51
|
Yang G, Han D, Chen X, Zhang D, Wang L, Shi C, Zhang W, Li C, Chen X, Liu H, Zhang D, Kang J, Peng F, Liu Z, Qi J, Gao X, Ai J, Shi C, Zhao S. MiR-196a exerts its oncogenic effect in glioblastoma multiforme by inhibition of IκBα both in vitro and in vivo. Neuro Oncol 2014; 16:652-61. [PMID: 24463357 DOI: 10.1093/neuonc/not307] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent studies have revealed that miR-196a is upregulated in glioblastoma multiforme (GBM) and that it correlates with the clinical outcome of patients with GBM. However, its potential regulatory mechanisms in GBM have never been reported. METHODS We used quantitative real-time PCR to assess miR-196a expression levels in 132 GBM specimens in a single institution. Oncogenic capability of miR-196a was detected by apoptosis and proliferation assays in U87MG and T98G cells. Immunohistochemistry was used to determine the expression of IκBα in GBM tissues, and a luciferase reporter assay was carried out to confirm whether IκBα is a direct target of miR-196a. In vivo, xenograft tumors were examined for an antiglioma effect of miR-196a inhibitors. RESULTS We present for the first time evidence that miR-196a could directly interact with IκBα 3'-UTR to suppress IκBα expression and subsequently promote activation of NF-κB, consequently promoting proliferation of and suppressing apoptosis in GBM cells both in vitro and in vivo. Our study confirmed that miR-196a was upregulated in GBM specimens and that high levels of miR-196a were significantly correlated with poor outcome in a large cohort of GBM patients. Our data from human tumor xenografts in nude mice treated with miR-196 inhibitors demonstrated that inhibition of miR-196a could ameliorate tumor growth in vivo. CONCLUSIONS MiR-196a exerts its oncogenic effect in GBM by inhibiting IκBα both in vitro and in vivo. Our findings provide new insights into the pathogenesis of GBM and indicate that miR-196a may predict clinical outcome of GBM patients and serve as a new therapeutic target for GBM.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 15001, China (G.Y., D.H., X.C., D.Z., W.Z., C.L., X.C., H.L., D.Z., J.K., F.P., Z.L., S.Z.); Institute of Brain Science, Harbin Medical University, Harbin, China (G.Y., D.H., X.C., D.Z., W.Z., C.L., X.C., H.L., D.Z., J.K., F.P., Z.L., S.Z.); Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China (L.W., J.A.); Department of Neurosurgery, New York University Langone Medical Center and School of Medicine, New York, New York (C.S.); Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China (J.Q.); Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (X.G.); Section of Neurosurgery, Department of Surgery, The University of Chicago, Medical Center and Pritzker School of Medicine, Chicago, Illinois (C.S.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Zheng G, Xiong Y, Xu W, Wang Y, Chen F, Wang Z, Yan Z. A two-microRNA signature as a potential biomarker for early gastric cancer. Oncol Lett 2014; 7:679-684. [PMID: 24527072 PMCID: PMC3919894 DOI: 10.3892/ol.2014.1797] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide. No fundamental improvements in the five-year survival rates of patients with GC have been reported due to a low early diagnosis rate. Therefore, the identification of novel biomarkers is urgently required for an early diagnosis of GC. A total of 86 patients were selected for the present study, including 44 patients with early stage GC (T1–T2 according to TNM staging criteria) and 42 normal gastric mucosa samples from non-cancer patients as controls. A total of 18 samples were used for the microRNA (miRNA) microarray experiments, including nine early GC and nine normal gastric mucosa samples. Bioinformatics algorithms, significant analysis of microarray (SAM), top scoring pair (TSP) and statistical receiver operating characteristic curves were used to identify the best signatures. Finally, quantitative PCR was used to validate the candidate biomarkers for early gastric cancer in the test samples (35 cancer and 33 normal samples). Using the SAM algorithm, 14 differential miRNAs were selected as candidate biomarkers. Using the TSP algorithm, hsa-miR-196a and hsa-miR-148a were obtained as a signature to differentiate between the early GC and normal samples. A coincidental result was observed in the test samples. hsa-miR-196a was upregulated and hsa-miR-148a was downregulated in the early GC samples. hsa-miR-196a and hsa-miR-148a have the potential to serve as candidate biomarkers for early GC.
Collapse
Affiliation(s)
- Guorong Zheng
- Department of Digestive Diseases, Wuhan General Hospital of Guangzhou Command, Wuchang, Wuhan 430070, P.R. China
| | - Yimin Xiong
- Department of Digestive Diseases, Wuhan General Hospital of Guangzhou Command, Wuchang, Wuhan 430070, P.R. China
| | - Weitian Xu
- Department of Digestive Diseases, Wuhan General Hospital of Guangzhou Command, Wuchang, Wuhan 430070, P.R. China
| | - Yan Wang
- Department of Digestive Diseases, Wuhan General Hospital of Guangzhou Command, Wuchang, Wuhan 430070, P.R. China
| | - Fang Chen
- Department of Medical Laboratory, Wuhan General Hospital of Guangzhou Command, Wuchang, Wuhan 430070, P.R. China
| | - Zhigang Wang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, Wuchang, Wuhan 430070, P.R. China
| | - Zhi Yan
- Department of Digestive Diseases, Wuhan General Hospital of Guangzhou Command, Wuchang, Wuhan 430070, P.R. China
| |
Collapse
|
53
|
Abstract
BACKGROUND Crohn's disease (CD) is associated with defective sensing of pathogens in genetically susceptible individuals. Nucleotide-binding oligomerization domain containing 2 (NOD2) mutations in coding regions are strongly linked to CD pathogenesis. Our laboratory has reported that microRNAs (miRNAs) are differentially expressed in CD. However, miRNA regulation of NOD2 remains unknown. This study was designed to determine whether miRNAs regulate NOD2 expression as well as downstream nuclear factor kappaB activation and inflammatory responses in colonic epithelial HCT116 cells. METHODS NOD2 and miRNA expression in stimulated HCT116 cells were assessed by quantitative reverse transcription-polymerase chain reaction. Regulation of NOD2 expression by miRNAs was determined by luciferase reporter construct assays and transfection of specific miRNA mimics. Regulation of NOD2 signaling and immune response by miRNAs was assessed by transfection of mimics followed by muramyl dipeptide stimulation. RESULTS Muramyl dipeptide-induced increases in NOD2, interleukin-8, and CXCL3 expression were inversely associated with miRNA expression. Overexpression of miR-192, miR-495, miR-512, and miR-671 suppressed NOD2 expression, muramyl dipeptide-mediated NF-κB activation, and messenger RNA expressions of interleukin-8 and CXCL3 in HCT116 cells. A single-nucleotide polymorphism (rs3135500) located in the NOD2 3'-untranslated region significantly reduced miR-192 effects on NOD2 gene expression. CONCLUSIONS To our knowledge, this is the first report demonstrating that miRNAs regulate NOD2 and its signaling pathway. Four miRNAs downregulate NOD2 expression, suppress NF-κB activity, and inhibit interleukin-8 and CXCL3 messenger RNA expression. Treatment of CD with miRNAs may represent a potential anti-inflammatory therapeutic strategy in CD patients with and without NOD2 gene mutations.
Collapse
|
54
|
Day L, Abdelhadi Ep Souki O, Albrecht AA, Steinhöfel K. Accessibility of microRNA binding sites in metastable RNA secondary structures in the presence of SNPs. ACTA ACUST UNITED AC 2013; 30:343-52. [PMID: 24292936 DOI: 10.1093/bioinformatics/btt695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MOTIVATION We study microRNA (miRNA) bindings to metastable RNA secondary structures close to minimum free energy conformations in the context of single nucleotide polymorphisms (SNPs) and messenger RNA (mRNA) concentration levels, i.e. whether features of miRNA bindings to metastable conformations could provide additional information supporting the differences in expression levels of the two sequences defined by a SNP. In our study, the instances [mRNA/3'UTR; SNP; miRNA] were selected based on strong expression level analyses, SNP locations within binding regions and the computationally feasible identification of metastable conformations. RESULTS We identified 14 basic cases [mRNA; SNP; miRNA] of 3' UTR-lengths ranging from 124 up to 1078 nt reported in recent literature, and we analyzed the number, structure and miRNA binding to metastable conformations within an energy offset above mfe conformations. For each of the 14 instances, the miRNA binding characteristics are determined by the corresponding STarMir output. Among the different parameters we introduced and analyzed, we found that three of them, related to the average depth and average opening energy of metastable conformations, may provide supporting information for a stronger separation between miRNA bindings to the two alleles defined by a given SNP. AVAILABILITY AND IMPLEMENTATION At http://kks.inf.kcl.ac.uk/MSbind.html the MSbind tool is available for calculating features of metastable conformations determined by putative miRNA binding sites.
Collapse
Affiliation(s)
- Luke Day
- Department of Informatics, King's College London, London WC2R 2LS and Middlesex University London, School of Science and Technology, London NW4 4BT, UK
| | | | | | | |
Collapse
|
55
|
Genetic variation in a microRNA-502 minding site in SET8 gene confers clinical outcome of non-small cell lung cancer in a Chinese population. PLoS One 2013; 8:e77024. [PMID: 24146953 PMCID: PMC3795636 DOI: 10.1371/journal.pone.0077024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/27/2013] [Indexed: 12/28/2022] Open
Abstract
Background Genetic variants may influence microRNA-target interaction through modulate their binding affinity, creating or destroying miRNA-binding sites. SET8, a member of the SET domain-containing methyltransferase, has been implicated in a variety array of biological processes. Methods Using Taqman assay, we genotyped a polymorphism rs16917496 T>C within the miR-502 binding site in the 3′-untranslated region of the SET8 gene in 576 non-small cell lung cancer (NSCLC) patients. Functions of rs16917496 were investigated using luciferase activity assay and validated by immunostaining. Results Log-rank test and cox regression indicated that the CC genotype was associated with a longer survival and a reduced risk of death for NSCLC [58.0 vs. 41.0 months, P = 0.031; hazard ratio = 0.44, 95% confidential interval: 0.26–0.74]. Further stepwise regression analysis suggested rs16917496 was an independently favorable factor for prognosis and the protective effect more prominent in never smokers, patients without diabetes and patients who received chemotherapy. A significant interaction was observed between rs16917496 and smoking status in relation to NSCLC survival (P<0.001). Luciferase activity assay showed a lower expression level for C allele as compared with T allele, and the miR-502 had an effect on modulation of SET8 gene in vitro. The CC genotype was associated with reduced SET8 protein expression based on immunostaining of 192 NSCLC tissue sample (P = 0.007). Lower levels of SET8 were associated with a non-significantly longer survival (55.0 vs. 43.1 months). Conclusion Our data suggested that the rs16917496 T>C located at miR-502 binding site contributes to NSCLC survival by altering SET8 expression through modulating miRNA-target interaction.
Collapse
|
56
|
Sakai NS, Samia-Aly E, Barbera M, Fitzgerald RC. A review of the current understanding and clinical utility of miRNAs in esophageal cancer. Semin Cancer Biol 2013; 23:512-21. [PMID: 24013023 DOI: 10.1016/j.semcancer.2013.08.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of small, well-conserved, non-coding RNAs that regulate the translation of RNAs. They have a role in biological and pathological process including cell differentiation, apoptosis, proliferation and metabolism. Since their discovery, they have been shown to have a potential role in cancer pathogenesis through their function as oncogenes or tumor suppressors. A substantial number of miRNAs show differential expression in esophageal cancer tissues, and so have been investigated for possible use in diagnosis. Furthermore, there is increasing interest in their use as prognostic markers and determining treatment response, as well as identifying their downstream targets and understanding their mode of action. METHODS We analyzed the most recent studies on miRNAs in esophageal cancer and/or Barrett's esophagus (BE). The publications were identified by searching in PuBMed for the following terms: Barrett's esophagus and microRNA; esophageal cancer and microRNA. RESULTS Four miRNAs (mi-R-25, -99a, -133a and -133b) showed good potential as diagnostic markers and interestingly five (mi-R-21, -27b, -126, - 143 and -145) appeared to be useful both as diagnostic and prognostic/predictive markers. CONCLUSION The data so far on miRNAs in esophageal carcinogenesis is promising but further work is required to determine whether miRNAs can be used as biomarkers, not only in the clinical setting or added to individualized treatment regimes but also in non-invasive test by making use of miRNAs identified in blood.
Collapse
Affiliation(s)
- Naomi S Sakai
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Box 111, Hills Road, Cambridge CB2 0SP, UK.
| | | | | | | |
Collapse
|
57
|
Dudek AM, Grotenhuis AJ, Vermeulen SH, Kiemeney LALM, Verhaegh GW. Urinary bladder cancer susceptibility markers. What do we know about functional mechanisms? Int J Mol Sci 2013; 14:12346-66. [PMID: 23752272 PMCID: PMC3709789 DOI: 10.3390/ijms140612346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/23/2013] [Accepted: 05/30/2013] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies (GWAS) have been successful in the identification of the several urinary bladder cancer (UBC) susceptibility loci, pointing towards novel genes involved in tumor development. Despite that, functional characterization of the identified variants remains challenging, as they mostly map to poorly understood, non-coding regions. Recently, two of the UBC risk variants (PSCA and UGT1A) were confirmed to have functional consequences. They were shown to modify bladder cancer risk by influencing gene expression in an allele-specific manner. Although the role of the other UBC risk variants is unknown, it can be hypothesized-based on studies from different cancer types-that they influence cancer susceptibility by alterations in regulatory networks. The insight into UBC heritability gained through GWAS and further functional studies can impact on cancer prevention and screening, as well as on the development of new biomarkers and future personalized therapies.
Collapse
Affiliation(s)
- Aleksandra M. Dudek
- Department of Urology, Radboud University Medical Centre, Geert Grooteplein 16, Nijmegen 6525 GA, The Netherlands; E-Mails: (L.A.L.M.K.); (G.W.V.)
- Department for Health Evidence, Radboud University Medical Centre, Geert Grooteplein 21, Nijmegen 6525 EZ, The Netherlands; E-Mails: (A.J.G.); (S.H.V.)
- Nijmegen Centre for Molecular Life Sciences, Geert Grooteplein 28, Nijmegen 6525 GA, The Netherlands
| | - Anne J. Grotenhuis
- Department for Health Evidence, Radboud University Medical Centre, Geert Grooteplein 21, Nijmegen 6525 EZ, The Netherlands; E-Mails: (A.J.G.); (S.H.V.)
- Nijmegen Centre for Evidence Based Practice, Geert Grooteplein 21, Nijmegen 6525 GA, The Netherlands
| | - Sita H. Vermeulen
- Department for Health Evidence, Radboud University Medical Centre, Geert Grooteplein 21, Nijmegen 6525 EZ, The Netherlands; E-Mails: (A.J.G.); (S.H.V.)
- Nijmegen Centre for Evidence Based Practice, Geert Grooteplein 21, Nijmegen 6525 GA, The Netherlands
| | - Lambertus A. L. M. Kiemeney
- Department of Urology, Radboud University Medical Centre, Geert Grooteplein 16, Nijmegen 6525 GA, The Netherlands; E-Mails: (L.A.L.M.K.); (G.W.V.)
- Department for Health Evidence, Radboud University Medical Centre, Geert Grooteplein 21, Nijmegen 6525 EZ, The Netherlands; E-Mails: (A.J.G.); (S.H.V.)
- Nijmegen Centre for Evidence Based Practice, Geert Grooteplein 21, Nijmegen 6525 GA, The Netherlands
| | - Gerald W. Verhaegh
- Department of Urology, Radboud University Medical Centre, Geert Grooteplein 16, Nijmegen 6525 GA, The Netherlands; E-Mails: (L.A.L.M.K.); (G.W.V.)
- Nijmegen Centre for Molecular Life Sciences, Geert Grooteplein 28, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|