51
|
Fan T, Chen J, Zhang L, Gao P, Hui Y, Xu P, Zhang X, Liu H. Bit1 knockdown contributes to growth suppression as well as the decreases of migration and invasion abilities in esophageal squamous cell carcinoma via suppressing FAK-paxillin pathway. Mol Cancer 2016; 15:23. [PMID: 26956728 PMCID: PMC4782287 DOI: 10.1186/s12943-016-0507-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/27/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is growing evidence that Bit1 exerts different roles in the development and progression of human cancers. Although Bit1 was highly exhibited in ESCC tissues in our previous study, its roles and molecular mechanisms implicated in development and progression of ESCC remain unknown. METHODS Bit1 protein expression in ESCC cell lines and normal esophageal epithelial cell was detected by Western blotting. Bit1 protein expression mediated by Bit1 shRNA was investigated by Western blotting. MTT, migration assay, invasion experiment, ELISA and Flow cytometry were utilized to determine the effects of Bit1 knockdown on cell proliferation, migration, invasion and apoptosis, respectively. A xenograft model was used to examine in vivo tumourigenicity, and immunohistochemistry and TUNEL were utilized to evaluate the related protein expression and apoptosis. Gene microarray was determined by Agilent SurePrint G3 Human GE 8 × 60 K Microarray, the interaction of Bit1 and FAK proteins were detected by Immunoprecipitation and the key protein expressions of FAK-paxillin pathway were detected by Western blotting. RESULTS We found Bit1 expression in all human ESCC cell lines tested was significantly higher than that in normal esophageal epithelial cell Het-1A (P < 0.05), in which EC9706 presented the highest Bit1 level. Bit1 protein level was significantly downregulated at day 1 after transfection with specific shRNA against Bit1 (P < 0.05). At days 2 and 3, Bit1 level reached the lowest value after transfection with Bit1 shRNA. Moreover, Bit1 depletion contributed to growth inhibition in vitro and in vivo, reduced cell migration and invasion abilities, and induced cell apoptosis in EC9706 and TE1 cells. More importantly, Bit1 downregulation significantly lowered Bcl-2 and MMP-2 levels in EC9706 xenografted tumor tissues, meanwhile triggered apoptosis after treatment with different doses of Bit1 shRNA. Further gene microarray revealed that 23 genes in Bit1-RNAi group were markedly downregulated, whereas 16 genes were obviously upregulated. Notably, Bit1 intrinsically interacted with FAK protein in EC9706 cells. Moreover, paxillin was downregulated at mRNA and protein levels in Bit1 shRNA group, coupled with the decreases of FAK mRNA and protein expressions. CONCLUSION Bit1 may be an important regulator in cell growth, apoptosis, migration and invasion of ESCC via targeting FAK-paxillin pathway, and thereby combinative manipulation of Bit1 and FAK-paxillin pathway may be the novel and promising therapeutic targets for the patients with ESCC.
Collapse
Affiliation(s)
- Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Jing Chen
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China. .,Department of Oncology, the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, P.R. China.
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Pan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Yiran Hui
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Peirong Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Xiaqing Zhang
- Laboratory for Cell Biology, College of Life Sciences of Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Hongtao Liu
- Laboratory for Cell Biology, College of Life Sciences of Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| |
Collapse
|
52
|
Neault M, Mallette F, Richard S. miR-137 Modulates a Tumor Suppressor Network-Inducing Senescence in Pancreatic Cancer Cells. Cell Rep 2016; 14:1966-78. [DOI: 10.1016/j.celrep.2016.01.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/10/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
|
53
|
microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget 2016; 6:10868-79. [PMID: 25869101 PMCID: PMC4484425 DOI: 10.18632/oncotarget.3451] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 01/18/2023] Open
Abstract
microRNA-217 (miR-217) is frequently dysregulated in cancer. Here, we report that miR-217 levels were lower in tumor tissue compared with the adjacent normal tissue. Low levels of miR-217 were associated with aggressive tumor phenotypes and poor overall survival in gastric cancer patients. The ectopic expression of miR-217 inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas knockdown of endogenous miR-217 increased cell proliferation and invasion. Further experiments revealed that Polycomb group protein enhancer of zeste homolog 2 (EZH2) was a direct target of miR-217 in gastric cancer cells. Knockdown of EZH2 mimicked the tumor-suppressive effects of miR-217 in gastric cancer cells, whereas the reintroduction of EZH2 abolished its effects. Taken together, these results demonstrated that miR-217 may be used as a prognostic marker, and the newly identified miR-217-EZH2 axis may be a potential target in the development of therapeutic strategies for gastric cancer patients.
Collapse
|
54
|
Huang CC, Wu DW, Lin PL, Lee H. Paxillin promotes colorectal tumor invasion and poor patient outcomes via ERK-mediated stabilization of Bcl-2 protein by phosphorylation at Serine 87. Oncotarget 2016; 6:8698-708. [PMID: 25826088 PMCID: PMC4496177 DOI: 10.18632/oncotarget.3537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/10/2015] [Indexed: 01/13/2023] Open
Abstract
Stabilization of Bcl-2 protein by paxillin (PXN)-mediated ERK activation was recently reported to cause an unfavorable response to 5-Fluorouracil-based chemotherapy. Here, we present evidence from cell and animal models to demonstrate that stabilization of Bcl-2 protein by phosphorylation at Serine 87 (pBcl-2-S87) via PXN-mediated ERK activation is responsible for cancer cell invasiveness and occurs via upregulation of MMP2 expression. Immunostainings of 190 tumors resected from colorectal cancer patients indicated that PXN expression was positively correlated with Bcl-2, pBcl-2-S87, and MMP2 expression. A positive correlation of pBcl-2-S87 with Bcl-2 and MMP2 was also observed in this study population. Patients with high PXN, Bcl-2, pBcl-2-S87, and MMP2 had poor overall survival (OS) and shorter relapse free survival (RFS). In conclusion, PXN promotes Bcl-2 phosphorylation at Serine 87 via PXN-mediated ERK activation, and its stabilization associated with increased tumor formation efficacy in mice and poor patient outcome in colorectal cancer patients.
Collapse
Affiliation(s)
- Chi-Chou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Division of Colon and Rectum, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
55
|
Zeng X, Xu Z, Gu J, Huang H, Gao G, Zhang X, Li J, Jin H, Jiang G, Sun H, Huang C. Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo. Mol Cancer Ther 2016; 15:512-22. [PMID: 26832795 DOI: 10.1158/1535-7163.mct-15-0606] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023]
Abstract
Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer.
Collapse
Affiliation(s)
- Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York. Department of Nephrology, Central Hospital of Wuhan, Wuhan, China
| | - Zhou Xu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Xiaoru Zhang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Hong Sun
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York.
| |
Collapse
|
56
|
Sakaguchi M, Hisamori S, Oshima N, Sato F, Shimono Y, Sakai Y. miR-137 Regulates the Tumorigenicity of Colon Cancer Stem Cells through the Inhibition of DCLK1. Mol Cancer Res 2016; 14:354-62. [DOI: 10.1158/1541-7786.mcr-15-0380] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/29/2015] [Indexed: 11/16/2022]
|
57
|
Fu P, Usatyuk PV, Jacobson J, Cress AE, Garcia JGN, Salgia R, Natarajan V. Role played by paxillin and paxillin tyrosine phosphorylation in hepatocyte growth factor/sphingosine-1-phosphate-mediated reactive oxygen species generation, lamellipodia formation, and endothelial barrier function. Pulm Circ 2015; 5:619-30. [PMID: 26697169 DOI: 10.1086/683693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Paxillin is a multifunctional and multidomain focal adhesion adaptor protein. It serves as an important scaffolding protein at focal adhesions by recruiting and binding to structural and signaling molecules. Paxillin tyrosine phosphorylation at Y31 and Y118 is important for paxillin redistribution to focal adhesions and angiogenesis. Hepatocyte growth factor (HGF) and sphingosine-1-phosphate (S1P) are potent stimulators of lamellipodia formation, a prerequisite for endothelial cell migration. The role played by paxillin and its tyrosine phosphorylated forms in HGF- or S1P-induced lamellipodia formation and barrier function is unclear. HGF or S1P stimulated lamellipodia formation, tyrosine phosphorylation of paxillin at Y31 and Y118, and c-Abl in human lung microvascular endothelial cells (HLMVECs). Knockdown of paxillin with small interfering RNA (siRNA) or transfection with paxillin mutants (Y31F or Y118F) mitigated HGF- or S1P-induced lamellipodia formation, translocation of p47 (phox) to lamellipodia, and reactive oxygen species (ROS) generation in HLMVECs. Furthermore, exposure of HLMVECs to HGF or S1P stimulated c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 in a time-dependent fashion, and down-regulation of c-Abl with siRNA attenuated HGF- or S1P-mediated lamellipodia formation, translocation of p47 (phox) to lamellipodia, and endothelial barrier enhancement. In vivo, knockdown of paxillin with siRNA in mouse lungs attenuated ventilator-induced lung injury. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates HGF- or S1P-mediated lamellipodia formation, ROS generation in lamellipodia, and endothelial permeability.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Peter V Usatyuk
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Jeffrey Jacobson
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Anne E Cress
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ravi Salgia
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA ; Department of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
58
|
Qin J, Ke J, Xu J, Wang F, Zhou Y, Jiang Y, Wang Z. Downregulation of microRNA-132 by DNA hypermethylation is associated with cell invasion in colorectal cancer. Onco Targets Ther 2015; 8:3639-48. [PMID: 26675712 PMCID: PMC4676615 DOI: 10.2147/ott.s91560] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
microRNAs (miRNAs) are small, noncoding RNAs that are involved in many biological processes, and aberrant regulation of miRNAs is always associated with cancer progression and development. Abnormal expression of miRNA-132 (miR-132) has been found in some types of cancer, but the effects and potential mechanisms of miR-132 in colorectal cancer (CRC) have not been explored to date. In this study, quantitative real-time polymerase chain reaction was used to investigate the level of miR-132 in CRC tissues and their paired adjacent normal tissues. Bioinformatics analysis indicated that the mechanism underlying the tumor suppressor role of miR-132 in CRC cells may play a role in tumor suppression by targeting paxillin. Furthermore, methylation-specific polymerase chain reaction was performed to evaluate the methylation status of the miR-132 regulatory region. A DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, was used to activate the expression of miR-132 in CRC cells in vitro. Downregulation of miR-132 may occur as a result of hypermethylation and implies a poor prognosis in CRC; therefore, triggering miR-132 reexpression by using DNA methyltransferase inhibitors may be a potential molecular therapeutic target for CRC.
Collapse
Affiliation(s)
- Jun Qin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jing Ke
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Junfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Youlang Zhou
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Yasu Jiang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
59
|
Gu Q, Zhang J, Hu H, Tan YE, Shi S, Nian Y. Clinical Significance of MiR-137 Expression in Patients with Gastric Cancer After Radical Gastrectomy. PLoS One 2015; 10:e0142377. [PMID: 26545111 PMCID: PMC4636144 DOI: 10.1371/journal.pone.0142377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/21/2015] [Indexed: 01/16/2023] Open
Abstract
The dysregulation of miR-137 plays vital roles in the oncogenesis and progression of various types of cancer, but its role in prognosis of gastric cancer patients remains unknown. This study was designed to investigate the expression and prognostic significance of miR-137 in gastric cancer patients after radical gastrectomy. Quantitative real-time PCR (qRT-PCR) was performed to evaluate the expression of miR-137 in human gastric cancer cell lines and tissues in patients with gastric adenocarcinoma. Results were assessed for association with clinical factors and overall survival by using Kaplan-Meier analysis. Prognostic values of miR-137 expression and clinical outcomes were evaluated by Cox regression analysis. The results exhibited that the expression level of miR-137 was decreased in human gastric cancer cell lines and tissues, and down-regulated expression of miR-137 was associated with tumor cell differentiation, N stage, and TNM stage. Decreased miR-137 expression in gastric cancer tissues was positively correlated with poor overall survival of gastric cancer patients. Further multivariate Cox regression analysis suggested that miR-137 expression was an independent prognostic indicator for gastric cancer except for TNM stage. Applying the prognostic value of miR-137 expression to TNM stage III group showed a better risk stratification for overall survival. In conclusion, the results reinforced the critical role for the down-regulated miR-137 expression in gastric cancer and suggested that miR-137 expression could be a prognostic indicator for this disease. In addition, these patients with TNM stage III gastric cancer and low miR-137 expression might need more aggressive postoperative treatment and closer follow-up.
Collapse
Affiliation(s)
- Qiaoyan Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
- Department of Gastroenterology, The Affiliated Hospital of Yan’an University, Yan’an, China
| | - Jun Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
- * E-mail:
| | - Haifeng Hu
- Department of Gastroenterology, The Affiliated Hospital of Yan’an University, Yan’an, China
| | - Yu-e Tan
- Department of Gastroenterology, The Affiliated Hospital of Yan’an University, Yan’an, China
| | - Shengmei Shi
- Department of Gastroenterology, The Affiliated Hospital of Yan’an University, Yan’an, China
| | - Yuanyuan Nian
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
60
|
Nilsson EM, Laursen KB, Whitchurch J, McWilliam A, Ødum N, Persson JL, Heery DM, Gudas LJ, Mongan NP. MiR137 is an androgen regulated repressor of an extended network of transcriptional coregulators. Oncotarget 2015; 6:35710-25. [PMID: 26461474 PMCID: PMC4742136 DOI: 10.18632/oncotarget.5958] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/12/2015] [Indexed: 01/02/2023] Open
Abstract
Androgens and the androgen receptor (AR) play crucial roles in male development and the pathogenesis and progression of prostate cancer (PCa). The AR functions as a ligand dependent transcription factor which recruits multiple enzymatically distinct epigenetic coregulators to facilitate transcriptional regulation in response to androgens. Over-expression of AR coregulators is implicated in cancer. We have shown that over-expression of KDM1A, an AR coregulator, contributes to PCa recurrence by promoting VEGFA expression. However the mechanism(s) whereby AR coregulators are increased in PCa remain poorly understood. In this study we show that the microRNA hsa-miR-137 (miR137) tumor suppressor regulates expression of an extended network of transcriptional coregulators including KDM1A/LSD1/AOF1, KDM2A/JHDM1A/FBXL11, KDM4A/JMJD2A, KDM5B JARID1B/PLU1, KDM7A/JHDM1D/PHF8, MED1/TRAP220/DRIP205 and NCoA2/SRC2/TIF2. We show that expression of miR137 is increased by androgen in LnCaP androgen PCa responsive cells and that the miR137 locus is epigenetically silenced in androgen LnCaP:C4-2 and PC3 independent PCa cells. In addition, we found that restoration of miR137 expression down-regulates expression of VEGFA, an AR target gene, which suggests a role of miR137 loss also in cancer angiogenesis. Finally we show functional inhibition of miR137 function enhanced androgen induction of PSA/KLK3 expression. Our data indicate that miR137 functions as an androgen regulated suppressor of androgen signaling by modulating expression of an extended network of transcriptional coregulators. Therefore, we propose that epigenetic silencing of miR137 is an important event in promoting androgen signaling during prostate carcinogenesis and progression.
Collapse
Affiliation(s)
- Emeli M. Nilsson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
| | - Kristian B. Laursen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan Whitchurch
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
- School of Pharmacy, University of Nottingham, United Kingdom
| | - Andrew McWilliam
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - David M. Heery
- School of Pharmacy, University of Nottingham, United Kingdom
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Nigel P. Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
61
|
DU CHUANG, WANG XIN, ZHANG JUNLING, LIU XIANGZHENG, ZHU JING, LIU YUCUN. Paxillin is positively correlated with the clinicopathological factors of colorectal cancer, and knockdown of Paxillin improves sensitivity to cetuximab in colorectal cancer cells. Oncol Rep 2015; 35:409-17. [DOI: 10.3892/or.2015.4352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022] Open
|
62
|
Ueno H, Tomiyama A, Yamaguchi H, Uekita T, Shirakihara T, Nakashima K, Otani N, Wada K, Sakai R, Arai H, Mori K. Augmentation of invadopodia formation in temozolomide-resistant or adopted glioma is regulated by c-Jun terminal kinase-paxillin axis. Biochem Biophys Res Commun 2015; 468:240-7. [PMID: 26518652 DOI: 10.1016/j.bbrc.2015.10.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 10/25/2022]
Abstract
Temozolomide (TMZ) is one of the few effective anticancer agents against gliomas. However, acquisition of TMZ resistance or adaptation by gliomas is currently a crucial problem, especially increased invasiveness which is critical for the determination of clinical prognosis. This study investigated the molecular regulatory mechanisms of TMZ resistance in gliomas involved in invasiveness, particularly invadopodia formation, a molecular complex formed at the invasive front to cause extracellular matrix degradation during cellular local invasion. The TMZ-resistant clone of the U343 MG human glioma cell line (U343-R cells) was established. U343-R cells demonstrated higher invadopodia formation compared with U343 cells without TMZ resistance (U343-Con cells). Immunoblot analysis of DNA damage-related mitogen-activated protein kinase signals found increased phosphorylation of c-Jun terminal kinase (JNK) and higher activation of its downstream signaling in U343-R cells compared with U343-Con cells. Treatment of U343-R cells with specific inhibitors of JNK or siRNA targeting JNK suppressed up-regulation of invadopodia formation. In addition, paxillin, one of the known JNK effectors which is phosphorylated and affects cell migration, was phosphorylated at serine 178 in JNK activity-dependent manner. Expression of paxillin with mutation of the serine 178 phosphorylation site in U343-R cells blocked invadopodia formation. The present findings suggest that increased formation of invadopodia in U343-R cells is mediated by hyperactivation of JNK-paxillin signaling, and both JNK and paxillin might become targets of novel therapies against TMZ-resistant gliomas.
Collapse
Affiliation(s)
- Hideaki Ueno
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Arata Tomiyama
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hideki Yamaguchi
- Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Takuya Shirakihara
- Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Katsuhiko Nakashima
- Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoki Otani
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Ryuichi Sakai
- Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kentaro Mori
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
63
|
miR-137 acts as a tumor suppressor in astrocytoma by targeting RASGRF1. Tumour Biol 2015; 37:3331-40. [DOI: 10.1007/s13277-015-4110-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022] Open
|
64
|
Amirkhah R, Schmitz U, Linnebacher M, Wolkenhauer O, Farazmand A. MicroRNA-mRNA interactions in colorectal cancer and their role in tumor progression. Genes Chromosomes Cancer 2015; 54:129-41. [PMID: 25620079 DOI: 10.1002/gcc.22231] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNA/miR) play an important role in gene regulatory networks through targeting mRNAs. They are involved in diverse biological processes such as cell proliferation, differentiation, angiogenesis, and apoptosis. Due to their pivotal effects on multiple genes and pathways, dysregulated miRNAs have been reported to be associated with different diseases, including colorectal cancer (CRC). Recent evidence indicates that aberrant miRNA expression is tightly linked with the initiation and progression of CRC. To elucidate the influence of miRNA regulation in CRC, it is critical to identify dysregulated miRNAs, their target mRNA genes and their involvement in gene regulatory and signaling networks. Various experimental and computational studies have been conducted to decipher the function of miRNAs involved in CRC. Experimental studies that are used for this purpose can be classified into two categories: direct/individual and indirect/high-throughput gene expression studies. Here we review miRNA target identification studies related to CRC with an emphasis on experimental data based on Luciferase reporter assays. Recent advances in determining the function of miRNAs and the signaling pathways they are involved in have also been summarized. The review helps bioinformaticians and biologists to find extensive information about downstream targets of dysregulated miRNAs, and their pro-/anti-CRC effects.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
65
|
Upregulation of miR-582-5p inhibits cell proliferation, cell cycle progression and invasion by targeting Rab27a in human colorectal carcinoma. Cancer Gene Ther 2015; 22:475-80. [PMID: 26384136 DOI: 10.1038/cgt.2015.44] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
Colorectal carcinoma (CRC) is known as the most common cancer. MicroRNAs (miRNAs) have been proven to have important roles in human carcinogenesis by regulating various target genes. Recently, the downregulation of miR-582-5p had been demonstrated in CRC. However, its function and the underlying mechanism in CRC remains unknown. In this study, we found that miR-582-5p was frequently downregulated in CRC tissues compared with corresponding noncancerous tissues, as well as in CRC cell lines. Transfection with miR-582-5p mimics significantly inhibited CRC cell proliferation, invasion and arrested cell cycle at the G1/S phase, but promoted cell apoptosis. Further analysis demonstrated that miR-582-5p attenuated the expression of RAS-related GTP-binding protein (Rab27a). Luciferase reporter assay confirmed that Rab27a was a target of miR-582-5p. Mechanism analyses revealed that Rab27a overexpression significantly attenuated the inhibitory effect of miR-582-5p on CRC cell growth, invasion and cell cycle progression. Our data suggest that miR-582-5p may function as a tumor suppressor in the development of CRC by targeting Rab27a, indicating a novel therapeutic strategy for patients with CRC.
Collapse
|
66
|
Huang Q, Ouyang X. The role of miRNAs in bone metastasis and their significance in the detection of bone metastasis: a review of the published data. Future Oncol 2015; 11:141-51. [PMID: 25572789 DOI: 10.2217/fon.14.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The preferential metastasis of cancer cells to bone disrupts the process of bone remodeling and results in serious complications. Although bone imaging techniques are well established for bone metastasis diagnosis, they still have limits. Recently, small noncoding RNA molecules, called miRNAs, have become the subject of interest in many molecular pathways in relation to bone metastasis. Furthermore, studies have demonstrated the ability to distinguish normal from cancerous cells and metastatic bone tumor origin based on miRNA profiles. Here, we summarize the data on mechanisms of osteolytic and osteoblastic bone metastases supporting the involvement of miRNA changes in the bone metastatic evolution. We also focus on the available evidence regarding current clinical studies of miRNA expression in the detection of bone metastases.
Collapse
Affiliation(s)
- Qian Huang
- Department of Oncology, Fuzhou General Hospital, Fujian 350025, PR China
| | | |
Collapse
|
67
|
Li D, Li Z, Xiong J, Gong B, Zhang G, Cao C, Jie Z, Liu Y, Cao Y, Yan Y, Xiong H, Qiu L, Yang M, Chen H, Jiang S, Yang X, Chen H. MicroRNA-212 functions as an epigenetic-silenced tumor suppressor involving in tumor metastasis and invasion of gastric cancer through down-regulating PXN expression. Am J Cancer Res 2015; 5:2980-2997. [PMID: 26693054 PMCID: PMC4656725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023] Open
Abstract
Altered expression of paxillin (PXN) is closely linked to the pathogenesis progression, metastasis and prognosis of different malignancies including gastric cancer (GC). Epigenetic silencing of tumor-suppressive microRNAs (miRNAs) is a crucial component of the mechanism underlying activation of oncogenes in tumor. To screen for epigenetically silenced miRNAs which target PXN in GC, we performed bioinformatics algorithms and real-time PCR analysis, and identified miR-212 as the optimum candidate gene. A luciferase reporter gene assay validated that miR-212 directly targets the 3'UTR region of PXN. Importantly, miR-212 levels were inversely correlated with PXN expression in GC cell lines and clinical tumor tissues. The use of miR-212 minics decrease PXN mRNA and protein level in GC cell lines. Moreover, low expression of miR-212 and its promoter hypermethylation were causally related and were associated with aggressive tumor phenotype and adverse prognosis in GC. Restoring mir-212 expression by exogenous mirprecursor molecules transfection or reexpression of endogenous miR-212 treated by 5-aza-2'-deoxycytidine (5-aza) can exert similar effect that reduce GC cells invasion and metastasis abilities in vitro by interacting PXN gene. In addition, 5-aza-induced PXN reduction could be partically blocked by miR-212 inhibitor, resulting in a reversal of weankening cell migration and invasion ability of 5-aza. A rescue experiment and a loss-of-function experiment in vitro and vivo showed that PXN restoration rescues migration and invasion phenotype in miR-212 overexpressed GC cell lines and PXN knockdown blocks GC cells migration and invasion in the presence miR-212 inhibitors. Taken together, our results clearly show that overexpression of PXN induced by methylationsuppressed miR-212 promotes tumor metastasis and invasion, and regulation of miR-212 expression may be a novel therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Daojiang Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330000, Jiangxi Province, China
- Nanchang University Medical CollegeNanchang 330000, Jiangxi Province, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330000, Jiangxi Province, China
- Nanchang University Medical CollegeNanchang 330000, Jiangxi Province, China
| | - Binbin Gong
- Nanchang University Medical CollegeNanchang 330000, Jiangxi Province, China
| | - Guoyang Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330000, Jiangxi Province, China
- Nanchang University Medical CollegeNanchang 330000, Jiangxi Province, China
| | - Chao Cao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330000, Jiangxi Province, China
- Nanchang University Medical CollegeNanchang 330000, Jiangxi Province, China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Yi Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Yufeng Yan
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Hong Xiong
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Lingyu Qiu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Miantian Yang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang UniversityBayi Road 603, Nanchang 330006, China
| | - Shuping Jiang
- Department of Histology and Embryology, Medical College, Nanchang UniversityBayi Road 603, Nanchang 330006, China
| | - Xiongwen Yang
- Nanchang University Medical CollegeNanchang 330000, Jiangxi Province, China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| |
Collapse
|
68
|
Zhou C, Lu Y, Li X. miR-339-3p inhibits proliferation and metastasis of colorectal cancer. Oncol Lett 2015; 10:2842-2848. [PMID: 26722251 PMCID: PMC4665768 DOI: 10.3892/ol.2015.3661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) serve important roles in regulating cancer cell proliferation and metastasis. The same hairpin RNA structure may produce mature products from each strand, termed miR-5p and miR-3p, which can bind different mRNAs. Previously, the present authors reported that miR-339-5p could inhibit cell proliferation and migration by targeting the 3′-untranslated region (3′-UTR) of PRL-1 mRNA. The present study analyzed the expression, function and preliminary regulatory mechanism of miR-339-3p in colorectal cancer (CRC). The results of reverse transcription-quantitative polymerase chain reaction analysis demonstrated that miR-339-3p is downregulated in CRC specimens and highly invasive cell lines. Furthermore, the low-level expression of miR-339-3p was significantly associated with lymph node metastasis in patients with CRC; however, reduced miR-339-3p expression was not associated with age, gender or the differentiation status of the tumor. Overexpression of miR-339-3p was sufficient to suppress tumor growth and metastasis in vitro. In addition, the present study demonstrated that unlike miR-339-5p, PRL-1 expression was not regulated by miR-339-3p. The findings of the present study indicate that miR-339-5p and miR-339-3p may target different mRNA. The target gene of miR-339-3p requires future identification.
Collapse
Affiliation(s)
- Chang Zhou
- Department of Anatomy and Histology, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yenxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
69
|
Ding W, Fan XL, Xu X, Huang JZ, Xu SH, Geng Q, Li R, Chen D, Yan GR. Epigenetic silencing of ITGA2 by MiR-373 promotes cell migration in breast cancer. PLoS One 2015; 10:e0135128. [PMID: 26258411 PMCID: PMC4530956 DOI: 10.1371/journal.pone.0135128] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/18/2015] [Indexed: 12/19/2022] Open
Abstract
The loss of ITGA2 plays an important role in cancer metastasis in several solid cancers. However, the molecular mechanism of ITGA2 loss in primary cancers remains unclear. In this study, we found that a lower ITGA2 protein level was observed in breast cancers compared to adjacent non-cancerous breast tissues. Interestingly, the reduction degree of ITGA2 at the protein level was far more than that at the mRNA level. We further showed that the translation of ITGA2 mRNA was directly inhibited by miR-373 through binding to ITGA2-3’UTR. Silencing of ITGA2 detached cell-cell interactions, induced the deploymerization of stress fiber F-actin and stimulated cancer cell migration, similar to the effect of miR-373 over-expression. The co-expression of ITGA2, not ITGA2-3’UTR, could abrogate miR-373-induced cancer cell migration because that the expression of ITGA2-3’UTR was inhibited by co-transfected miR-373. ITGA2 protein level was inversely associated with miR-373 level in breast cancers (r = -0.663, P<0.001). 73.33% of breast cancer patients with high miR-373 and low ITGA2 expression exhibited the lymph node-positive metastases. Together, our results show that epigenetic silencing of ITGA2 by miR-373 stimulates breast cancer migration, and miR-373high/ITGA2low may be as a prognosis biomarker for breast cancer patients.
Collapse
Affiliation(s)
- Wen Ding
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
| | - Xiao-Lu Fan
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
| | - Xuan Xu
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
| | - Jin-Zhou Huang
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
| | - Song-Hui Xu
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
| | - Qian Geng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (G-RY); (DC); (RL)
| | - De Chen
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- * E-mail: (G-RY); (DC); (RL)
| | - Guang-Rong Yan
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- * E-mail: (G-RY); (DC); (RL)
| |
Collapse
|
70
|
Puerta-García E, Cañadas-Garre M, Calleja-Hernández MÁ. Molecular biomarkers in colorectal carcinoma. Pharmacogenomics 2015; 16:1189-222. [PMID: 26237292 DOI: 10.2217/pgs.15.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is a tumor with increasing incidence which represents one of the first leading causes of death worldwide. Gene alterations described for colorectal cancer include genome instability (microsatellite and chromosomal instability), CpG islands methylator phenotype, microRNA, histone modification, protein biomarkers, gene mutations (RAS, BRAF, PI3K, TP53, PTEN) and polymorphisms (APC, CTNNB1, DCC). In this article, biomarkers with prognostic value commonly found in colorectal cancer will be reviewed.
Collapse
Affiliation(s)
- Elena Puerta-García
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain
| | - Marisa Cañadas-Garre
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain
| | - Miguel Ángel Calleja-Hernández
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain
| |
Collapse
|
71
|
Liu YY, Geng YP, Fang F, Ma XX. Influence of peer support education on clinical effects of postoperative continued nursing care in rectal cancer patients after colostomy. Shijie Huaren Xiaohua Zazhi 2015; 23:3321-3325. [DOI: 10.11569/wcjd.v23.i20.3321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the influence of peer support education on the clinical effects of postoperative continued nursing care in rectal cancer patients after colostomy.
METHODS: Ninety patients with rectal cancer after colostomy who were treated from October 2013 to January 2015 at our hospital were randomly divided into a research group and a control group, with 45 patients in each group. The control group received routine health education, and the research group additionally received peer support education for 1 mo on the basis of routine health education. The patient's health and quality of life, psychological status and related indicators were compared for the two groups.
RESULTS: Health promoting lifestyle scores were significantly improved after nursing intervention in both groups (P < 0.05), and the improvement was more significant in the research group (P < 0.05). After intervention, the Self-rating Anxiety Scale (SAS) and Self-rating Depression Scale (SDS) scores were significantly lower in the research group than in the control group (P < 0.05). After nursing intervention for 1 mo, self-management self-efficacy scores at discharge were significantly increased in both groups (P < 0.05), and the increase was more significant in the research group (P < 0.05).
CONCLUSION: Peer support education can significantly improve health promoting lifestyle score and self-management self-efficacy scores, and relieve anxiety, depression and negative emotions in rectal cancer after colostomy.
Collapse
|
72
|
Smith AR, Marquez RT, Tsao WC, Pathak S, Roy A, Ping J, Wilkerson B, Lan L, Meng W, Neufeld KL, Sun XF, Xu L. Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression. Oncotarget 2015; 6:12558-73. [PMID: 25940441 PMCID: PMC4494958 DOI: 10.18632/oncotarget.3726] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/04/2015] [Indexed: 01/22/2023] Open
Abstract
Stem cell marker, Musashi-1 (MSI1) is over-expressed in many cancer types; however the molecular mechanisms involved in MSI1 over-expression are not well understood. We investigated the microRNA (miRNA) regulation of MSI1 and the implications this regulation plays in colorectal cancer. MicroRNA miR-137 was identified as a MSI1-targeting microRNA by immunoblotting and luciferase reporter assays. MSI1 protein was found to be highly expressed in 79% of primary rectal tumors (n=146), while miR-137 expression was decreased in 84% of the rectal tumor tissues (n=68) compared to paired normal mucosal samples. In addition to reduced MSI1 protein, exogenous expression of miR-137 inhibited cell growth, colony formation, and tumorsphere growth of colon cancer cells. Finally, in vivo studies demonstrated that induction of miR-137 can decrease growth of human colon cancer xenografts. Our results demonstrate that miR-137 acts as a tumor-suppressive miRNA in colorectal cancers and negatively regulates oncogenic MSI1.
Collapse
Affiliation(s)
- Amber R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Rebecca T. Marquez
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Wei-Chung Tsao
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Surajit Pathak
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alexandria Roy
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Jie Ping
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Bailey Wilkerson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Wenjian Meng
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kristi L. Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, USA
| | - Xiao-Feng Sun
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
- Department of Radiation Oncology, The Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
73
|
Zhang LL, Mu GG, Ding QS, Li YX, Shi YB, Dai JF, Yu HG. Phosphatase and Tensin Homolog (PTEN) Represses Colon Cancer Progression through Inhibiting Paxillin Transcription via PI3K/AKT/NF-κB Pathway. J Biol Chem 2015; 290:15018-29. [PMID: 25873394 DOI: 10.1074/jbc.m115.641407] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 01/02/2023] Open
Abstract
The tumor suppressor gene phosphatase and tensin homolog (PTEN) is frequently mutated in colon cancer. However, the potential contribution of loss of PTEN to colon cancer progression remains unclear. In this study, we demonstrated that PTEN overexpression or knockdown in Lovo colon cancer cells decreased or increased paxillin expression, respectively. Moreover, paxillin reversed PTEN-mediated inhibition of Lovo cell invasion and migration. Overexpression of PTEN in an orthotropic colon cancer nude mice model inhibited tumor formation and progression. In addition, PTEN protein level was negatively correlated with that of paxillin in human colon cancer tissues. Mechanistically, we identified three NF-κB binding sites on paxillin promoter and confirmed that paxillin was a direct transcriptional target of NF-κB. Our findings reveal a novel mechanism by which PTEN inhibits the progression of colon cancer by inhibiting paxillin expression downstream of PI3K/AKT/NF-κB pathway. Thereby, PTEN/PI3K/AKT/NF-κB/paxillin signaling cascade is an attractive therapeutic target for colon cancer progression.
Collapse
Affiliation(s)
- Ling-Li Zhang
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and the Departments of Gastroenterology and
| | - Gang-Gang Mu
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| | - Qian-Shan Ding
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| | - Yan-Xia Li
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| | - Yun-bo Shi
- Neurology, the First Affiliated Hospital of Zhengzhou University, 450000 Henan province, China
| | - Jin-Fen Dai
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| | - Hong-Gang Yu
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| |
Collapse
|
74
|
Steponaitiene R, Kupcinskas J, Langner C, Balaguer F, Venclauskas L, Pauzas H, Tamelis A, Skieceviciene J, Kupcinskas L, Malfertheiner P, Link A. Epigenetic silencing of miR-137 is a frequent event in gastric carcinogenesis. Mol Carcinog 2015; 55:376-86. [PMID: 25663388 DOI: 10.1002/mc.22287] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/09/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNA) are involved in posttranscriptional regulation of gene expression and are dysregulated during carcinogenesis. CpG island methylation of miR-137 is a common event in different cancers; however, the role of miR-137 in gastric cancer (GC) remains largely unexplored. In this study we aimed to characterize the epigenetic alterations of miR-137 in gastric carcinogenesis. We analyzed total 295 tissues including paired primary gastric cancer (T-GC) with corresponding adjacent gastric mucosa (N-GC), paired primary colorectal cancer (CRC) tissues with corresponding non-tumorous mucosa, gastric tissues from controls (N), and patients with chronic/atrophic gastritis (CG) with and without Helicobacter pylori infection. Bisulfite pyrosequencing and TaqMan RT-PCR were used to analyze miR-137 methylation and expression, respectively. Survival differences were evaluated using Kaplan-Meier analyses. miR-137 CpG island methylation was more frequent in tumorous compared to non-tumorous conditions and higher in CRC than in GC. In comparison to N-GC, miR 137 methylation level was lower in N and CG tissues, which correlates with Correas cascade. MiR-137 methylation inversely correlates with global LINE-1 methylation and miR-137 expression. miR-137 methylation was higher in intestinal type GC compared to diffuse one, and higher in antrum compared to cardia and corpus, however, miR-137 methylation was associated with worse prognosis in diffuse, but not in intestinal type of GC. The expression in colon was significantly higher compared to any gastric tissues suggesting functional difference. In summary, miR-137 methylation is a frequent event in gastrointestinal cancers which occurs early in stepwise manner during gastric carcinogenesis and inversely correlates with global methylation. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ruta Steponaitiene
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Cosima Langner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clinic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Catalonia, Spain
| | - Linas Venclauskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Henrikas Pauzas
- Department of Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Algimantas Tamelis
- Department of Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Limas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
75
|
Qin J, Wang F, Jiang H, Xu J, Jiang Y, Wang Z. MicroRNA-145 suppresses cell migration and invasion by targeting paxillin in human colorectal cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1328-1340. [PMID: 25973017 PMCID: PMC4396207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
A number of cancers show increased expression of paxillin which plays a central role in tumor progression, including colorectal cancer. However, the mechanisms causing paxillin upregulation remains unclear. In our study, bioinformatics analyses suggested that paxillin is predicted to be a direct target of miR-145. We firstly identified paxillin as a new target of miR-145 and demonstrated that miR-145 inhibits paxillin expression by binding to the paxillin mRNA 3'UTR. Therefore, we assume overexpression of paxillin induced by suppression of miR-145 may promote cell migration and invasion. We detected the expression of paxillin and miR-145 in human colorectal cancer tissues by real-time quantitative PCR. Higher expression of paxillin and lower expression of miR-145 was observed in colorectal cancer tissues than corresponding paracancerous tissue. Moreover, the expression of paxillin was negatively correlated with miR-145 expression. A dual-luciferase reporter assay was used to confirm that paxillin was a direct target of miR-145. In CRC cell lines, overexpression of miR-145 could downregulate paxillin protein expression levels, and ectopic overexpression of miR-145 mimics or inhibitor could inhibit or promote cell migration, invasion, proliferation and clone formation in vitro. Taken together, these data suggested that miR-145 plays a pivotal role in colon cancer through inhibiting cell proliferation migration and invasion, and miR-145 may serve as a tumor suppressor by targeting paxillin gene.
Collapse
Affiliation(s)
- Jun Qin
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu Province, P. R. China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu Province, P. R. China
| | - Haiyan Jiang
- Medical College of Nantong UniversityNantong 226001, Jiangsu Province, P. R. China
| | - Junfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu Province, P. R. China
| | - Yasu Jiang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu Province, P. R. China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu Province, P. R. China
| |
Collapse
|
76
|
Zhang J, Fei B, Wang Q, Song M, Yin Y, Zhang B, Ni S, Guo W, Bian Z, Quan C, Liu Z, Wang Y, Yu J, Du X, Hua D, Huang Z. MicroRNA-638 inhibits cell proliferation, invasion and regulates cell cycle by targeting tetraspanin 1 in human colorectal carcinoma. Oncotarget 2014; 5:12083-96. [PMID: 25301729 PMCID: PMC4322991 DOI: 10.18632/oncotarget.2499] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022] Open
Abstract
The expression of miR-638 was found downregulated in colorectal carcinoma (CRC) in our previous study. However, the role of miR-638 in CRC remains unknown. The aim of this study was to determine the function and mechanism of miR-638 in CRC. Here, we verified that miR-638 was frequently downregulated in CRC tissues compared with corresponding noncancerous tissues (NCTs) in an expanded CRC cohort, and survival analysis showed that the downregulation of miR-638 in CRC was associated with poor prognoses. The ectopic expression of miR-638 inhibited CRC cell proliferation, invasion and arrest the cell cycle in G1 phase, whereas the repression of miR-638 significantly promoted CRC cell growth, invasion and cell cycle G1/S transition. Subsequent mechanism analyses revealed that miR-638 inhibited CRC cell growth, invasion and cell cycle progression by targeting TSPAN1. TSPAN1 protein levels were upregulated in CRC samples and were inversely correlated with miR-638 levels. More importantly, high TSPAN1 expression levels in CRC tissues predicted poor overall survival, and appears to be an independent prognostic factor for CRC survival. Furthermore, CpG island methylation analyses revealed that the miR-638 promoter was hypermethylated in CRC and that attenuating promoter methylation was sufficient to restore miR-638 expression in CRC cells. Taken together, our current data demonstrate that miR-638 functions as a tumor suppressor in human CRC by inhibiting TSPAN1, and that TSPAN1 is a potential prognostic factor for CRC.
Collapse
Affiliation(s)
- Jiwei Zhang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Bojian Fei
- Department of Surgical Oncology, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Mingxu Song
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Yuan Yin
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Binbin Zhang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Weijie Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zehua Bian
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Chao Quan
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Zhihui Liu
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Yugang Wang
- Department of Urology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109-5942, USA
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Dong Hua
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Zhaohui Huang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| |
Collapse
|
77
|
Zhao XM, Liu KQ, Zhu G, He F, Duval B, Richer JM, Huang DS, Jiang CJ, Hao JK, Chen L. Identifying cancer-related microRNAs based on gene expression data. Bioinformatics 2014; 31:1226-34. [DOI: 10.1093/bioinformatics/btu811] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/04/2014] [Indexed: 12/19/2022] Open
|
78
|
Zhang B, Liu T, Wu T, Wang Z, Rao Z, Gao J. microRNA-137 functions as a tumor suppressor in human non-small cell lung cancer by targeting SLC22A18. Int J Biol Macromol 2014; 74:111-8. [PMID: 25498886 DOI: 10.1016/j.ijbiomac.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/25/2022]
Abstract
Our previous study demonstrated that the overexpression of solute carrier family 22 member 18 (SLC22A18) in human non-small cell lung cancer (NSCLC) tissues might be associated with tumor progression and patients' prognosis. The aim of this study was to investigate the molecular mechanisms underlying its roles in NSCLC. As a result, bioinformatics analysis and luciferase reporter assay showed that microRNA (miRNA)-137 directly targeted SLC22A18 in NSCLC cells. Then, functional studies indicated that the ectopic expression of miR-137 significantly inhibited NSCLC cell proliferation, invasion and migration by targeting SLC22A18. More importantly, the decreased expression of miR-137 in clinical NSCLC tissues was correlated with advanced TNM stage, positive metastasis and poor prognosis of patients with this malignancy. In conclusion, these findings offer the convincing evidence that the roles of SLC22A18 in NSCLC progression may be partially caused by the regulatory effects of miR-137, which may function as a tumor suppressor. Our clinical data further indicated that miR-137 may be an independent favorable prognostic factor in NSCLC patients.
Collapse
Affiliation(s)
- Bicheng Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan 430070, PR China
| | - Tao Liu
- Department of Dermatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China.
| | - Tingting Wu
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan 430070, PR China
| | - Zhigang Wang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan 430070, PR China
| | - Zhiguo Rao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan 430070, PR China
| | - Jianfei Gao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan 430070, PR China
| |
Collapse
|
79
|
Okugawa Y, Toiyama Y, Goel A. An update on microRNAs as colorectal cancer biomarkers: where are we and what's next? Expert Rev Mol Diagn 2014; 14:999-1021. [PMID: 25163355 PMCID: PMC4374444 DOI: 10.1586/14737159.2014.946907] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
miRNAs are abundant classes of small, endogenous non-coding RNAs, which inhibit the expression of target gene via post-transcriptional regulation. In addition to an important functional role miRNAs play in carcinogenesis, emerging evidence has demonstrated their feasibility as robust cancer biomarkers. In particular, the recent discovery of miRNAs in the body fluids provides an attractive opportunity for the development of non-invasive biomarkers for the diagnosis, prognosis and predictive response to cancer therapy. Colorectal cancer (CRC) is one of the most common cancers worldwide, and accumulating data provides a compelling case for the potential exploitation of miRNAs as CRC-biomarkers. This review summarizes the current state of literature in the field, focusing on the clinical relevance of miRNAs as potential biomarkers for CRC treatment and discussing the forthcoming challenges to further advance this exciting field of 'academic research' into 'bedside clinical care' of patients suffering from CRC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
| | - Yuji Toiyama
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514-8507, Japan
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
| |
Collapse
|
80
|
Zheng X, Dong J, Gong T, Zhang Z, Wang Y, Li Y, Shang Y, Li K, Ren G, Feng B, Li J, Tian Q, Tang S, Sun L, Li M, Zhang H, Fan D. MicroRNA library-based functional screening identified miR-137 as a suppresser of gastric cancer cell proliferation. J Cancer Res Clin Oncol 2014; 141:785-95. [PMID: 25342326 DOI: 10.1007/s00432-014-1847-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023]
Abstract
PURPOSES Uncontrolled proliferation is a key characteristic of gastric carcinogenesis and the precise mechanisms underlying the altered proliferation behaviors of GC cells have not been clearly elucidated. miRNAs has been suggested to play a crucial role in the pathogenesis and development of various cancers. In the present study, we employed an impedance-based real-time cell electronic sensing (RT-CES) system to detect the effects of ectopically expressed miRNAs on GC cell proliferation. METHODS miRNA mimics were transfected into gastric cancer cell line SGC7901 and the effect of individual miRNA on the proliferation rate of the cells was measured by the RT-CES system. The screening results were validated with qRT-PCR and miR-137 was selected for further research. The effects of ectopically expressed miR-137 on GC cell growth and cell cycle progress were measured using MTT assay and flow cytometry. The target gene of miR-137 was predicted using different bioinformatics tools and the direct interaction between miR-137 and the 3'-UTR was confirmed with a luciferase reporter assay. The in vivo effect of miR-137 on GC cell proliferation was examined with a tumor-bearing nude mouse model. The correlation between miR-137 expression and patients' prognosis was explored in a cohort of 38 patients. Prognosis was explored in a cohort of 38 patients. RESULTS Ectopic expression of miR-137 was sufficient to inhibit GC cell proliferation both in vitro and in vivo. Bioinformatics prediction and luciferase reporter assay revealed CDK6 as a target gene through which miR-137 exerted an inhibitory function. Moreover, miR-137 expression positively correlated with better prognosis. CONCLUSION Our data indicated an important regulatory role of miR-137 in GC cell proliferation and that it may be explored as a prognostic marker for GC.
Collapse
Affiliation(s)
- Xiushan Zheng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Bcl-2 stabilization by paxillin confers 5-fluorouracil resistance in colorectal cancer. Cell Death Differ 2014; 22:779-89. [PMID: 25323586 DOI: 10.1038/cdd.2014.170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/25/2014] [Accepted: 09/12/2014] [Indexed: 01/10/2023] Open
Abstract
5-Fluorouracil (5-FU) is chemotherapeutic agent widely used for the treatment of colorectal cancer. Unfortunately, advanced colorectal cancer is often resistance to such chemotherapy and poor outcome. An adaptor protein paxillin (PXN) is phosphorylated at Y31/Y118 (pPXN-Y31/Y118) by Src contributes to cell mobility and Ser (S)272 of PXN in LD4 domain is important to the interaction between PXN and Bcl-2. We thus hypothesized that pPXN-Y31/Y118 may be required for Bcl-2 protein stability via PXN interacting with Bcl-2 to confer 5-FU resistance in colorectal cancer. Mechanistically, pPXN-S272 is phosphorylated through pPXN-Y31/Y118-mediated p21 protein-activated kinase 1 (PAK1) activation and pPXN-S272 is required for PXN to interact with Bcl-2. The interaction between PXN and Bcl-2 is essential for Bcl-2 protein stability through phosphorylation of Bcl-2 at S87 (pBcl-2-S87) by pPXN-Y31/Y118-mediated ERK activation. An increase in Bcl-2 expression by PXN is responsible for resistance to 5-FU. The resistance to 5-FU can be abolished by inhibitor of Src and PAK1 or Bcl-2 antagonist in cell and animal models. Among patients, Bcl-2 expression is positively correlated with expression of PXN and pPXN-S272, respectively. Patients with high PXN/high Bcl-2 or high pPXN-S272/high Bcl-2 tumors are commonly to have an unfavorable response to 5-FU-based chemotherapy, compared with patients who have high PXN, high pPXN-S272 or high Bcl-2 tumors alone. Therefore, we suggest that Src, PAK1 or Bcl-2 inhibitor may potentially overcome the resistance of 5-FU-based chemotherapy and consequently to improve outcomes in patients with PXN/Bcl-2 and pPXN-S272/Bcl-2-positive tumors.
Collapse
|
82
|
Chen DL, Wang ZQ, Zeng ZL, Wu WJ, Zhang DS, Luo HY, Wang F, Qiu MZ, Wang DS, Ren C, Wang FH, Chiao LJ, Pelicano H, Huang P, Li YH, Xu RH. Identification of microRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression. Hepatology 2014; 60:598-609. [PMID: 24616020 DOI: 10.1002/hep.27118] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/05/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The purpose of this study was to identify microRNAs (miRNAs) involved in the pathology of colorectal cancer (CRC) liver metastasis and investigate their underlying mechanisms. A total of 39 miRNAs were identified to be differentially expressed between 16 primary CRC tissues with liver metastases and 16 CRC tissues without liver metastases from 32 patients by Affymetric miRNA microarrays. A panel of eight miRNAs were confirmed to be significantly and differentially expressed between CRC tissues with and without liver metastases through quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis in the 32 patients. In a validated cohort of 99 CRC patients (44 with and 55 without liver metastases), only miR-214 was validated to be significantly down-regulated in CRC with liver metastases, which was associated with an unfavorable prognosis. Ectopic expression of miR-214 suppressed proliferation, migration, and invasion in vitro, tumor growth and liver metastasis in an in vivo xenograft mouse model, whereas miR-214 knockdown promoted proliferation, migration, and invasion in CRC cell lines. Further studies indicated that fibroblast growth factor receptor 1 (FGFR1) was a potential target of miR-214. Restoring miR-214 expression in CRC cells decreased endogenous FGFR1 messenger RNA (mRNA) and protein levels. FGFR1 knockdown mimicked the tumor suppressive effect of miR-214 on CRC cells, while reintroduction of FGFR1 abolished the tumor suppressive effect of miR-214 on CRC cells. Moreover, miR-214 expression levels were inversely correlated with FGFR1 in CRC patients. CONCLUSION Down-regulation of miR-214 expression was correlated with increased FGFR1 expression levels, which may contribute to increased CRC liver metastasis. miR-214 may serve as a potential marker to predict survival, and the miR-214-FGFR1 axis may be a therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Dong-Liang Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Liu LL, Lu SX, Li M, Li LZ, Fu J, Hu W, Yang YZ, Luo RZ, Zhang CZ, Yun JP. FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. Oncotarget 2014; 5:5113-24. [PMID: 24970808 PMCID: PMC4148126 DOI: 10.18632/oncotarget.2089] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/09/2014] [Indexed: 01/05/2023] Open
Abstract
microRNAs, frequently deregulated in human cancer, have been implicated in the progression of hepatocarcinogenesis. Here, we show that microRNA (miR)-137 is significantly down-regulated in hepatocellular carcinoma (HCC). Its decreased expression is associated with vein invasion, incomplete Involucrum, and distant metastasis. Multivariate analysis suggests that miR-137 is an independent indicator for poor survival. We next show that over-expression of miR-137 suppresses cell proliferation, migration and invasion in vitro. Conversely, miR-137 inhibition promotes HCC cell growth. We also identify AKT2 as a key target of miR-137 in this context. Statistical data reveal a reverse correlation of AKT2 and miR-137 expression in HCC patients. Silencing of AKT2 phenotypically copied miR-137-induced phenotypes, whereas re-expression of AKT2 reversed the suppressive effects of miR-137. Further investigations showed that miR-137 exerted its anti-tumour activity via inhibiting the AKT2/mTOR pathway. Moreover, we demonstrate that FoxD3 directly binds to the promoter of miR-137 and activates its transcription. In vivo studies confirm that FoxD3-regulated miR-137 inhibited HCC growth and metastasis via targeting AKT2. Together, our findings indicate that miR-137 is a valuable biomarker for HCC prognosis and the FoxD3/miR-137/AKT2 regulatory network plays an important role in HCC progression.
Collapse
Affiliation(s)
- Li-Li Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Shi-Xun Lu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Min Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Lin-Zi Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Jia Fu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Wen Hu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Yuan-Zhong Yang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Rong-Zhen Luo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| |
Collapse
|
84
|
Wu DW, Chuang CY, Lin WL, Sung WW, Cheng YW, Lee H. Paxillin promotes tumor progression and predicts survival and relapse in oral cavity squamous cell carcinoma by microRNA-218 targeting. Carcinogenesis 2014; 35:1823-9. [PMID: 24894864 DOI: 10.1093/carcin/bgu102] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-risk human papillomavirus (HPV) 16-infected oral cavity squamous cell carcinoma (OCSCC) differs significantly from non-HPV-infected OCSCC. However, the molecular pathogenesis of HPV-infected OCSCC remains unclear. Paxillin (PXN) has been reported to promote lung tumor progression by miR-218 targeting. In addition, expression of miR-218 has been shown to be reduced by HPV16 E6 in cervical cancer. We thus asked whether PXN can promote tumor progression by E6-reduced miR-218 in OCSCC, especially in HPV-infected OCSCC. Mechanistic studies demonstrated that PXN expression increased markedly upon E6-mediated reductions in miR-218, resulting in increased colony formation and invasion capabilities in HPV-infected OCSCC cells. Among tumor specimens, HPV16/18 infection was negatively associated with miR-218 expression and positively associated with PXN expression. Kaplan-Meier and Cox regression models demonstrated that patients with low-miR-218 tumors or high-PXN tumors exhibited shorter overall survival (OS) and relapse-free survival (RFS) than those with high-miR-218 tumors or low-PXN tumors. Interestingly, HPV-infected patients with low-miR-218, high-PXN tumors and both combinations exhibited the worst OS and RFS compared with patients in their counterparts. These observations in patients were consistent with the findings from the cell model. Therefore, we suggest that PXN might be targeted to suppress tumor progression and consequently to improve outcomes in OCSCC, especially in HPV-infected OCSCC.
Collapse
Affiliation(s)
- De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan, Republic of China, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Otolaryngology and Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Otolaryngology and
| | - Wea-Long Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan, Republic of China, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Otolaryngology and Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan, Republic of China, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China and Department of Otolaryngology and Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
85
|
Ye JJ, Cao J. MicroRNAs in colorectal cancer as markers and targets: Recent advances. World J Gastroenterol 2014; 20:4288-4299. [PMID: 24764666 PMCID: PMC3989964 DOI: 10.3748/wjg.v20.i15.4288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are evolutionarily conserved small non-coding RNA molecules encoded by eukaryotic genomic DNA, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational repression or degradation of target mRNAs. They represent one of the major types of epigenetic modification and play important roles in all aspects of cellular activities. Altered expression of microRNAs has been found in various human diseases including cancer. Many efforts have been made to discover the characteristic microRNA expression profiles, to understand the roles of aberrantly expressed microRNAs and underlying mechanisms in different cancers. With the application of DNA microarray, real-time quantitative polymerase chain reaction and other molecular biology techniques, increasing evidence has been accumulated which reveal that aberrant microRNAs can be detected not only intracellularly within the cancer cells, but also extracellularly in plasma of patients, postulating the potential of aberrant microRNAs as promising diagnostic/prognostic markers and attracting therapeutic targets. This review is intended to provide the most recent advances in microRNA studies in one of the most common cancers, colorectal cancer, especially the identification of those specifically altered microRNAs in colorectal cancer, validation for their relevance to clinical pathological parameters of patients, functional analyses and potential applications of these microRNAs.
Collapse
|
86
|
Cui J, Cheng Y, Zhang P, Sun M, Gao F, Liu C, Cai J. Down Regulation of miR200c Promotes Radiation-Induced Thymic Lymphoma by Targeting BMI1. J Cell Biochem 2014; 115:1033-42. [DOI: 10.1002/jcb.24754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Jianguo Cui
- Department of Radiation Medicine; Second Military Medical University; Xiangyin Road Shanghai 200433 PR China
| | - Ying Cheng
- Department of Radiation Medicine; Second Military Medical University; Xiangyin Road Shanghai 200433 PR China
| | - Pei Zhang
- Department of Radiation Medicine; Second Military Medical University; Xiangyin Road Shanghai 200433 PR China
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology; Second Military Medical University; Xiangyin Road Shanghai 200433 PR China
| | - Fu Gao
- Department of Radiation Medicine; Second Military Medical University; Xiangyin Road Shanghai 200433 PR China
| | - Cong Liu
- Department of Radiation Medicine; Second Military Medical University; Xiangyin Road Shanghai 200433 PR China
| | - Jianming Cai
- Department of Radiation Medicine; Second Military Medical University; Xiangyin Road Shanghai 200433 PR China
| |
Collapse
|
87
|
Bouyssou JMC, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta Rev Cancer 2014; 1845:255-65. [PMID: 24569228 DOI: 10.1016/j.bbcan.2014.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
Metastasis is a phenomenon of crucial importance in defining prognosis in patients with cancer and is often responsible for cancer-related mortality. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues, thus originating metastatic lesions. Therefore, investigating the molecular actors regulating this process may provide helpful insights in the development of efficient therapeutic responses. Recent evidences have indicated the role of microRNAs (miRNAs) in modulating the metastatic process in solid tumors. miRNAs are small regulatory non-coding RNAs that bind to specific target mRNAs, leading to translational repression. miRNAs are known to act as negative regulators of gene expression and are involved in the regulation of biological processes, including cell growth, differentiation and apoptosis, both in physiological conditions and during diseases, such as tumors. In the specific field of tumorigenesis, miRNAs play an important role in mediating oncogenesis and favoring tumor progression, as a result of their ability to modulate epithelial-to-mesenchymal transition (EMT) and other series of events facilitating the formation of metastasis. The role of miRNAs in cancer development has been widely studied and has helped elucidate events such as the change in expression of oncogenes, tumor-suppressors and cancer-related proteins. This review focuses on the mechanisms underlying the role of miRNAs as part of the metastatic process.
Collapse
Affiliation(s)
- Juliette M C Bouyssou
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA; Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Salomon Manier
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Daisy Huynh
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Samar Issa
- Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Aldo M Roccaro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA.
| |
Collapse
|
88
|
Chen Y, Yi B, Wang Z, Gu J, Li Y, Cui J, Lu K. Paxillin suppresses the proliferation of HPS rat serum treated PASMCs by up-regulating the expression of cytoskeletal proteins. MOLECULAR BIOSYSTEMS 2014; 10:759-66. [PMID: 24457422 DOI: 10.1039/c3mb70391f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatopulmonary syndrome (HPS) is a triad of advanced liver disease, intrapulmonary vasodilatation (IPVD), and arterial hypoxemia. The arterial hypoxemia induces pulmonary vascular remodelling (PVR). In recent studies, the role of the proliferation of pulmonary artery smooth muscle cells (PASMCs) in PVR associated with HPS has been established; the changes in cytoskeletal proteins play an essential role in the proliferation of PASMCs. Little is known about the relevance of cytoskeletal protein expression or the molecular mechanisms of PVR associated with HPS. In addition, it has been identified that paxillin could influence the cytoskeletal protein expression by some important signaling pathways in many diseases, including lung cancer and liver cancer. In this study, we found that HPS rat serum from a common bile duct ligation (CBDL) rat model decreased the expression of cytoskeletal proteins (α-actin, α-tubulin, and destrin) and enhanced the expression levels of paxillin mRNA and protein in PASMCs. After silencing paxillin with siRNA, we found that the down-regulation of cytoskeletal protein expression, induced by the HPS rat serum, was reversed. Additionally, we reported that HPS rat serum improved the proliferation of PASMCs and down-regulation of paxillin could significantly inhibit this variation. These findings suggest that the up-regulation of cytoskeletal protein expression, induced by the paxillin, may cause the dysregulation of PASMC proliferation as well as play a fundamental role in PVR associated with HPS. In conclusion, down-regulation of paxillin by siRNA results in the inhibition of the dysregulation of cytoskeletal proteins and proliferation of PASMCs, suggesting a potential therapeutic effect on PVR associated with HPS.
Collapse
Affiliation(s)
- Yang Chen
- Department of Anesthesia, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China.
| | | | | | | | | | | | | |
Collapse
|
89
|
Li P, Ma L, Zhang Y, Ji F, Jin F. MicroRNA-137 down-regulates KIT and inhibits small cell lung cancer cell proliferation. Biomed Pharmacother 2013; 68:7-12. [PMID: 24412084 DOI: 10.1016/j.biopha.2013.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022] Open
Abstract
MiR-137 expression was examined in parental and drug-resistant cell lines, H446 and H446/CDDP, of small lung cancer (SCLC), and the results showed there was fewer miR-137 expressed in H446/CDDP cells followed by KIT expression emergence. In order to confirm physiological function of these abnormal expressions, H446 and H446/CDDP cells were transfected with miR-137 inhibitor and miR-137 mimics, respectively, after that, miR-137 and KIT expression in two cell lines and drug sensitivity of these cells were evaluated. Results indicated that sensitivity of H446 cells to cisplatin significantly decreased after transfected with miR-137 inhibitor, while miR-137 mimics transfection increased drug sensitivity of H446/CDDP cells and deregulated KIT expression. Our data provided combined evidence that miR-137 was closely related to MDR of SCLC, and interfering of miR-137 expression may attenuate drug resistant of H446/CDDP cells to cisplatin partially through KIT expression regulation. Besides, it has also been proved that KIT might be only one of the downstream molecules of miR-137 that related to SCLC MDR.
Collapse
Affiliation(s)
- Peipei Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China; Department of Respiration, Harrison International Peace Hospital, 053000 Hengshui, China
| | - Lijie Ma
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Yongjuan Zhang
- Department of Physiology, Guangdong Medical College, 523808 Dongguan, China
| | - Fuyun Ji
- Institute of Human Respiratory Disease, Xinqiao Hospital, Third Military Medical University, 400037 Chongqing, China
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China.
| |
Collapse
|
90
|
Bi Y, Han Y, Bi H, Gao F, Wang X. miR-137 impairs the proliferative and migratory capacity of human non-small cell lung cancer cells by targeting paxillin. Hum Cell 2013; 27:95-102. [PMID: 24243432 DOI: 10.1007/s13577-013-0085-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/27/2013] [Indexed: 01/08/2023]
Abstract
Human lung cancer is the leading cause of cancer motility worldwide, with nearly 1.4 million deaths each year, among which non-small cell lung cancer (NSCLC) accounts for almost 85% of this disease. The discovery of microRNAs (miRNAs) provides a new avenue for NSCLC diagnostic and treatment regiments. Currently, a large number of miRNAs have been reported to be associated with the progression of NSCLC, among which serum miR-137 has been examined to be down-regulated in NSCLC patients. However, the function of miR-137 on NSCLC cells migration and invasion and the relative mechanisms were less known. Here, we found that ectopic expression of miR-137 could inhibit cell proliferation, induce cell apoptosis, and suppress cell migration and invasion in NSCLC cell line A549. Moreover, we found that paxillin (PXN) was a target gene of miR-137 in NSCLC cells and restored expression of PXN abolished the miR-137-mediated suppression of cell migration and invasion. Taken together, our results showed that miR-137 acted as a tumor suppressor in NSCLC by targeting PXN, and it may provide novel diagnostic and therapeutic options for human NSCLC clinical operation in future.
Collapse
Affiliation(s)
- Yueyang Bi
- Department of Respiratory Medicine, The Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
91
|
Chen DL, Wang ZQ, Ren C, Zeng ZL, Wang DS, Luo HY, Wang F, Qiu MZ, Bai L, Zhang DS, Wang FH, Li YH, Xu RH. Abnormal expression of paxillin correlates with tumor progression and poor survival in patients with gastric cancer. J Transl Med 2013; 11:277. [PMID: 24180516 PMCID: PMC4228400 DOI: 10.1186/1479-5876-11-277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023] Open
Abstract
Background Paxillin (PXN) has been found to be aberrantly regulated in various malignancies and involved in tumor growth and invasion. The clinicopathological and prognostic significance of PXN in gastric cancer is still unclear. Methods The expression of PXN was determined in paired gastric cancer tissues and adjacent normal tissues by Western blotting and real-time PCR. Immunohistochemistry was performed to detect the expression of PXN in 239 gastric cancer patients. Statistical analysis was applied to investigate the correlation between PXN expression and clinicopathological characteristics and prognosis in patients. Additionally, the effects of PXN on gastric cancer cell proliferation and migration were also evaluated. Results PXN was up-regulated in gastric cancer tissues and cell lines as compared with adjacent normal tissues and normal gastric epithelial cell line GES-1. Overexpression of PXN was correlated with distant metastasis (P = 0.001) and advanced tumor stage (P = 0.021) in gastric cancer patients. Patients with high PXN expression tended to have poor prognosis compared with patients with low PXN expression (P < 0.001). Multivariate analysis demonstrated that PXN expression was an independent prognostic factor (P = 0.020). Moreover, ectopic expression of PXN promotes cell proliferation and migration in AGS cells whereas knockdown of PXN inhibits cell proliferation and migration in SGC7901 cells. Conclusions PXN plays an important role in tumor progression and may be used as a potential prognostic indicator in gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rui-hua Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Dong Feng East Road, 510060 Guangzhou, P,R, China.
| |
Collapse
|
92
|
Huang F, Lin C, Shi YH, Kuerban G. MicroRNA-101 Inhibits Cell Proliferation, Invasion, and Promotes Apoptosis by Regulating Cyclooxygenase-2 in Hela Cervical Carcinoma Cells. Asian Pac J Cancer Prev 2013; 14:5915-20. [DOI: 10.7314/apjcp.2013.14.10.5915] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
93
|
Wang WJ, Yao Y, Jiang LL, Hu TH, Ma JQ, Liao ZJ, Yao JT, Li DF, Wang SH, Nan KJ. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo. PLoS One 2013; 8:e76596. [PMID: 24098538 PMCID: PMC3788715 DOI: 10.1371/journal.pone.0076596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/24/2023] Open
Abstract
Expression of lymphoid enhancer factor 1 (LEF1) is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis) stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Yu Yao
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Li-Li Jiang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Ting-Hua Hu
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Jie-Qun Ma
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Zi-Jun Liao
- Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jun-Tao Yao
- Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | | | - Shu-Hong Wang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
- * E-mail: (K-JN); (S-HW)
| | - Ke-Jun Nan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
- * E-mail: (K-JN); (S-HW)
| |
Collapse
|