai
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto 619-0237, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
- Correspondence:
| |
Collapse
|
67
|
Lignani G, Baldelli P, Marra V. Homeostatic Plasticity in Epilepsy. Front Cell Neurosci 2020; 14:197. [PMID: 32676011 PMCID: PMC7333442 DOI: 10.3389/fncel.2020.00197] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022] Open
Abstract
In the healthy brain, neuronal excitability and synaptic strength are homeostatically regulated to keep neuronal network activity within physiological boundaries. Epilepsy is characterized by episodes of highly synchronized firing across in widespread neuronal populations, due to a failure in regulation of network activity. Here we consider epilepsy as a failure of homeostatic plasticity or as a maladaptive response to perturbations in the activity. How homeostatic compensation is involved in epileptogenic processes or in the chronic phase of epilepsy, is still debated. Although several theories have been proposed, there is relatively little experimental evidence to evaluate them. In this perspective, we will discuss recent results that shed light on the potential role of homeostatic plasticity in epilepsy. First, we will present some recent insights on how homeostatic compensations are probably active before and during epileptogenesis and how their actions are temporally regulated and closely dependent on the progression of pathology. Then, we will consider the dual role of transcriptional regulation during epileptogenesis, and finally, we will underline the importance of homeostatic plasticity in the context of therapeutic interventions for epilepsy. While classic pharmacological interventions may be counteracted by the epileptic brain to maintain its potentially dysfunctional set point, novel therapeutic approaches may provide the neuronal network with the tools necessary to restore its physiological balance.
Collapse
Affiliation(s)
- Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
68
|
Kharouf Q, Phillips AM, Bleakley LE, Morrisroe E, Oyrer J, Jia L, Ludwig A, Jin L, Nicolazzo JA, Cerbai E, Romanelli MN, Petrou S, Reid CA. The hyperpolarization-activated cyclic nucleotide-gated 4 channel as a potential anti-seizure drug target. Br J Pharmacol 2020; 177:3712-3729. [PMID: 32364262 DOI: 10.1111/bph.15088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by four genes (HCN1-4) with distinct biophysical properties and functions within the brain. HCN4 channels activate slowly at robust hyperpolarizing potentials, making them more likely to be engaged during hyperexcitable neuronal network activity seen during seizures. HCN4 channels are also highly expressed in thalamic nuclei, a brain region implicated in seizure generalization. Here, we assessed the utility of targeting the HCN4 channel as an anti-seizure strategy using pharmacological and genetic approaches. EXPERIMENTAL APPROACH The impact of reducing HCN4 channel function on seizure susceptibility and neuronal network excitability was studied using an HCN4 channel preferring blocker (EC18) and a conditional brain specific HCN4 knockout mouse model. KEY RESULTS EC18 (10 mg·kg-1 ) and brain-specific HCN4 channel knockout reduced seizure susceptibility and proconvulsant-mediated cortical spiking recorded using electrocorticography, with minimal effects on other mouse behaviours. EC18 (10 μM) decreased neuronal network bursting in mouse cortical cultures. Importantly, EC18 was not protective against proconvulsant-mediated seizures in the conditional HCN4 channel knockout mouse and did not reduce bursting behaviour in AAV-HCN4 shRNA infected mouse cortical cultures. CONCLUSIONS AND IMPLICATIONS These data suggest the HCN4 channel as a potential pharmacologically relevant target for anti-seizure drugs that is likely to have a low side-effect liability in the CNS.
Collapse
Affiliation(s)
- Qays Kharouf
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - A Marie Phillips
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Emma Morrisroe
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Julia Oyrer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Linghan Jia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health, (NEUROFARBA), University of Florence, Florence, Italy
| | - M Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, (NEUROFARBA), University of Florence, Florence, Italy
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
69
|
D'Adamo MC, Liantonio A, Conte E, Pessia M, Imbrici P. Ion Channels Involvement in Neurodevelopmental Disorders. Neuroscience 2020; 440:337-359. [PMID: 32473276 DOI: 10.1016/j.neuroscience.2020.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Inherited and sporadic mutations in genes encoding for brain ion channels, affecting membrane expression or biophysical properties, have been associated with neurodevelopmental disorders characterized by epilepsy, cognitive and behavioral deficits with significant phenotypic and genetic heterogeneity. Over the years, the screening of a growing number of patients and the functional characterization of newly identified mutations in ion channels genes allowed to recognize new phenotypes and to widen the clinical spectrum of known diseases. Furthermore, advancements in understanding disease pathogenesis at atomic level or using patient-derived iPSCs and animal models have been pivotal to orient therapeutic intervention and to put the basis for the development of novel pharmacological options for drug-resistant disorders. In this review we will discuss major improvements and critical issues concerning neurodevelopmental disorders caused by dysfunctions in brain sodium, potassium, calcium, chloride and ligand-gated ion channels.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | | | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|
70
|
Rivolta I, Binda A, Masi A, DiFrancesco JC. Cardiac and neuronal HCN channelopathies. Pflugers Arch 2020; 472:931-951. [PMID: 32424620 DOI: 10.1007/s00424-020-02384-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. In the voltage range of activation, HCN channels carry an inward current mediated by Na+ and K+, termed If in the heart and Ih in neurons. Altered function of HCN channels, mainly HCN4, is associated with sinus node dysfunction and other arrhythmias such as atrial fibrillation, ventricular tachycardia, and atrioventricular block. In recent years, several data have also shown that dysfunctional HCN channels, in particular HCN1, but also HCN2 and HCN4, can play a pathogenic role in epilepsy; these include experimental data from animal models, and data collected over genetic mutations of the channels identified and characterized in epileptic patients. In the central nervous system, alteration of the Ih current could predispose to the development of neurodegenerative diseases such as Parkinson's disease; since HCN channels are widely expressed in the peripheral nervous system, their dysfunctional behavior could also be associated with the pathogenesis of neuropathic pain. Given the fundamental role played by the HCN channels in the regulation of the discharge activity of cardiac and neuronal cells, the modulation of their function for therapeutic purposes is under study since it could be useful in various pathological conditions. Here we review the present knowledge of the HCN-related channelopathies in cardiac and neurological diseases, including clinical, genetic, therapeutic, and physiopathological aspects.
Collapse
Affiliation(s)
- Ilaria Rivolta
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Anna Binda
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Jacopo C DiFrancesco
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, ASST San Gerardo Hospital, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|
71
|
Maljevic S, Keren B, Aung YH, Forster IC, Mignot C, Buratti J, Lafitte A, Freihuber C, Rodan LH, Bergin A, Hubert L, Poirier K, Munnich A, Besmond C, Hauser N, Miller R, McWalter K, Nabbout R, Héron D, Leguern E, Depienne C, Petrou S, Nava C. Novel GABRA2 variants in epileptic encephalopathy and intellectual disability with seizures. Brain 2020; 142:e15. [PMID: 31032849 DOI: 10.1093/brain/awz079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Keren
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France
| | - Ye Htet Aung
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Ian C Forster
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Cyril Mignot
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France.,Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Julien Buratti
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France
| | - Aurélie Lafitte
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France
| | - Cécile Freihuber
- AP-HP, Hôpital Trousseau, Service de Neuropédiatrie, Paris, France
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann Bergin
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurence Hubert
- INSERM UMR 1163, Translational Genetics Lab., Paris-Descartes University, Imagine Institute, Paris, France
| | - Karine Poirier
- INSERM UMR 1163, Translational Genetics Lab., Paris-Descartes University, Imagine Institute, Paris, France
| | - Arnold Munnich
- INSERM UMR 1163, Translational Genetics Lab., Paris-Descartes University, Imagine Institute, Paris, France
| | - Claude Besmond
- INSERM UMR 1163, Translational Genetics Lab., Paris-Descartes University, Imagine Institute, Paris, France
| | - Natalie Hauser
- Inova Health System, Inova Translational Medicine Institute, Falls Church, VA, USA
| | - Rebecca Miller
- Inova Health System, Inova Translational Medicine Institute, Falls Church, VA, USA
| | | | - Rima Nabbout
- APHP, Hôpital Necker Enfants Malades, Centre de référence épilepsies rares, Service de Neurologie pédiatrique, Paris, France
| | - Delphine Héron
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France
| | - Eric Leguern
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France.,Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Christel Depienne
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France.,Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Caroline Nava
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France.,Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| |
Collapse
|
72
|
Burgess R, Wang S, McTague A, Boysen KE, Yang X, Zeng Q, Myers KA, Rochtus A, Trivisano M, Gill D, Sadleir LG, Specchio N, Guerrini R, Marini C, Zhang YH, Mefford HC, Kurian MA, Poduri AH, Scheffer IE. The Genetic Landscape of Epilepsy of Infancy with Migrating Focal Seizures. Ann Neurol 2020; 86:821-831. [PMID: 31618474 DOI: 10.1002/ana.25619] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe developmental and epileptic encephalopathies. We delineate the genetic causes and genotype-phenotype correlations of a large EIMFS cohort. METHODS Phenotypic and molecular data were analyzed on patients recruited through an international collaborative study. RESULTS We ascertained 135 patients from 128 unrelated families. Ninety-three of 135 (69%) had causative variants (42/55 previously reported) across 23 genes, including 9 novel EIMFS genes: de novo dominant GABRA1, GABRB1, ATP1A3; X-linked CDKL5, PIGA; and recessive ITPA, AIMP1, KARS, WWOX. The most frequently implicated genes were KCNT1 (36/135, 27%) and SCN2A (10/135, 7%). Mosaicism occurred in 2 probands (SCN2A, GABRB3) and 3 unaffected mothers (KCNT1). Median age at seizure onset was 4 weeks, with earlier onset in the SCN2A, KCNQ2, and BRAT1 groups. Epileptic spasms occurred in 22% patients. A total of 127 patients had severe to profound developmental impairment. All but 7 patients had ongoing seizures. Additional features included microcephaly, movement disorders, spasticity, and scoliosis. Mortality occurred in 33% at median age 2 years 7 months. INTERPRETATION We identified a genetic cause in 69% of patients with EIMFS. We highlight the genetic heterogeneity of EIMFS with 9 newly implicated genes, bringing the total number to 33. Mosaicism was observed in probands and parents, carrying critical implications for recurrence risk. EIMFS pathophysiology involves diverse molecular processes from gene and protein regulation to ion channel function and solute trafficking. ANN NEUROL 2019;86:821-831.
Collapse
Affiliation(s)
- Rosemary Burgess
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Shuyu Wang
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,School of Clinical Sciences, Monash University, Monash Health, Melbourne, Victoria, Australia
| | - Amy McTague
- Molecular Neurosciences, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Katja E Boysen
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qi Zeng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kenneth A Myers
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,Research Institute of the McGill University Health Centre; Montreal, Quebec, Canada.,Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Anne Rochtus
- Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA
| | - Marina Trivisano
- Rare and Complex Epilepsies Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research and Health Care, Rome, Italy
| | - Deepak Gill
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Nicola Specchio
- Rare and Complex Epilepsies Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research and Health Care, Rome, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Carla Marini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Yue-Hua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Annapurna H Poduri
- Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,Florey Institute for Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Neurology, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
73
|
Bartolini E, Campostrini R, Kiferle L, Pradella S, Rosati E, Chinthapalli K, Palumbo P. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci 2019; 41:749-761. [PMID: 31838630 DOI: 10.1007/s10072-019-04190-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Genetic brain channelopathies result from inherited or de novo mutations of genes encoding ion channel subunits within the central nervous system. Most neurological channelopathies arise in childhood with paroxysmal or episodic symptoms, likely because of a transient impairment of homeostatic mechanisms regulating membrane excitability, and the prototypical expression of this impairment is epilepsy. Migraine, episodic ataxia and alternating hemiplegia can also occur, as well as chronic phenotypes, such as spinocerebellar ataxias, intellectual disability and autism spectrum disorder. Voltage-gated and ligand-gated channels may be involved. In most cases, a single gene may be associated with a phenotypical spectrum that shows variable expressivity. Different clinical features may arise at different ages and the adult phenotype may be remarkably modified from the syndrome onset in childhood or adolescence. Recognizing the prominent phenotypical traits of brain channelopathies is essential to perform appropriate diagnostic investigations and to provide the better care not only in the paediatric setting but also for adult patients and their caregivers. Herein, we provide an overview of genetic brain channelopathies associated with epilepsy, highlight the different molecular mechanisms and describe the different clinical characteristics which may prompt the clinician to suspect specific syndromes and to possibly establish tailored treatments.
Collapse
Affiliation(s)
- Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy.
| | - Roberto Campostrini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Lorenzo Kiferle
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Silvia Pradella
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Eleonora Rosati
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | | | - Pasquale Palumbo
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| |
Collapse
|
74
|
Customized multigene panels in epilepsy: the best things come in small packages. Neurogenetics 2019; 21:1-18. [PMID: 31834528 DOI: 10.1007/s10048-019-00598-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Over the past 10 years, the increasingly important role played by next-generation sequencing panels in the genetic diagnosis of epilepsy has led to a growing list of gene variants and a plethora of new scientific data. To date, however, there is still no consensus on what constitutes the "ideal panel design," or on the most rational criteria for selecting the best candidates for gene-panel analysis, even though both might optimize the cost-benefit ratio and the diagnostic efficiency of customized gene panels. Even though more and more laboratories are adopting whole-exome sequencing as a first-tier diagnostic approach, interpreting, "in silico," a set of epilepsy-related genes remains difficult. In the light of these considerations, we performed a systematic review of the targeted gene panels for epilepsy already reported in the available scientific literature, with a view to identifying the best criteria for selecting patients for gene-panel analysis, and the best way to design an "ideal," gold-standard panel that includes all genes with an established role in epilepsy pathogenesis, as well as those that might help to guide decisions regarding specific medical interventions and treatments. Our analyses suggest that the usefulness and diagnostic power of customized gene panels for epilepsy may be greatest when these panels are confined to rationally selected, relatively small, pools of genes, and applied in more carefully selected epilepsy patients (those with complex forms of epilepsy). A panel containing 64 genes, which includes the 45 genes harboring a significant number of pathogenic variants identified in previous literature, the 32 clinically actionable genes, and the 21 ILAE (International League Against Epilepsy) recommended genes, may represent an "ideal" core set likely able to provide the highest diagnostic efficiency and cost-effectiveness and facilitate gene prioritization when testing patients with whole-exome/whole-genome sequencing.
Collapse
|
75
|
Greenwood TA, Lazzeroni LC, Maihofer AX, Swerdlow NR, Calkins ME, Freedman R, Green MF, Light GA, Nievergelt CM, Nuechterlein KH, Radant AD, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Gur RC, Gur RE, Braff DL. Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study. JAMA Psychiatry 2019; 76:1274-1284. [PMID: 31596458 PMCID: PMC6802253 DOI: 10.1001/jamapsychiatry.2019.2850] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE The Consortium on the Genetics of Schizophrenia (COGS) uses quantitative neurophysiological and neurocognitive endophenotypes with demonstrated deficits in schizophrenia as a platform from which to explore the underlying neural circuitry and genetic architecture. Many of these endophenotypes are associated with poor functional outcome in schizophrenia. Some are also endorsed as potential treatment targets by the US Food and Drug Administration. OBJECTIVE To build on prior assessments of heritability, association, and linkage in the COGS phase 1 (COGS-1) families by reporting a genome-wide association study (GWAS) of 11 schizophrenia-related endophenotypes in the independent phase 2 (COGS-2) cohort of patients with schizophrenia and healthy comparison participants (HCPs). DESIGN, SETTING, AND PARTICIPANTS A total of 1789 patients with schizophrenia and HCPs of self-reported European or Latino ancestry were recruited through a collaborative effort across the COGS sites and genotyped using the PsychChip. Standard quality control filters were applied, and more than 6.2 million variants with a genotyping call rate of greater than 0.99 were available after imputation. Association was performed for data sets stratified by diagnosis and ancestry using linear regression and adjusting for age, sex, and 5 principal components, with results combined through weighted meta-analysis. Data for COGS-1 were collected from January 6, 2003, to August 6, 2008; data for COGS-2, from June 30, 2010, to February 14, 2014. Data were analyzed from October 28, 2016, to May 4, 2018. MAIN OUTCOMES AND MEASURES A genome-wide association study was performed to evaluate association for 11 neurophysiological and neurocognitive endophenotypes targeting key domains of schizophrenia related to inhibition, attention, vigilance, learning, working memory, executive function, episodic memory, and social cognition. RESULTS The final sample of 1533 participants included 861 male participants (56.2%), and the mean (SD) age was 41.8 (13.6) years. In total, 7 genome-wide significant regions (P < 5 × 10-8) and 2 nearly significant regions (P < 9 × 10-8) containing several genes of interest, including NRG3 and HCN1, were identified for 7 endophenotypes. For each of the 11 endophenotypes, enrichment analyses performed at the level of P < 10-4 compared favorably with previous association results in the COGS-1 families and showed extensive overlap with regions identified for schizophrenia diagnosis. CONCLUSIONS AND RELEVANCE These analyses identified several genomic regions of interest that require further exploration and validation. These data seem to demonstrate the utility of endophenotypes for resolving the genetic architecture of schizophrenia and characterizing the underlying biological dysfunctions. Understanding the molecular basis of these endophenotypes may help to identify novel treatment targets and pave the way for precision-based medicine in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California,Sierra Pacific Mental Illness Research Education and Clinical Center, Department of Veterans Affairs (VA) Health Care System, Palo Alto, California
| | - Adam X. Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | | | | | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - Jeremy M. Silverman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Department of Biostatistics, UCLA School of Public Health
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla
| |
Collapse
|
76
|
Thomas M, Ranjith G, Radhakrishnan A, Arun Anirudhan V. Effects of HCN2 Mutations on Dendritic Excitability and Synaptic Plasticity: A Computational Study. Neuroscience 2019; 423:148-161. [DOI: 10.1016/j.neuroscience.2019.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
|
77
|
Porro A, Saponaro A, Gasparri F, Bauer D, Gross C, Pisoni M, Abbandonato G, Hamacher K, Santoro B, Thiel G, Moroni A. The HCN domain couples voltage gating and cAMP response in hyperpolarization-activated cyclic nucleotide-gated channels. eLife 2019; 8:e49672. [PMID: 31769408 PMCID: PMC6894927 DOI: 10.7554/elife.49672] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control spontaneous electrical activity in heart and brain. Binding of cAMP to the cyclic nucleotide-binding domain (CNBD) facilitates channel opening by relieving a tonic inhibition exerted by the CNBD. Despite high resolution structures of the HCN1 channel in the cAMP bound and unbound states, the structural mechanism coupling ligand binding to channel gating is unknown. Here we show that the recently identified helical HCN-domain (HCND) mechanically couples the CNBD and channel voltage sensing domain (VSD), possibly acting as a sliding crank that converts the planar rotational movement of the CNBD into a rotational upward displacement of the VSD. This mode of operation and its impact on channel gating are confirmed by computational and experimental data showing that disruption of critical contacts between the three domains affects cAMP- and voltage-dependent gating in three HCN isoforms.
Collapse
Affiliation(s)
| | | | | | - Daniel Bauer
- Department of BiologyTU-DarmstadtDarmstadtGermany
| | | | - Matteo Pisoni
- Department of BiosciencesUniversity of MilanMilanItaly
| | | | - Kay Hamacher
- Department of BiologyTU-DarmstadtDarmstadtGermany
| | - Bina Santoro
- Department of NeuroscienceColumbia UniversityNew YorkUnited States
| | | | - Anna Moroni
- Department of BiosciencesUniversity of MilanMilanItaly
| |
Collapse
|
78
|
Whole exome sequencing identifies a novel SCN1A mutation in genetic (idiopathic) generalized epilepsy and juvenile myoclonic epilepsy subtypes. Neurol Sci 2019; 41:591-598. [DOI: 10.1007/s10072-019-04122-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
|
79
|
Foote KM, Lyman KA, Han Y, Michailidis IE, Heuermann RJ, Mandikian D, Trimmer JS, Swanson GT, Chetkovich DM. Phosphorylation of the HCN channel auxiliary subunit TRIP8b is altered in an animal model of temporal lobe epilepsy and modulates channel function. J Biol Chem 2019; 294:15743-15758. [PMID: 31492750 DOI: 10.1074/jbc.ra119.010027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.
Collapse
Affiliation(s)
- Kendall M Foote
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Department of Pharmacology, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232.,Department of Medicine, Stanford University, Palo Alto, California 94305
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Ioannis E Michailidis
- Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Robert J Heuermann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Danielle Mandikian
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616.,Department of Physiology and Membrane Biology, University of California, Davis, California 95616
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611.,Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Dane M Chetkovich
- Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| |
Collapse
|
80
|
DiFrancesco JC, Castellotti B, Milanesi R, Ragona F, Freri E, Canafoglia L, Franceschetti S, Ferrarese C, Magri S, Taroni F, Costa C, Labate A, Gambardella A, Solazzi R, Binda A, Rivolta I, Di Gennaro G, Casciato S, D’Incerti L, Barbuti A, DiFrancesco D, Granata T, Gellera C. HCN ion channels and accessory proteins in epilepsy: genetic analysis of a large cohort of patients and review of the literature. Epilepsy Res 2019; 153:49-58. [DOI: 10.1016/j.eplepsyres.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
|