51
|
Paradis A, Beaudet MF, Boisvert Moreau M, Huot C. Investigation of a Salmonella Montevideo Outbreak Related to the Environmental Contamination of a Restaurant Kitchen Drainage System, Québec, Canada, 2020-2021. J Food Prot 2023; 86:100131. [PMID: 37474022 DOI: 10.1016/j.jfp.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
In May 2020, the Direction de santé publique du CIUSSS de la Capitale-Nationale (DSPu) received a report from the Laboratoire de santé publique du Québec of a cluster of three cases of Salmonella enterica enterica, serogroup C1, serotype Montevideo. The epidemiological investigation identified a total of 67 cases between January 1, 2020, and August 13, 2021, 66% of which were directly linked to a restaurant in the area. The Salmonella strains from most of these cases were found to be identical by whole-genome sequencing (cluster code 2005MontWGS-1QC). The initial inspection of the restaurant by the competent authorities (Ministère de l'agriculture, des pêcheries et de l'alimentation du Québec) - including the evaluation of hygiene and food safety, the search for cases of illness among workers and food sampling - was unable to establish the source of the outbreak. Environmental samples showed that the restaurant's kitchen drains were contaminated with the same strain of Salmonella Montevideo as the cases in the outbreak. Several cleaning and disinfection methods were used repeatedly. When environmental sampling at the restaurant sites was repeatedly and consecutively negative, cases in the community stopped. The prior occurrence of a fire in the kitchen may have played a role in the contamination of the restaurant drains. In conclusion, public health professionals should consider drainage systems (plumbing) and possible aerosolization of bacteria as a potential source of a restaurant-related salmonellosis outbreak.
Collapse
Affiliation(s)
- André Paradis
- Infectious Diseases, Direction de Santé Publique, Centre Intégré Universitaire de Santé et de Services Sociaux de la Capitale-Nationale, 2400 Av. D'Estimauville, Québec, QC G1E 7G9, Canada.
| | - Marie-France Beaudet
- Infectious Diseases, Direction de Santé Publique, Centre Intégré Universitaire de Santé et de Services Sociaux de la Capitale-Nationale, 2400 Av. D'Estimauville, Québec, QC G1E 7G9, Canada
| | - Marianne Boisvert Moreau
- Public Health and Preventive Medicine Resident, Université Laval, 1600 Av. des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Caroline Huot
- Unité Évaluation et Soutien à la Gestion des Risques, Direction de la Santé Environnementale, au Travail et de la Toxicologie, Institut National de Santé Publique du Québec, 945 Av. Wolfe, Québec, QC G1V 5B3, Canada
| |
Collapse
|
52
|
Kagambèga AB, Dembélé R, Bientz L, M’Zali F, Mayonnove L, Mohamed AH, Coulibaly H, Barro N, Dubois V. Detection and Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital Effluents of Ouagadougou, Burkina Faso. Antibiotics (Basel) 2023; 12:1494. [PMID: 37887195 PMCID: PMC10603891 DOI: 10.3390/antibiotics12101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Hospital wastewater is a recognized reservoir for resistant Gram-negative bacteria. This study aimed to screen for carbapenemase-producing Escherichia coli and Klebsiella pneumoniae and their resistance determinants in two hospital effluents of Ouagadougou. Carbapenem-resistant E. coli and K. pneumoniae were selectively isolated from wastewater collected from two public hospitals in Ouagadougou, Burkina Faso. Bacterial species were identified via MALDI-TOF mass spectrometry. Carbapenemase production was studied phenotypically using antibiotic susceptibility testing via the disk diffusion method. The presence of carbapenemases was further characterized by PCR. A total of 14 E. coli (13.59%) and 19 K. pneumoniae (17.92%) carbapenemase-producing isolates were identified with different distributions. They were, respectively, blaNDM (71.43%), blaVIM (42.86%), blaIMP (28.57%), blaKPC (14.29%), blaOXA-48 (14.29%); and blaKPC (68.42%), blaNDM (68.42%), blaIMP (10.53%), blaVIM (10.53%), and blaOXA-48 (5.26%). In addition, eight (57.14%) E. coli and eleven (57.89%) K. pneumoniae isolates exhibited more than one carbapenemase, KPC and NDM being the most prevalent combination. Our results highlight the presence of clinically relevant carbapenemase-producing isolates in hospital effluents, suggesting their presence also in hospitals. Their spread into the environment via hospital effluents calls for intensive antimicrobial resistance (AMR) surveillance.
Collapse
Affiliation(s)
- Alix Bénédicte Kagambèga
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - René Dembélé
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
- Training and Research Unit in Applied Sciences and Technologies, University of Dedougou, Dedougou 03 BP 176, Burkina Faso
| | - Léa Bientz
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Fatima M’Zali
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Laure Mayonnove
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Alassane Halawen Mohamed
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
- Microbiology Laboratory of the General Reference Hospital (GRH), Niamey BP 12674, Niger
| | - Hiliassa Coulibaly
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - Nicolas Barro
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - Véronique Dubois
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| |
Collapse
|
53
|
Kearney A, Humphreys H, Fitzgerald-Hughes D. Nutritional drinks and enteral feeds promote the growth of carbapenemase-producing Enterobacterales in conditions that simulate disposal in hospital sinks. J Hosp Infect 2023; 139:74-81. [PMID: 37271316 DOI: 10.1016/j.jhin.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Studies have shown that nutritional products are discarded via handwash sinks by healthcare workers, and this practice may promote bacterial growth, including growth of pathogens such as carbapenemase-producing Enterobacterales (CPE). Outbreaks and acquisition of CPE in nosocomial settings are associated with negative outcomes for patients and hospitals. OBJECTIVES To investigate the potential growth-promoting effect of nutritional support drinks (NSDs) and enteral tube-feed products (ETFPs) on CPE. METHODS Six different CPE strains were grown in five different diluted NSDs, five different diluted ETFPs, Mueller-Hinton broth (MHB) and M9 minimal salts media to simulate discarding a small volume of nutritional product in a u-bend, already containing liquid. CPE were enumerated at 0 h, 6 h and 24 h, and compared using two-way analysis of variance and Dunett test, with confidence levels at 95%. Spearman's r was used to measure the strength of correlation between component concentrations in nutritional products and CPE growth. RESULTS All NSDs and ETFPs promoted CPE growth that exceeded both M9 (negative growth control) and MHB (positive growth control). In several cases, growth in NSDs/ETFPs was significantly greater compared with growth in MHB. CONCLUSION Nutritional products support CPE growth under in-vitro conditions. The propensity of CPE to survive in drain pipework suggests that inappropriate product disposal may further nourish established CPE in these environmental reservoirs. The growth observed in diluted NSDs and ETFPs shows that modifiable practices should be optimized to mitigate the potential risk of CPE transmission from these reservoirs.
Collapse
Affiliation(s)
- A Kearney
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - H Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - D Fitzgerald-Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
54
|
Fucini GB, Geffers C, Schwab F, Behnke M, Sunder W, Moellmann J, Gastmeier P. Sinks in patient rooms in ICUs are associated with higher rates of hospital-acquired infection: a retrospective analysis of 552 ICUs. J Hosp Infect 2023; 139:99-105. [PMID: 37308060 DOI: 10.1016/j.jhin.2023.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sinks in hospitals are a possible reservoir for healthcare-related pathogens. They have been identified as a source of nosocomial outbreaks in intensive care units (ICU); however, their role in non-outbreak settings remains unclear. AIM To investigate whether sinks in ICU patient rooms are associated with a higher incidence of hospital-acquired infection (HAI). METHODS This analysis used surveillance data from the ICU component of the German nosocomial infection surveillance system (KISS) from 2017 to 2020. Between September and October 2021, all participating ICUs were surveyed about the presence of sinks in their patient rooms. The ICUs were then divided into two groups: the no-sink group (NSG) and the sink group (SG). Primary and secondary outcomes were total HAIs and HAIs associated with Pseudomonas aeruginosa (HAI-PA). FINDINGS In total, 552 ICUs (NSG N=80, SG N=472) provided data about sinks, total HAIs and HAI-PA. The incidence density per 1000 patient-days of total HAIs was higher in ICUs in the SG (3.97 vs 3.2). The incidence density of HAI-PA was also higher in the SG (0.43 vs 0.34). The risk of HAIs associated with all pathogens [incidence rate ratio (IRR)=1.24, 95% confidence interval (CI) 1.03-1.50] and the risk of lower respiratory tract infections associated with P. aeruginosa (IRR=1.44, 95% CI 1.10-1.90) were higher in ICUs with sinks in patient rooms. After adjusting for confounders, sinks were found to be an independent risk factor for HAI (adjusted IRR 1.21, 95% CI 1.01-1.45). CONCLUSIONS Sinks in patient rooms are associated with a higher number of HAIs per patient-day in the ICU. This should be considered when planning new ICUs or renovating existing ones.
Collapse
Affiliation(s)
- G-B Fucini
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany.
| | - C Geffers
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| | - F Schwab
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| | - M Behnke
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| | - W Sunder
- Institute of Construction Design, Industrial and Health Care Building, Technische Universität Carolo Wilhelmina zu Braunschweig, Braunschweig, Germany
| | - J Moellmann
- Institute of Construction Design, Industrial and Health Care Building, Technische Universität Carolo Wilhelmina zu Braunschweig, Braunschweig, Germany
| | - P Gastmeier
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| |
Collapse
|
55
|
Diorio-Toth L, Wallace MA, Farnsworth CW, Wang B, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. mSystems 2023; 8:e0020623. [PMID: 37439570 PMCID: PMC10469867 DOI: 10.1128/msystems.00206-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 07/14/2023] Open
Abstract
Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danish Gul
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jennie H. Kwon
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, Missouri, USA
| |
Collapse
|
56
|
Hamerlinck H, Aerssens A, Boelens J, Dehaene A, McMahon M, Messiaen AS, Vandendriessche S, Velghe A, Leroux-Roels I, Verhasselt B. Sanitary installations and wastewater plumbing as reservoir for the long-term circulation and transmission of carbapenemase producing Citrobacter freundii clones in a hospital setting. Antimicrob Resist Infect Control 2023; 12:58. [PMID: 37337245 DOI: 10.1186/s13756-023-01261-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Accumulating evidence shows a role of the hospital wastewater system in the spread of multidrug-resistant organisms, such as carbapenemase producing Enterobacterales (CPE). Several sequential outbreaks of CPE on the geriatric ward of the Ghent University hospital have led to an outbreak investigation. Focusing on OXA-48 producing Citrobacter freundii, the most prevalent species, we aimed to track clonal relatedness using whole genome sequencing (WGS). By exploring transmission routes we wanted to improve understanding and (re)introduce targeted preventive measures. METHODS Environmental screening (toilet water, sink and shower drains) was performed between 2017 and 2021. A retrospective selection was made of 53 Citrobacter freundii screening isolates (30 patients and 23 environmental samples). DNA from frozen bacterial isolates was extracted and prepped for shotgun WGS. Core genome multilocus sequence typing was performed with an in-house developed scheme using 3,004 loci. RESULTS The CPE positivity rate of environmental screening samples was 19.0% (73/385). Highest percentages were found in the shower drain samples (38.2%) and the toilet water samples (25.0%). Sink drain samples showed least CPE positivity (3.3%). The WGS data revealed long-term co-existence of three patient sample derived C. freundii clusters. The biggest cluster (ST22) connects 12 patients and 8 environmental isolates taken between 2018 and 2021 spread across the ward. In an overlapping period, another cluster (ST170) links eight patients and four toilet water isolates connected to the same room. The third C. freundii cluster (ST421) connects two patients hospitalised in the same room but over a period of one and a half year. Additional sampling in 2022 revealed clonal isolates linked to the two largest clusters (ST22, ST170) in the wastewater collection pipes connecting the rooms. CONCLUSIONS Our findings suggest long-term circulation and transmission of carbapenemase producing C. freundii clones in hospital sanitary installations despite surveillance, daily cleaning and intermittent disinfection protocols. We propose a role for the wastewater drainage system in the spread within and between rooms and for the sanitary installations in the indirect transmission via bioaerosol plumes. To tackle this problem, a multidisciplinary approach is necessary including careful design and maintenance of the plumbing system.
Collapse
Affiliation(s)
- Hannelore Hamerlinck
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| | - Annelies Aerssens
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Jerina Boelens
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Andrea Dehaene
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Michael McMahon
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | | | | | - Anja Velghe
- Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
57
|
Freier L, Zacharias N, Gemein S, Gebel J, Engelhart S, Exner M, Mutters NT. Environmental Contamination and Persistence of Clostridioides difficile in Hospital Wastewater Systems. Appl Environ Microbiol 2023; 89:e0001423. [PMID: 37071016 PMCID: PMC10231184 DOI: 10.1128/aem.00014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Clostridioides difficile produces an environmentally resistant dormant spore morphotype that infected patients shed to the hospital environment. C. difficile spores persist in clinical reservoirs that are not targeted by hospital routine cleaning protocols. Transmissions and infections from these reservoirs present a hazard to patient safety. This study aimed to assess the impact of patients acutely suffering from C. difficile-associated diarrhea (CDAD) on C. difficile environmental contamination to identify potential reservoirs. Twenty-three hospital rooms accommodating CDAD inpatients with corresponding soiled workrooms of 14 different wards were studied in a German maximum-care hospital. Additionally, four rooms that never accommodated CDAD patients were examined as negative controls. Stagnant water and biofilms from sinks, toilets, and washer disinfector (WD) traps as well as swabs from cleaned bedpans and high-touch surfaces (HTSs) were sampled. For detection, a culture method was used with selective medium. A latex agglutination assay and a Tox A/B enzyme-linked immunosorbent assay were performed with suspect colonies. Stagnant water and biofilms in hospital traps (29%), WDs (34%), and HTSs (37%) were found to be reservoirs for large amounts of C. difficile during the stay of CDAD inpatients that decreased but could persist 13 ± 6 days after their discharge (13%, 14%, and 9.5%, respectively). Control rooms showed none or only slight contamination restricted to WDs. A short-term cleaning strategy was implemented that reduced C. difficile in stagnant water almost entirely. IMPORTANCE Wastewater pipes are microbial ecosystems. The potential risk of infection emanating from the wastewater for individuals is often neglected, since it is perceived to remain in the pipes. However, sewage systems start with siphons and are thus naturally connected to the outside world. Wastewater pathogens do not only flow unidirectionally to wastewater treatment plants but also retrogradely, e.g., through splashing water from siphons to the hospital environment. This study focused on the pathogen C. difficile, which can cause severe and sometimes fatal diarrheas. This study shows how patients suffering from such diarrheas contaminate the hospital environment with C. difficile and that contamination persists in siphon habitats after patient discharge. This might pose a health risk for hospitalized patients afterward. Since this pathogen's spore morphotype is very environmentally resistant and difficult to disinfect, we show a cleaning measure that can almost entirely eliminate C. difficile from siphons.
Collapse
Affiliation(s)
- Lia Freier
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Stefanie Gemein
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
- Reference Institute for Bioanalytics, Bonn, Germany
| | - Jürgen Gebel
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Nico T. Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
58
|
Walas N, Slown S, Amato HK, Lloyd T, Bender M, Varghese V, Pandori M, Graham JP. The role of plasmids in carbapenem resistant E. coli in Alameda County, California. BMC Microbiol 2023; 23:147. [PMID: 37217873 DOI: 10.1186/s12866-023-02900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistant infections continue to be a leading global public health crisis. Mobile genetic elements, such as plasmids, have been shown to play a major role in the dissemination of antimicrobial resistance (AMR) genes. Despite its ongoing threat to human health, surveillance of AMR in the United States is often limited to phenotypic resistance. Genomic analyses are important to better understand the underlying resistance mechanisms, assess risk, and implement appropriate prevention strategies. This study aimed to investigate the extent of plasmid mediated antimicrobial resistance that can be inferred from short read sequences of carbapenem resistant E. coli (CR-Ec) in Alameda County, California. E. coli isolates from healthcare locations in Alameda County were sequenced using an Illumina MiSeq and assembled with Unicycler. Genomes were categorized according to predefined multilocus sequence typing (MLST) and core genome multilocus sequence typing (cgMLST) schemes. Resistance genes were identified and corresponding contigs were predicted to be plasmid-borne or chromosome-borne using two bioinformatic tools (MOB-suite and mlplasmids). RESULTS Among 82 of CR-Ec identified between 2017 and 2019, twenty-five sequence types (STs) were detected. ST131 was the most prominent (n = 17) followed closely by ST405 (n = 12). blaCTX-M were the most common ESBL genes and just over half (18/30) of these genes were predicted to be plasmid-borne by both MOB-suite and mlplasmids. Three genetically related groups of E. coli isolates were identified with cgMLST. One of the groups contained an isolate with a chromosome-borne blaCTX-M-15 gene and an isolate with a plasmid-borne blaCTX-M-15 gene. CONCLUSIONS This study provides insights into the dominant clonal groups driving carbapenem resistant E. coli infections in Alameda County, CA, USA clinical sites and highlights the relevance of whole-genome sequencing in routine local genomic surveillance. The finding of multi-drug resistant plasmids harboring high-risk resistance genes is of concern as it indicates a risk of dissemination to previously susceptible clonal groups, potentially complicating clinical and public health intervention.
Collapse
Affiliation(s)
- Nikolina Walas
- School of Public Health, University of California, Berkeley, CA, USA.
| | - Samuel Slown
- School of Public Health, University of California, Berkeley, CA, USA
| | - Heather K Amato
- School of Public Health, University of California, Berkeley, CA, USA
| | - Tyler Lloyd
- Alameda County Public Health Laboratory, Oakland, CA, USA
| | - Monica Bender
- Alameda County Public Health Laboratory, Oakland, CA, USA
| | - Vici Varghese
- Alameda County Public Health Laboratory, Oakland, CA, USA
| | - Mark Pandori
- Alameda County Public Health Laboratory, Oakland, CA, USA
- Nevada State Public Health Laboratory, Reno, NV, USA
| | - Jay P Graham
- School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
59
|
Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH. Characterisation of pellicle-forming ability in clinical carbapenem-resistant Acinetobacter baumannii. PeerJ 2023; 11:e15304. [PMID: 37214089 PMCID: PMC10194081 DOI: 10.7717/peerj.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Background Acinetobacter baumannii was reported to have resistance towards carbapenems and the ability to form an air-liquid biofilm (pellicle) which contributes to their virulence. The GacSA two-component system has been previously shown to play a role in pellicle formation. Therefore, this study aims to detect the presence of gacA and gacS genes in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates recovered from patients in intensive care units and to investigate their pellicle forming ability. Methods The gacS and gacA genes were screened in 96 clinical CRAB isolates using PCR assay. Pellicle formation assay was performed in Mueller Hinton medium and Luria Bertani medium using borosilicate glass tubes and polypropylene plastic tubes. The biomass of the pellicle was quantitated using the crystal violet staining assay. The selected isolates were further assessed for their motility using semi-solid agar and monitored in real-time using real-time cell analyser (RTCA). Results All 96 clinical CRAB isolates carried the gacS and gacA genes, however, only four isolates (AB21, AB34, AB69 and AB97) displayed the ability of pellicle-formation phenotypically. These four pellicle-forming isolates produced robust pellicles in Mueller Hinton medium with better performance in borosilicate glass tubes in which biomass with OD570 ranging from 1.984 ± 0.383 to 2.272 ± 0.376 was recorded. The decrease in cell index starting from 13 hours obtained from the impedance-based RTCA showed that pellicle-forming isolates had entered the growth stage of pellicle development. Conclusion These four pellicle-forming clinical CRAB isolates could be potentially more virulent, therefore further investigation is warranted to provide insights into their pathogenic mechanisms.
Collapse
Affiliation(s)
- Heng Kang Ng
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
60
|
Joachim A, Manyahi J, Issa H, Lwoga J, Msafiri F, Majigo M. Predominance of Multidrug-Resistant Gram-Negative Bacteria on Contaminated Surfaces at a Tertiary Hospital in Tanzania: A Call to Strengthening Environmental Infection Prevention and Control Measures. Curr Microbiol 2023; 80:148. [PMID: 36964831 DOI: 10.1007/s00284-023-03254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
The spreading of multidrug resistance (MDR) strains in the hospital settings via contaminated surfaces have been increasingly reported where Gram-negative bacteria have been implicated in causing most nosocomial infections. This study aimed to determine the rate of contamination with multi-resistant gram-negative bacteria in the hospital environment. A cross-sectional study was conducted at Muhimbili National Hospital paediatric department, between July and August 2020. Non-repetitive surface swab samples were collected from predefined surfaces and medical device surfaces, and cultured on MacConkey agar with and without antibiotics. Isolates were identified using biochemical test and tested for antibiotic susceptibility using the Kirby-Bauer disk diffusion method. The rate of hospital contamination with Gram-negative bacteria across the Pediatrics units was 30%, with a high rate observed in oncology units (34.8%) and the malnutrition/diarrhoea ward (32.1%). Sink/washing basin had the highest frequency of bacterial contamination (74.2%). We observed a high rate of ESBL (32.5%), with Acinetobacter baumannii, Klebsiella pneumoniae, and E. coli being the predominant ESBL-producing Gram-negative bacteria, while carbapenemase-producing Gram-negative bacteria was detected at 22.8%. Highest resistance rates (63-100%) were observed against ceftriaxone and trimethoprim-sulfamethoxazole. Up to 51% of the Gram-negative bacteria showed resistant to meropenem. MDR strains were detected in 61.4% of Gram-negative bacteria isolated. In conclusion, we observed a high rate of MDR bacteria contaminating hospital surfaces. The higher rate of MDR calls for a need to strengthen infectious prevention control measures, including cleaning practices in the hospital environment, to reduce the risk of transmission of resistant strains to patients and healthcare workers.
Collapse
Affiliation(s)
- Agricola Joachim
- School of Medicine, Muhimbili University of Health and Allied Sciences, P.O. 65001, Dar Es Salaam, Tanzania.
| | - Joel Manyahi
- School of Medicine, Muhimbili University of Health and Allied Sciences, P.O. 65001, Dar Es Salaam, Tanzania
| | - Habiba Issa
- School of Medicine, Muhimbili University of Health and Allied Sciences, P.O. 65001, Dar Es Salaam, Tanzania
| | - Jackline Lwoga
- School of Medicine, Muhimbili University of Health and Allied Sciences, P.O. 65001, Dar Es Salaam, Tanzania
| | - Frank Msafiri
- School of Medicine, Muhimbili University of Health and Allied Sciences, P.O. 65001, Dar Es Salaam, Tanzania
| | - Mtebe Majigo
- School of Medicine, Muhimbili University of Health and Allied Sciences, P.O. 65001, Dar Es Salaam, Tanzania
| |
Collapse
|
61
|
van der Schoor AS, Severin JA, Klaassen CHW, Gommers D, Bruno MJ, Hendriks JM, Voor In 't Holt AF, Vos MC. Environmental contamination with highly resistant microorganisms after relocating to a new hospital building with 100% single-occupancy rooms: A prospective observational before-and-after study with a three-year follow-up. Int J Hyg Environ Health 2023; 248:114106. [PMID: 36621268 DOI: 10.1016/j.ijheh.2022.114106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Inanimate surfaces within hospitals can be a source of transmission for highly resistant microorganisms (HRMO). While many hospitals are transitioning to single-occupancy rooms, the effect of single-occupancy rooms on environmental contamination is still unknown. We aimed to determine differences in environmental contamination with HRMO between an old hospital building with mainly multiple-occupancy rooms and a new hospital building with 100% single-occupancy rooms, and the environmental contamination in the new hospital building during three years after relocating. METHODS Environmental samples were taken twice in the old hospital, and fifteen times over a three-year period in the new hospital. Replicate Organism Direct Agar Contact-plates (RODACs) were used to determine colony forming units (CFU). Cotton swabs premoistened with PBS were used to determine presence of methicillin-resistant Staphylococcus aureus, carbapenemase-producing Pseudomonas aeruginosa, highly resistant Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and vancomycin-resistant Enterococcus faecium. All identified isolates were subjected to whole genome sequencing (WGS) using Illumina technology. RESULTS In total, 4993 hospital sites were sampled, 724 in the old and 4269 in the new hospital. CFU counts fluctuated during the follow-up period in the new hospital building, with lower CFU counts observed two- and three years after relocating, which was during the COVID-19 pandemic. The CFU counts in the new building were equal to or surpassed the CFU counts in the old hospital building. In the old hospital building, 24 (3.3%) sample sites were positive for 49 HRMO isolates, compared to five (0.1%) sample sites for seven HRMO isolates in the new building (P < 0.001). In the old hospital, 89.8% of HRMO were identified from the sink plug. In the new hospital, 71.4% of HRMO were identified from the shower drain, and no HRMO were found in sinks. DISCUSSION Our results indicate that relocating to a new hospital building with 100% single-occupancy rooms significantly decreases HRMO in the environment. Given that environmental contamination is an important source for healthcare associated infections, this finding should be taken into account when considering hospital designs for renovations or the construction of hospitals.
Collapse
Affiliation(s)
- Adriënne S van der Schoor
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Juliëtte A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Johanna M Hendriks
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
62
|
Emergence of Small Colony Variants Is an Adaptive Strategy Used by Pseudomonas aeruginosa to Mitigate the Effects of Redox Imbalance. mSphere 2023; 8:e0005723. [PMID: 36853007 PMCID: PMC10117050 DOI: 10.1128/msphere.00057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The ability to generate a subpopulation of small colony variants (SCVs) is a conserved feature of Pseudomonas aeruginosa and could represent a key adaptive strategy to colonize and persist in multiple niches. However, very little is known about the role of the SCV phenotype, the conditions that promote its emergence, and its possible involvement in an adaptive strategy. In the present work, we investigated the in vitro selective conditions promoting the emergence of SCVs from the prototypical strain PA14, which readily forms SCVs in nonagitated standing cultures. We found that O2 limitation, which causes a redox imbalance, is the main factor selecting for the SCV phenotype, which promotes survival of the population via formation of a biofilm at the air-liquid interface to access the electron acceptor. When this selective pressure is relieved by aeration or supplementation of an alternative electron acceptor, SCVs are barely detectable. We also observed that SCV emergence contributes to redox rebalancing, suggesting that it is involved in an adaptive strategy. We conclude that selection for the SCV phenotype is an adaptive solution adopted by P. aeruginosa to access poorly available O2. IMPORTANCE The bacterium Pseudomonas aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because it is a causative agent of nosocomial infections and the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is often related to the emergence of an alternative phenotype known as small colony variant (SCV). Identification of conditions selecting for the SCV phenotype contributes to knowledge regarding adaptive mechanisms exploited by P. aeruginosa to survive in multiple niches and persist during infections. Hindering this adaptation strategy could help control persistent P. aeruginosa infections.
Collapse
|
63
|
Challenges in the Hospital Water System and Innovations to Prevent Healthcare-Associated Infections. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2023. [DOI: 10.1007/s40506-023-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
64
|
Couchoud C, Bertrand X, Bourgeon M, Piton G, Valot B, Hocquet D. Genome-based typing reveals rare events of patient contamination with Pseudomonas aeruginosa from other patients and sink traps in a medical intensive care unit. J Hosp Infect 2023; 134:63-70. [PMID: 36738994 DOI: 10.1016/j.jhin.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
AIM We used genome-based typing data with the aim of identifying the routes of acquisition of Pseudomonas aeruginosa by patients hospitalized in a medical intensive care unit (MICU) over a long period in a non-epidemic context. METHODS This monocentric prospective study took place over 10 months in 2019 in a 15-bed MICU that applies standard precautions of hygiene. Lockable sink traps installed at all water points of use were bleach disinfected twice a week. We sampled all sink traps weekly to collect 404 P. aeruginosa environmental isolates and collected all P. aeruginosa isolates (N = 115) colonizing or infecting patients (N = 65). All isolates had their phenotypic resistance profile determined and their genome sequenced, from which we identified resistance determinants and assessed the population structure of the collection at the nucleotide level to identify events of P. aeruginosa transmission. FINDINGS All sink traps were positive for P. aeruginosa, each sink trap being colonized for several months by one or more clones. The combination of genomic and spatiotemporal data identified one potential event of P. aeruginosa transmission from a sink trap to a patient (1/65, 1.5%) and six events of patient cross-transmission, leading to the contamination of five patients (5/65, 7.7%). All transmitted isolates were fully susceptible to β-lactams and aminoglycosides. CONCLUSIONS Genome-based typing revealed the contamination of patients by P. aeruginosa originating from sink traps to be infrequent (1.5%) in an MICU with sink trap-bleaching measures, and that only 7.7% of the patients acquired P. aeruginosa originating from another patient.
Collapse
Affiliation(s)
- C Couchoud
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000, Besançon, France
| | - X Bertrand
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000, Besançon, France
| | - M Bourgeon
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, Besançon, France
| | - G Piton
- Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire, Besançon, France; EA3920, Université de Franche-Comté, Besançon, France
| | - B Valot
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000, Besançon, France; Bioinformatique et Big Data Au Service de La Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
| | - D Hocquet
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, Besançon, France; Bioinformatique et Big Data Au Service de La Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France.
| |
Collapse
|
65
|
Rice W, Martin J, Hodgkin M, Carter J, Barrasa A, Sweeting K, Johnson R, Best E, Nahl J, Denton M, Hughes GJ. A protracted outbreak of difficult-to-treat resistant Pseudomonas aeruginosa in a haematology unit: a matched case-control study demonstrating increased risk with use of fluoroquinolone. J Hosp Infect 2023; 132:52-61. [PMID: 36563938 DOI: 10.1016/j.jhin.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Between September 2016 and November 2020, 17 cases of difficult-to-treat resistant Pseudomonas aeruginosa (DTR-PA) were reported in haematology patients at a tertiary referral hospital in the North of England. AIM A retrospective case-control study was conducted to investigate the association between DTR-PA infection and clinical interventions, patient movement, antimicrobial use and comorbidities. METHODS Cases were patients colonized or infected with the outbreak strain of DTR-PA who had been admitted to hospital prior to their positive specimen. Exposures were extracted from medical records, and cases were compared with controls using conditional logistic regression. Environmental and microbiological investigations were also conducted. FINDINGS Seventeen cases and 51 controls were included. The final model included age [>65 years, adjusted OR (aOR) 6.85, P=0.232], sex (aOR 0.60, P=0.688), admission under the transplant team (aOR 14.27, P=0.43) and use of ciprofloxacin (aOR 102.13, P=0.030). Investigations did not indicate case-to-case transmission or a point source, although a common environmental source was highly likely. CONCLUSION This study found that the use of fluoroquinolones is an independent risk factor for DTR-PA in haematology patients. Antimicrobial stewardship and review of fluoroquinolone prophylaxis should be considered as part of PA outbreak investigations in addition to standard infection control interventions.
Collapse
Affiliation(s)
- W Rice
- Field Epidemiology Training Programme, United Kingdom Heath Security Agency, London, UK; Field Service, United Kingdom Health Security Agency, Leeds, UK
| | - J Martin
- Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - M Hodgkin
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - J Carter
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - A Barrasa
- Field Epidemiology Training Programme, United Kingdom Heath Security Agency, London, UK
| | - K Sweeting
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - R Johnson
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - E Best
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - J Nahl
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - M Denton
- Field Service, United Kingdom Health Security Agency, Leeds, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - G J Hughes
- Field Service, United Kingdom Health Security Agency, Leeds, UK.
| |
Collapse
|
66
|
Xuan G, Kong J, Wang Y, Lin H, Wang J. Characterization of the newly isolated Pseudomonas phage vB_Pae_LC3I3. Virus Res 2023; 323:198978. [PMID: 36288775 PMCID: PMC10194125 DOI: 10.1016/j.virusres.2022.198978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Here, we report the genome sequence of a double-stranded DNA siphovirus, vB_Pae_LC3I3 infective for P. aeruginosa PA14. Phage vB_Pae_LC3I3 was identified as a linear double-stranded DNA phage of 49,926 bp with 59% G+C content. The vB_Pae_LC3I3 genome contains 78 open reading frames, and the function of 22 ORFs can be predicted. Genome analysis confirmed the lysogenic nature of this phage, which encodes the typical lysogen-related integrase and CI/Cro regulator. One-step growth curve revealed that the latent period of phage vB_Pae_LC3I3 lasted for 30 min. And vB_Pae_LC3I3 showed good temperature stability and pH stability. Based on electron microscopy, phylogenetic, and comparative genomic analyses, this novel Pseudomonas temperate phage represents a novel unassigned siphoviruses cluster. The study of phage vB_Pae_LC3I3 will provide basic information for further research on treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiuna Kong
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yinfeng Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
67
|
Tiwari A, Kurittu P, Al-Mustapha AI, Heljanko V, Johansson V, Thakali O, Mishra SK, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Wastewater surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front Microbiol 2022; 13:977106. [PMID: 36590429 PMCID: PMC9798455 DOI: 10.3389/fmicb.2022.977106] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases caused by antibiotic-resistant bacterial (ARB) pathogens are a serious threat to human and animal health. The active surveillance of ARB using an integrated one-health approach can help to reduce the emergence and spread of ARB, reduce the associated economic impact, and guide antimicrobial stewardship programs. Wastewater surveillance (WWS) of ARB provides composite samples for a total population, with easy access to the mixed community microbiome. This concept is emerging rapidly, but the clinical utility, sensitivity, and uniformity of WWS of ARB remain poorly understood especially in relation to clinical evidence in sewershed communities. Here, we systematically searched the literature to identify studies that have compared findings from WWS of ARB and antibiotic resistance genes (ARG) with clinical evidence in parallel, thereby evaluating how likely WWS of ARB and ARG can relate to the clinical cases in communities. Initially, 2,235 articles were obtained using the primary search keywords, and 1,219 articles remained after de-duplication. Among these, 35 articles fulfilled the search criteria, and an additional 13 relevant articles were included by searching references in the primary literature. Among the 48 included papers, 34 studies used a culture-based method, followed by 11 metagenomics, and three PCR-based methods. A total of 28 out of 48 included studies were conducted at the single sewershed level, eight studies involved several countries, seven studies were conducted at national or regional scales, and five at hospital levels. Our review revealed that the performance of WWS of ARB pathogens has been evaluated more frequently for Escherichia coli, Enterococcus spp., and other members of the family Enterobacteriaceae, but has not been uniformly tested for all ARB pathogens. Many wastewater-based ARB studies comparing the findings with clinical evidence were conducted to evaluate the public health risk but not to relate with clinical evidence and to evaluate the performance of WWS of ARB. Indeed, relating WWS of ARB with clinical evidence in a sewershed is not straightforward, as the source of ARB in wastewater cannot be only from symptomatic human individuals but can also be from asymptomatic carriers as well as from animal sources. Further, the varying fates of each bacterial species and ARG within the sewerage make the aim of connecting WWS of ARB with clinical evidence more complicated. Therefore, future studies evaluating the performance of many AMR pathogens and their genes for WWS one by one can make the process simpler and the interpretation of results easier.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Ananda Tiwari,
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ahmad I. Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria,Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Nigeria
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shyam Kumar Mishra
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
68
|
Efficacy of Vaporized Hydrogen Peroxide Combined with Silver Ions against Multidrug-Resistant Gram-Negative and Gram-Positive Clinical Isolates. Int J Mol Sci 2022; 23:ijms232415826. [PMID: 36555465 PMCID: PMC9779286 DOI: 10.3390/ijms232415826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance (AMR) is a serious public health problem that results in high morbidity and mortality rates. In particular, multidrug-resistant (MDR) strains circulating in hospital settings pose a major threat as they are associated with serious nosocomial infections. Therefore, regular cleaning and disinfection procedures, usually using chemical disinfectants, must be implemented in these facilities. Hydrogen peroxide (HP)-based disinfectants have proven high microbicidal activity and several comparative advantages over conventional disinfectants. We assessed the in vitro biocidal activity of an 8% HP solution combined with 30 mg/L silver ions (HP + Ag) against MDR clinical isolates of Klebsiella pneumoniae (MDRKp) and Pseudomonas aeruginosa (MDRPa), and methicillin-resistant Staphylococcus aureus (MRSA). Accordingly, the in vitro antibacterial activity was determined using the macrodilution method, and the efficacy was determined for 30 min in terms of (1) activity on bacteria in suspension and (2) activity on surfaces using vaporized HP + Ag on a 20 cm2 stainless steel surface. A strong bactericidal effect of HP + Ag was observed against MDRKp, MDRPa, and MRSA strains, with minimum inhibitory concentrations and minimum bactericidal concentrations between 362.5 and 5800 mg/L. A strong effect was observed during the 30 min of HP + Ag exposure to the resistant clinical isolates, with over 4-Log10 reduction in CFUs. Regarding the efficacy of the disinfectant on surfaces, bacterial load reductions of >99% were observed. These results suggest that HP + Ag is potentially useful as an effective disinfectant for decontaminating surfaces in hospital settings suspected of contamination with MDR bacteria.
Collapse
|
69
|
Pham TM, Büchler AC, Voor in ‘t holt AF, Severin JA, Bootsma MCJ, Gommers D, Kretzschmar ME, Vos MC. Routes of transmission of VIM-positive Pseudomonas aeruginosa in the adult intensive care unit-analysis of 9 years of surveillance at a university hospital using a mathematical model. Antimicrob Resist Infect Control 2022; 11:55. [PMID: 35379340 PMCID: PMC8981946 DOI: 10.1186/s13756-022-01095-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background Hospital outbreaks of multidrug resistant Pseudomonas aeruginosa are often caused by Pseudomonas aeruginosa clones which produce metallo-β-lactamases, such as Verona Integron-encoded Metallo-β-lactamase (VIM). Although different sources have been identified, the exact transmission routes often remain unknown. However, quantifying the role of different transmission routes of VIM-PA is important for tailoring infection prevention and control measures. The aim of this study is to quantify the relative importance of different transmission routes by applying a mathematical transmission model using admission and discharge dates as well as surveillance culture data of patients. Methods We analyzed VIM-PA surveillance data collected between 2010 and 2018 of two intensive-care unit (ICU) wards for adult patients of the Erasmus University Medical Center Rotterdam using a mathematical transmission model. We distinguished two transmission routes: direct cross-transmission and a persistent environmental route. Based on admission, discharge dates, and surveillance cultures, we estimated the proportion of transmissions assigned to each of the routes. Results Our study shows that only 13.7% (95% CI 1.4%, 29%) of the transmissions that occurred in these two ICU wards were likely caused by cross-transmission, leaving the vast majority of transmissions (86.3%, 95% CI 71%, 98.6%) due to persistent environmental contamination. Conclusions Our results emphasize that persistent contamination of the environment may be an important driver of nosocomial transmissions of VIM-PA in ICUs. To minimize the transmission risk from the environment, potential reservoirs should be regularly and thoroughly cleaned and disinfected, or redesigned. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01095-x.
Collapse
|
70
|
Brunke MS, Konrat K, Schaudinn C, Piening B, Pfeifer Y, Becker L, Schwebke I, Arvand M. Tolerance of biofilm of a carbapenem-resistant Klebsiella pneumoniae involved in a duodenoscopy-associated outbreak to the disinfectant used in reprocessing. Antimicrob Resist Infect Control 2022; 11:81. [PMID: 35659363 PMCID: PMC9164365 DOI: 10.1186/s13756-022-01112-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background One possible transmission route for nosocomial pathogens is contaminated medical devices. Formation of biofilms can exacerbate the problem. We report on a carbapenemase-producing Klebsiella pneumoniae that had caused an outbreak linked to contaminated duodenoscopes. To determine whether increased tolerance to disinfectants may have contributed to the outbreak, we investigated the susceptibility of the outbreak strain to disinfectants commonly used for duodenoscope reprocessing. Disinfection efficacy was tested on planktonic bacteria and on biofilm. Methods Disinfectant efficacy testing was performed for planktonic bacteria according to EN standards 13727 and 14561 and for biofilm using the Bead Assay for Biofilms. Disinfection was defined as ≥ 5log10 reduction in recoverable colony forming units (CFU). Results The outbreak strain was an OXA-48 carbapenemase-producing K. pneumoniae of sequence type 101. We found a slightly increased tolerance of the outbreak strain in planktonic form to peracetic acid (PAA), but not to other disinfectants tested. Since PAA was the disinfectant used for duodenoscope reprocessing, we investigated the effect of PAA on biofilm of the outbreak strain. Remarkably, disinfection of biofilm of the outbreak strain could not be achieved by the standard PAA concentration used for duodenoscope reprocessing at the time of outbreak. An increased tolerance to PAA was not observed in a K. pneumoniae type strain tested in parallel. Conclusions Biofilm of the K. pneumoniae outbreak strain was tolerant to standard disinfection during duodenoscope reprocessing. This study establishes for the first time a direct link between biofilm formation, increased tolerance to disinfectants, reprocessing failure of duodenoscopes and nosocomial transmission of carbapenem-resistant K. pneumoniae. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01112-z.
Collapse
|
71
|
Genomic landscape of bla GES-5- and bla GES-24-harboring Gram-negative bacteria from hospital wastewater: emergence of class 3 integron-associated bla GES-24 genes. J Glob Antimicrob Resist 2022; 31:196-206. [PMID: 36180037 DOI: 10.1016/j.jgar.2022.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This study aimed to characterize Gram negative bacteria carrying blaGES carbapenemase genes detected in wastewater from a hospital with no history of detection of clinical isolates producing GES carbapenemases. METHODS Six hospital effluent samples were screened for carbapenemase-producing organisms (CPO) using CHROMagar mSuperCARBA and MacConkey agar with 1 µg/mL imipenem. Polymerase chain reaction (PCR) amplification and sequencing of carbapenemase genes, multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. RESULTS Among 21 CPO isolates, 11 Klebsiella spp. and 5 Enterobacter kobei isolates carried blaGES-24, and 4 E. roggenkampii and 1 Pseudomonas aeruginosa isolates carried blaGES-5. Genomic analysis of 8 representative isolates comprising 6 blaGES-24-positive and 2 blaGES-5-positive revealed that class 3 integrons with complete or defective Tn402-like transposition modules were predominantly associated with two tandem copies of blaGES-24. Furthermore, a total of 5 new class 3 integrons, In3-18 to In3-22, were identified among 5 blaGES-24 and 1 blaGES-5 plasmids. One strain each of K. pneumoniae subsp. pneumoniae and K. quasipneumoniae subsp. similipneumoniae harboring blaGES-24 plasmids also carried a rare blaVEB-1-positive class 1 integron on a non-typeable plasmid, where these blaVEB-1 plasmids had high sequence similarity. Virulence gene profiles differed between Klebsiella spp. and Enterobacter spp.; the former harbored type III fimbriae cluster, salmochelin, and T6SS type i2 gene clusters, while the latter had curli pili operon, aerobactin, T2SS gene clusters, and T6SS type i3 gene clusters. CONCLUSION Our findings confirmed the linkage of blaGES-24 with rare Tn402-like class 3 integrons and the structural diversity of their gene cassette arrays.
Collapse
|
72
|
Schuster D, Axtmann K, Holstein N, Felder C, Voigt A, Färber H, Ciorba P, Szekat C, Schallenberg A, Böckmann M, Zarfl C, Neidhöfer C, Smalla K, Exner M, Bierbaum G. Antibiotic concentrations in raw hospital wastewater surpass minimal selective and minimum inhibitory concentrations of resistant Acinetobacter baylyi strains. Environ Microbiol 2022; 24:5721-5733. [PMID: 36094736 DOI: 10.1111/1462-2920.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
Antibiotics are essential for modern medicine, they are employed frequently in hospitals and, therefore, present in hospital wastewater. Even in concentrations, that are lower than the minimum inhibitory concentrations (MICs) of susceptible bacteria, antibiotics may exert an influence and select resistant bacteria, if they exceed the MSCs (minimal selective concentrations) of resistant strains. Here, we compare the MSCs of fluorescently labelled Acinetobacter baylyi strains harboring spontaneous resistance mutations or a resistance plasmid with antibiotic concentrations determined in hospital wastewater. Low MSCs in the μg/L range were measured for the quinolone ciprofloxacin (17 μg/L) and for the carbapenem meropenem (30 μg/L). A 24 h continuous analysis of hospital wastewater showed daily fluctuations of the concentrations of these antibiotics with distinctive peaks at 7-8 p.m. and 5-6 a.m. The meropenem concentrations were always above the MSC and MIC values of A. baylyi. In addition, the ciprofloxacin concentrations were in the range of the lowest MSC for about half the time. These results explain the abundance of strains with meropenem and ciprofloxacin resistance in hospital wastewater and drains.
Collapse
Affiliation(s)
- Dominik Schuster
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Niklas Holstein
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Carsten Felder
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Alex Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Harald Färber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Patrick Ciorba
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christiane Szekat
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna Schallenberg
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Matthias Böckmann
- Environmental Systems Analysis, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Christiane Zarfl
- Environmental Systems Analysis, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
73
|
Rabaan AA, Eljaaly K, Alhumaid S, Albayat H, Al-Adsani W, Sabour AA, Alshiekheid MA, Al-Jishi JM, Khamis F, Alwarthan S, Alhajri M, Alfaraj AH, Tombuloglu H, Garout M, Alabdullah DM, Mohammed EAE, Yami FSA, Almuhtaresh HA, Livias KA, Mutair AA, Almushrif SA, Abusalah MAHA, Ahmed N. An Overview on Phenotypic and Genotypic Characterisation of Carbapenem-Resistant Enterobacterales. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1675. [PMID: 36422214 PMCID: PMC9696003 DOI: 10.3390/medicina58111675] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/26/2023]
Abstract
Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ 85716, USA
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 635342, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Ammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Ammam 34212, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Duaa M. Alabdullah
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Elmoeiz Ali Elnagi Mohammed
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Fatimah S. Al Yami
- Department of Medical Laboratory, King Fahad Military Medical Complex, Dhahran 34313, Saudi Arabia
| | - Haifa A. Almuhtaresh
- Department of Clinical Laboratories Services, Dammam Medical Complex, Dammam Health Network, Dammam 5343, Saudi Arabia
| | - Kovy Arteaga Livias
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima 15001, Peru
- Facultad de Medicina, Universidad Nacional Hermilio Valdizán, Huánuco 10000, Peru
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Shawqi A. Almushrif
- Department of Microbiology and Hematology Laboratory, Dammam Comprehensive Screening Centre, Dammam 31433, Saudi Arabia
| | | | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
74
|
Yun M, Park SH, Kang DH, Kim JW, Kim JD, Ryu S, Lee J, Jeong HM, Hwang HR, Song KS. Inhibition of Pseudomonas aeruginosa LPS-Induced airway inflammation by RIPK3 in human airway. J Cell Mol Med 2022; 26:5506-5516. [PMID: 36226560 DOI: 10.1111/jcmm.17579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Although the physiological function of receptor-interacting protein kinase (RIPK) 3 has emerged as a critical mediator of programmed necrosis/necroptosis, the intracellular role it plays as an attenuator in human lungs and human bronchial epithelia remains unclear. Here, we show that the expression of RIPK3 dramatically decreased in the inflamed tissues of human lungs, and moved from the nucleus to the cytoplasm. The overexpression of RIPK3 dramatically increased F-actin formation and decreased the expression of genes for pro-inflammatory cytokines (IL-6 and IL-1β), but not siRNA-RIPK3. Interestingly, whereas RIPK3 was bound to histone 1b without LPS stimulation, the interaction between them was disrupted after 15 min of LPS treatment. Histone methylation could not maintain the binding of RIPK3 and activated movement towards the cytoplasm. In the cytoplasm, overexpressed RIPK3 continuously attenuated pro-inflammatory cytokine gene expression by inhibiting NF-κB activation, preventing the progression of inflammation during Pseudomonas aeruginosa infection. Our data indicated that RIPK3 is critical for the regulation of the LPS-induced inflammatory microenvironment. Therefore, we suggest that RIPK3 is a potential therapeutic candidate for bacterial infection-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Minsu Yun
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Sun-Hee Park
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Dong Hee Kang
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Ji Wook Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Siejeong Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Jeongyeob Lee
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Hye Min Jeong
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Hye Ran Hwang
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
75
|
Lyon R, Jones RA, Shropshire H, Aberdeen I, Scanlan DJ, Millard A, Chen Y. Membrane lipid renovation in Pseudomonas aeruginosa - implications for phage therapy? Environ Microbiol 2022; 24:4533-4546. [PMID: 35837865 PMCID: PMC9804370 DOI: 10.1111/1462-2920.16136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa is an important Gram-negative pathogen with intrinsic resistance to many clinically used antibiotics. It is particularly troublesome in nosocomial infections, immunocompromised patients, and individuals with cystic fibrosis. Antimicrobial resistance (AMR) is a huge threat to global health, with a predicted 10 million people dying from resistant infections by 2050. A promising therapy for combatting AMR infections is phage therapy. However, more research is required to investigate mechanisms that may influence the efficacy of phage therapy. An important overlooked aspect is the impact of membrane lipid remodelling on phage binding ability. P. aeruginosa undergoes changes in membrane lipids when it encounters phosphorus stress, an environmental perturbation that is likely to occur during infection. Lipid changes include the substitution of glycerophospholipids with surrogate glycolipids and the over-production of ornithine-containing aminolipids. Given that membrane lipids are known to influence the structure and function of membrane proteins, we propose that changes in the composition of membrane lipids during infection may alter phage binding and subsequent phage infection dynamics. Consideration of such effects needs to be urgently prioritised in order to develop the most effective phage therapy strategies for P. aeruginosa infections.
Collapse
Affiliation(s)
- Rhiannon Lyon
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | - Rebekah A. Jones
- School of Life SciencesUniversity of WarwickCoventryUK,MRC Doctoral Training PartnershipUniversity of WarwickCoventryUK
| | - Holly Shropshire
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | - Isabel Aberdeen
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Andrew Millard
- Department of Genetics and Genome BiologyUniversity of LeicesterUK
| | - Yin Chen
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
76
|
Adelantado Lacasa M, Portillo ME, Lobo Palanco J, Chamorro J, Ezpeleta Baquedano C. Molecular Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa Acquired in a Spanish Intensive Care Unit: Using Diverse Typing Methods to Identify Clonal Types. Microorganisms 2022; 10:microorganisms10091791. [PMID: 36144393 PMCID: PMC9502743 DOI: 10.3390/microorganisms10091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing number of infections from multidrug-resistant P. aeruginosa (MDRPA) has compromised the selection of appropriate treatment in critically ill patients. Recent investigations have shown the existence of MDRPA global clones that have been disseminated in hospitals worldwide. We aimed to describe the molecular epidemiology and genetic diversity of the MDRPA acquired by Intensive Care Units (ICU) patients in our hospital. We used phenotypic methods to define the MDRPA and molecular methods were used to illustrate the presence of carbapenemase encoding genes. To characterize the MDRPA isolates, we used MALDI-TOF biomarker peaks, O-antigen serotyping, and multi-locus sequence typing analyses. Our data show that the most widely distributed MDRPA clone in our ICU unit was the ST175 strain. These isolates were further investigated by the whole-genome sequencing technique to determine the resistome profile and phylogenetic relationships, which showed, as previously described, that the MDR profile was due to the intrinsic resistance mechanisms and not the carbapenemase encoding genes. In addition, this study suggests that the combination of environmental focus and cross-transmission are responsible for the spread of MDRPA clones within our ICU unit. Serotyping and MALDI-TOF analyses are useful tools for the early detection of the most prevalent MDRPA clones in our hospital. Using these methods, semi-directed treatments can be introduced at earlier stages and healthcare professionals can actively search for environmental foci as possible sources of outbreaks.
Collapse
Affiliation(s)
- Marta Adelantado Lacasa
- Microbiology Area, Laboratory Department, Hospital Reina Sofía, 31500 Tudela, Spain
- Instituto de Investigación Sanitaria de Navarra—IdiSNA, 31008 Pamplona, Spain
- Correspondence:
| | - Maria Eugenia Portillo
- Instituto de Investigación Sanitaria de Navarra—IdiSNA, 31008 Pamplona, Spain
- Clinical Microbiology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | | | - Judith Chamorro
- Preventive Medicine Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Carmen Ezpeleta Baquedano
- Instituto de Investigación Sanitaria de Navarra—IdiSNA, 31008 Pamplona, Spain
- Clinical Microbiology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
77
|
O'Connell N, Gasior S, Slevin B, Power L, Barrett S, Bhutta S, Minihan B, Powell J, Dunne C. Microbial epidemiology and clinical risk factors of carbapenemase-producing Enterobacterales amongst Irish patients from first detection in 2009 until 2020. Infect Prev Pract 2022; 4:100230. [PMID: 35935263 PMCID: PMC9352914 DOI: 10.1016/j.infpip.2022.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background Carbapenemase producing Enterobacterales (CPE) are major public health threats. Aim To review microbial epidemiology of CPE, as well as clinical risk factors and infections, amongst CPE positive patients over 12 years in an Irish tertiary hospital. Methods Retrospective observational study of data extracted from a laboratory CPE database, electronic healthcare records and manual review of patient charts. Common risk factors, treatment regimens for all CPE related infections, and clinical outcomes were ascertained. Findings Among CPE strains isolated from 460 patients, Klebsiella pneumoniae carbapenemase (KPC) was the carbapenemase most frequently detected, accounting for 87.4% (459) of all CPE enzymes. Citrobacter species 177 (33.7%) were the most common species harbouring this enzyme. 428 CPE positive patients (93%) were identified in the acute hospital setting; the most common risk factor for CPE acquisition was history of hospitalisation, observed in 305 (66%) cases. Thirty patients (6.5%) had confirmed infections post-acquisition, of which four were bloodstream infections. There were 19 subsequent episodes of non CPE-related bacteraemia in this cohort. All causal mortality at 30 days was 41 patients (8.9%). However, clinical review determined that CPE was an indirect associative factor in 8 patient deaths. Conclusions In this tertiary hospital setting, microbial epidemiology is changing; with both OXA-48 enzymes and KPC-producing Citrobacter species becoming more prevalent. Whilst the burden of CPE related infections, especially bacteraemia, was low over the study period, it remains critical that basic infection prevention and control practices are adhered to lest the observed changes in epidemiology result in an increase in clinical manifestations.
Collapse
Affiliation(s)
- N.H. O'Connell
- Department of Clinical Microbiology University Limerick Hospital Group (ULHG), Limerick, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
- School of Medicine, University of Limerick, Limerick, Ireland
| | - S. Gasior
- School of Medicine, University of Limerick, Limerick, Ireland
| | - B. Slevin
- Department of Infection Prevention and Control, ULHG, Limerick, Ireland
| | - L. Power
- Department of Clinical Microbiology University Limerick Hospital Group (ULHG), Limerick, Ireland
| | - S. Barrett
- Department of Pharmacy, ULHG, Limerick, Ireland
| | - S.I. Bhutta
- Department of Gastroenterology, ULHG, Limerick, Ireland
| | - B. Minihan
- Department of Clinical Microbiology University Limerick Hospital Group (ULHG), Limerick, Ireland
| | - J. Powell
- Department of Clinical Microbiology University Limerick Hospital Group (ULHG), Limerick, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | - C.P. Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
- School of Medicine, University of Limerick, Limerick, Ireland
- Corresponding author. Address: Foundation Chair and Director of Research, School of Medicine, University of Limerick, Ireland. Tel.: +35361234703.
| |
Collapse
|
78
|
Kelly BJ, Bekele S, Loughrey S, Huang E, Tolomeo P, David MZ, Lautenbach E, Han JH, Ziegler MJ. Healthcare microenvironments define multidrug-resistant organism persistence. Infect Control Hosp Epidemiol 2022; 43:1135-1141. [PMID: 34425925 PMCID: PMC8866524 DOI: 10.1017/ice.2021.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Multidrug-resistant organisms (MDROs) colonizing the healthcare environment have been shown to contribute to risk for healthcare-associated infections (HAIs), with adverse effects on patient morbidity and mortality. We sought to determine how bacterial contamination and persistent MDRO colonization of the healthcare environment are related to the position of patients and wastewater sites. METHODS We performed a prospective cohort study, enrolling 51 hospital rooms at the time of admitting a patient with an eligible MDRO in the prior 30 days. We performed systematic sampling and MDRO culture of rooms, as well as 16S rRNA sequencing to define the environmental microbiome in a subset of samples. RESULTS The probability of detecting resistant gram-negative organisms, including Enterobacterales, Acinetobacter spp, and Pseudomonas spp, increased with distance from the patient. In contrast, Clostridioides difficile and methicillin-resistant Staphylococcus aureus were more likely to be detected close to the patient. Resistant Pseudomonas spp and S. aureus were enriched in these hot spots despite broad deposition of 16S rRNA gene sequences assigned to the same genera, suggesting modifiable factors that permit the persistence of these MDROs. CONCLUSIONS MDRO hot spots can be defined by distance from the patient and from wastewater reservoirs. Evaluating how MDROs are enriched relative to bacterial DNA deposition helps to identify healthcare micro-environments and suggests how targeted environmental cleaning or design approaches could prevent MDRO persistence and reduce infection risk.
Collapse
Affiliation(s)
- Brendan J. Kelly
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Selamawit Bekele
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sean Loughrey
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Huang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Pam Tolomeo
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Z. David
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ebbing Lautenbach
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jennifer H. Han
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Matthew J. Ziegler
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
79
|
Babiker A, Bower C, Lutgring JD, Petit RA, Howard-Anderson J, Ansari U, McAllister G, Adamczyk M, Breaker E, Satola SW, Jacob JT, Woodworth MH. Clinical and Genomic Epidemiology of mcr-9-Carrying Carbapenem-Resistant Enterobacterales Isolates in Metropolitan Atlanta, 2012 to 2017. Microbiol Spectr 2022; 10:e0252221. [PMID: 35856667 PMCID: PMC9431279 DOI: 10.1128/spectrum.02522-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Colistin is a last-resort antibiotic for multidrug-resistant Gram-negative infections. Recently, the ninth allele of the mobile colistin resistance (mcr) gene family, designated mcr-9, was reported. However, its clinical and public health significance remains unclear. We queried genomes of carbapenem-resistant Enterobacterales (CRE) for mcr-9 from a convenience sample of clinical isolates collected between 2012 and 2017 through the Georgia Emerging Infections Program, a population- and laboratory-based surveillance program. Isolates underwent phenotypic characterization and whole-genome sequencing. Phenotypic characteristics, genomic features, and clinical outcomes of mcr-9-positive and -negative CRE cases were then compared. Among 235 sequenced CRE genomes, 13 (6%) were found to harbor mcr-9, all of which were Enterobacter cloacae complex. The median MIC and rates of heteroresistance and inducible resistance to colistin were similar between mcr-9-positive and -negative isolates. However, rates of resistance were higher among mcr-9-positive isolates across most antibiotic classes. All cases had significant health care exposures. The 90-day mortality was similarly high in both mcr-9-positive (31%) and -negative (7%) CRE cases. Nucleotide identity and phylogenetic analysis did not reveal geotemporal clustering. mcr-9-positive isolates had a significantly higher number of median [range] antimicrobial resistance (AMR) genes (16 [4 to 22] versus 6 [2 to 15]; P < 0.001) than did mcr-9-negative isolates. Pangenome tests confirmed a significant association of mcr-9 detection with mobile genetic element and heavy metal resistance genes. Overall, the presence of mcr-9 was not associated with significant changes in colistin resistance or clinical outcomes, but continued genomic surveillance to monitor for emergence of AMR genes is warranted. IMPORTANCE Colistin is a last-resort antibiotic for multidrug-resistant Gram-negative infections. A recently described allele of the mobile colistin resistance (mcr) gene family, designated mcr-9, has been widely reported among Enterobacterales species. However, its clinical and public health significance remains unclear. We compared characteristics and outcomes of mcr-9-positive and -negative CRE cases. All cases were acquired in the health care setting and associated with a high rate of mortality. The presence of mcr-9 was not associated with significant changes in colistin resistance, heteroresistance, or inducible resistance but was associated with resistance to other antimicrobials and antimicrobial resistance (AMR), virulence, and heavy metal resistance (HMR) genes. Overall, the presence of mcr-9 was not associated with significant phenotypic changes or clinical outcomes. However, given the increase in AMR and HMR gene content and potential clinical impact, continued genomic surveillance of multidrug-resistant organisms to monitor for emergence of AMR genes is warranted.
Collapse
Affiliation(s)
- Ahmed Babiker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chris Bower
- Georgia Emerging Infections Program, Decatur, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Foundation for Atlanta Veterans Education and Research, Decatur, Georgia, USA
| | - Joseph D. Lutgring
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jessica Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Uzma Ansari
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gillian McAllister
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michelle Adamczyk
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Erin Breaker
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah W. Satola
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Decatur, Georgia, USA
| | - Jesse T. Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Decatur, Georgia, USA
| | - Michael H. Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Decatur, Georgia, USA
| |
Collapse
|
80
|
López-Hernández I, López-Cerero L, Fernández-Cuenca F, Pascual Á. The role of the microbiology laboratory in the diagnosis of multidrug-resistant Gram-negative bacilli infections. The importance of the determination of resistance mechanisms. Med Intensiva 2022; 46:455-464. [PMID: 35643635 DOI: 10.1016/j.medine.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/15/2023]
Abstract
Early diagnosis and treatment has an important impact on the morbidity and mortality of infections caused by multidrug-resistant bacteria. Multidrug-resistant gram-negative bacilli (MR-GNB) constitute the main current threat in hospitals and especially in intensive care units (ICU). The role of the microbiology laboratory is essential in providing a rapid and effective response. This review updates the microbiology laboratory procedures for the rapid detection of BGN-MR and its resistance determinants. The role of the laboratory in the surveillance and control of outbreaks caused by these bacteria, including typing techniques, is also studied. The importance of providing standardized resistance maps that allow knowing the epidemiological situation of the different units is emphasized. Finally, the importance of effective communication systems for the transmission of results and decision making in the management of patients infected by BGN-MR is reviewed.
Collapse
Affiliation(s)
- I López-Hernández
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - L López-Cerero
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - F Fernández-Cuenca
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | - Á Pascual
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
81
|
Bandara HMHN, Samaranayake LP. Emerging strategies for environmental decontamination of the nosocomial fungal pathogen Candida auris. J Med Microbiol 2022; 71. [PMID: 35687657 DOI: 10.1099/jmm.0.001548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida auris is a recently emerged multidrug-resistant fungal pathogen that causes life-threatening infections to the human population worldwide. Recent rampant outbreaks of C. auris in coronavirus disease 2019 (COVID-19) patients, together with outbreaks in over 45 countries, highlight its threat to patients and healthcare economies. Unlike other pathogenic Candida species, C. auris is capable of surviving in abiotic surfaces of healthcare facilities for prolonged periods, leading to increased risk of transmission within nosocomial settings. C. auris is resistant to multiple classes of antifungal agents, forms dry biofilms and transmits independently to regional epicentres, making its eradication from nosocomial environment arduous. The lack of strategies for environmental decontamination of C. auris from nosocomial settings is evident from the generic guidance and recommendations provided by leading global healthcare bodies. Therefore, this minireview discusses the current guidelines for environmental decontamination of C. auris and compounds and strategies currently under investigation for potential future use. While established guidelines recommend the use of products mainly consisting of sodium hypochlorite and hydrogen peroxide, initial works have been reported on the promising anti-C. auris properties of various other compounds and some biocompatible alternatives. Further validation of these approaches, coupled up with environmentally friendly decontamination protocols, are warranted to achieve superior elimination of C. auris from healthcare settings.
Collapse
|
82
|
Sukhum KV, Newcomer EP, Cass C, Wallace MA, Johnson C, Fine J, Sax S, Barlet MH, Burnham CAD, Dantas G, Kwon JH. Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates. COMMUNICATIONS MEDICINE 2022; 2:62. [PMID: 35664456 PMCID: PMC9160058 DOI: 10.1038/s43856-022-00124-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/06/2022] [Indexed: 02/03/2023] Open
Abstract
Background Healthcare-associated infections due to antibiotic-resistant organisms pose an acute and rising threat to critically ill and immunocompromised patients. To evaluate reservoirs of antibiotic-resistant organisms as a source of transmission to patients, we interrogated isolates from environmental surfaces, patient feces, and patient blood infections from an established and a newly built intensive care unit. Methods We used selective culture to recover 829 antibiotic-resistant organisms from 1594 environmental and 72 patient fecal samples, in addition to 81 isolates from blood cultures. We conducted antibiotic susceptibility testing and short- and long-read whole genome sequencing on recovered isolates. Results Antibiotic-resistant organism burden is highest in sink drains compared to other surfaces. Pseudomonas aeruginosa is the most frequently cultured organism from surfaces in both intensive care units. From whole genome sequencing, different lineages of P. aeruginosa dominate in each unit; one P. aeruginosa lineage of ST1894 is found in multiple sink drains in the new intensive care unit and 3.7% of blood isolates analyzed, suggesting movement of this clone between the environment and patients. Conclusions These results highlight antibiotic-resistant organism reservoirs in hospital built environments as an important target for infection prevention in hospitalized patients.
Collapse
Affiliation(s)
- Kimberley V. Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Erin P. Newcomer
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO USA
| | - Candice Cass
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Caitlin Johnson
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Jeremy Fine
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Steven Sax
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Margaret H. Barlet
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Jennie H. Kwon
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
| |
Collapse
|
83
|
Whole genome sequencing reveals hidden transmission of carbapenemase-producing Enterobacterales. Nat Commun 2022; 13:3052. [PMID: 35650193 PMCID: PMC9160272 DOI: 10.1038/s41467-022-30637-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) infection control practices are based on the paradigm that detected carriers in the hospital transmit to other patients who stay in the same ward. The role of plasmid-mediated transmission at population level remains largely unknown. In this retrospective cohort study over 4.7 years involving all multi-disciplinary public hospitals in Singapore, we analysed 779 patients who acquired CPE (1215 CPE isolates) detected by clinical or surveillance cultures. 42.0% met putative clonal transmission criteria, 44.8% met putative plasmid-mediated transmission criteria and 13.2% were unlinked. Only putative clonal transmissions associated with direct ward contact decreased in the second half of the study. Both putative clonal and plasmid-mediated transmission associated with indirect (no temporal overlap in patients’ admission period) ward and hospital contact did not decrease during the study period. Indirect ward and hospital contact were identified as independent risk factors associated with clonal transmission. In conclusion, undetected CPE reservoirs continue to evade hospital infection prevention measures. New measures are needed to address plasmid-mediated transmission, which accounted for 50% of CPE dissemination. Carbapenemase-producing Enterobacterales cause healthcare-associated infections but modes of transmission are not well understood. Here, the authors find evidence of transmission without direct patient contact, indicating presence of undetected environmental reservoirs, whilst half of the transmission events are likely due to plasmid-mediated transmission.
Collapse
|
84
|
Tang H, Hao S, Khan MF, Zhao L, Shi F, Li Y, Guo H, Zou Y, Lv C, Luo J, Zeng Z, Wu Q, Ye G. Epigallocatechin-3-Gallate Ameliorates Acute Lung Damage by Inhibiting Quorum-Sensing-Related Virulence Factors of Pseudomonas aeruginosa. Front Microbiol 2022; 13:874354. [PMID: 35547130 PMCID: PMC9083413 DOI: 10.3389/fmicb.2022.874354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022] Open
Abstract
The superbug Pseudomonas aeruginosa is among the most formidable antibiotic-resistant pathogens. With declining options for antibiotic-resistant infections, new medicines are of utmost importance to combat with P. aeruginosa. In our previous study, we demonstrated that Epigallocatechin-3-gallate (EGCG) can inhibit the production of quorum sensing (QS)-regulated virulence factors in vitro. Accordingly, the protective effect and molecular mechanisms of EGCG against P. aeruginosa-induced pneumonia were studied in a mouse model. The results indicated that EGCG significantly lessened histopathological changes and increased the survival rates of mice infected with P. aeruginosa. EGCG effectively alleviated lung injury by reducing the expression of virulence factors and bacterial burden. In addition, EGCG downregulated the production of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, and IL-17, and increased the expression of anti-inflammatory cytokines IL-4 and IL-10. Thus, the experimental results supported for the first time that EGCG improved lung damage in P. aeruginosa infection by inhibiting the production of QS-related virulence factors in vivo.
Collapse
Affiliation(s)
- Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suqi Hao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Faraz Khan
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fei Shi
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinglun Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China.,Engineering Research Center of the Medicinal Diet Industry, Tongren Polytechnic College, Tongren, China
| | - Ze Zeng
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China
| | - Qiang Wu
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
85
|
Impact of sink design on bacterial transmission from hospital sink drains to the surrounding sink environment tested using a fluorescent marker. J Hosp Infect 2022; 127:39-43. [DOI: 10.1016/j.jhin.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
|
86
|
Iovleva A, Mustapha MM, Griffith MP, Komarow L, Luterbach C, Evans DR, Cober E, Richter SS, Rydell K, Arias CA, Jacob JT, Salata RA, Satlin MJ, Wong D, Bonomo RA, van Duin D, Cooper VS, Van Tyne D, Doi Y. Carbapenem-Resistant Acinetobacter baumannii in U.S. Hospitals: Diversification of Circulating Lineages and Antimicrobial Resistance. mBio 2022; 13:e0275921. [PMID: 35311529 PMCID: PMC9040734 DOI: 10.1128/mbio.02759-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAb) is a major cause of health care-associated infections. CRAb is typically multidrug resistant, and infection is difficult to treat. Despite the urgent threat that CRAb poses, few systematic studies of CRAb clinical and molecular epidemiology have been conducted. The Study Network of Acinetobacter as a Carbapenem-Resistant Pathogen (SNAP) is designed to investigate the clinical characteristics and contemporary population structure of CRAb circulating in U.S. hospital systems using whole-genome sequencing (WGS). Analysis of the initial 120 SNAP patients from four U.S. centers revealed that CRAb remains a significant threat to hospitalized patients, affecting the most vulnerable patients and resulting in 24% all-cause 30-day mortality. The majority of currently circulating isolates belonged to ST2Pas, a part of clonal complex 2 (CC2), which is the dominant drug-resistant lineage in the United States and Europe. We identified three distinct sublineages within CC2, which differed in their antibiotic resistance phenotypes and geographic distribution. Most concerning, colistin resistance (38%) and cefiderocol resistance (10%) were common within CC2 sublineage C (CC2C), where the majority of isolates belonged to ST2Pas/ST281Ox. Additionally, we identified ST499Pas as the most common non-CC2 lineage in our study. Our findings suggest a shift within the CRAb population in the United States during the past 10 years and emphasize the importance of real-time surveillance and molecular epidemiology in studying CRAb dissemination and clinical impact. IMPORTANCE Carbapenem-resistant Acinetobacter baumannii (CRAb) constitutes a major threat to public health. To elucidate the molecular and clinical epidemiology of CRAb in the United States, clinical CRAb isolates were collected along with data on patient characteristics and outcomes, and bacterial isolates underwent whole-genome sequencing and antibiotic susceptibility phenotyping. Key findings included emergence of new sublineages within the globally predominant clonal complex 2 (CC2), increased colistin and cefiderocol resistance within one of the CC2 sublineages, and emergence of ST499Pas as the dominant non-CC2 CRAb lineage in U.S. hospitals.
Collapse
Affiliation(s)
- Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mustapha M. Mustapha
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marissa P. Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lauren Komarow
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Courtney Luterbach
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel R. Evans
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Eric Cober
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sandra S. Richter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Kirsten Rydell
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas USA
| | - Cesar A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas USA
| | - Jesse T. Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert A. Salata
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael J. Satlin
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Darren Wong
- Division of Infectious Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Robert A. Bonomo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
87
|
Infection prevention requirements for the medical care of immunosuppressed patients: recommendations of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute. GMS HYGIENE AND INFECTION CONTROL 2022; 17:Doc07. [PMID: 35707229 PMCID: PMC9174886 DOI: 10.3205/dgkh000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Germany, guidelines for hygiene in hospitals are given in form of recommendations by the Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, "KRINKO"). The KRINKO and its voluntary work are legitimized by the mandate according to § 23 of the Infection Protection Act (Infektionsschutzgesetz, "IfSG"). The original German version of this document was published in February 2021 and has now been made available to the international professional public in English. The guideline provides recommendations on infection prevention and control for immunocompromised individuals in health care facilities. This recommendation addresses not only measures related to direct medical care of immunocompromised patients, but also management aspects such as surveillance, screening, antibiotic stewardship, and technical/structural aspects such as patient rooms, air quality, and special measures during renovations.
Collapse
|
88
|
blaKPC-2-Encoding IncP-6 Plasmids in Citrobacter freundii and Klebsiella variicola Strains from Hospital Sewage in Japan. Appl Environ Microbiol 2022; 88:e0001922. [PMID: 35380451 DOI: 10.1128/aem.00019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) producers are an emerging threat to global health, and the hospital water environment is considered an important reservoir of these life-threatening bacteria. We characterized plasmids of KPC-2-producing Citrobacter freundii and Klebsiella variicola isolates recovered from hospital sewage in Japan. Antimicrobial susceptibility testing, whole-genome sequencing analysis, bacterial conjugation, and transformation experiments were performed for both KPC-2 producers. The blaKPC-2 gene was located on the Tn3 transposon-related region from an IncP-6 replicon plasmid that could not be transferred via conjugation. Compared to the blaKPC-2-encoding plasmid of the C. freundii isolate, alignment analysis of plasmids with blaKPC-2 showed that the blaKPC-2-encoding plasmid of the K. variicola isolate was a novel IncP-6/IncF-like hybrid plasmid containing a 75,218-bp insertion sequence composed of IncF-like plasmid conjugative transfer proteins. Carbapenem-resistant transformants harboring blaKPC-2 were obtained for both isolates. However, no IncF-like insertion region was found in the K. variicola donor plasmid of the transformant, suggesting that this IncF-like region is not readily functional for plasmid conjugative transfer and is maintained depending on the host cells. The findings on the KPC-2 producers and novel genetic content emphasize the key role of hospital sewage as a potential reservoir of pathogens and its linked dissemination of blaKPC-2 through the hospital water environment. Our results indicate that continuous monitoring for environmental emergence of antimicrobial-resistant bacteria might be needed to control the spread of these infectious bacteria. Moreover, it will help elucidate both the evolution and transmission pathways of these bacteria harboring antimicrobial resistance. IMPORTANCE Antimicrobial resistance is a significant problem for global health, and the hospital environment has been recognized as a reservoir of antimicrobial resistance. Here, we provide insight into the genomic features of blaKPC-2-harboring isolates of Citrobacter freundii and Klebsiella variicola obtained from hospital sewage in Japan. The findings of carbapenem-resistant bacteria containing this novel genetic context emphasize that hospital sewage could act as a potential reservoir of pathogens and cause the subsequent spread of blaKPC-2 via horizontal gene transfer in the hospital water environment. This indicates that serial monitoring for environmental bacteria possessing antimicrobial resistance may help us control the spread of infection and also lead to elucidating the evolution and transmission pathways of these bacteria.
Collapse
|
89
|
Chan JL, Nazarian E, Musser KA, Snavely EA, Fung M, Doernberg SB, Pouch SM, Leekha S, Anesi JA, Kodiyanplakkal RP, Turbett SE, Walters MS, Epstein L. Prevalence of carbapenemase-producing organisms among hospitalized solid organ transplant recipients, five US hospitals, 2019-2020. Transpl Infect Dis 2022; 24:e13785. [PMID: 34989092 PMCID: PMC11318107 DOI: 10.1111/tid.13785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Passive reporting to the Centers for Disease Control and Prevention has identified carbapenemase-producing organisms (CPOs) among solid organ transplant (SOT) recipients, potentially representing an emerging source of spread. We analyzed CPO prevalence in wards where SOT recipients receive inpatient care to inform public health action to prevent transmission. METHODS From September 2019 to June 2020, five US hospitals conducted consecutive point prevalence surveys (PPS) of all consenting patients admitted to transplant units, regardless of transplant status. We used the Cepheid Xpert Carba-R assay to identify carbapenemase genes (blaKPC , blaNDM , blaVIM , blaIMP , blaOXA-48 ) from rectal swabs. Laboratory-developed molecular tests were used to retrospectively test for a wider range of blaIMP and blaOXA variants. RESULTS In total, 154 patients were screened and 92 (60%) were SOT recipients. CPOs were detected among 7 (8%) SOT recipients, from two of five screened hospitals: four blaKPC , one blaNDM , and two blaOXA-23 . CPOs were detected in two (3%) of 62 non-transplant patients. In three of five participating hospitals, CPOs were not identified among any patients admitted to transplant units. CONCLUSIONS Longitudinal surveillance in transplant units, as well as PPS in areas with diverse CPO epidemiology, may inform the utility of routine screening in SOT units to prevent the spread of CPOs.
Collapse
Affiliation(s)
- June L. Chan
- Wadsworth Center, New York State Department of Health, Albany, NY
| | | | | | - Emily A. Snavely
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Monica Fung
- University of California San Francisco, San Francisco, CA
| | | | | | - Surbhi Leekha
- University of Maryland Medical Center, Baltimore, MD
| | | | | | | | | | | |
Collapse
|
90
|
Savin M, Bierbaum G, Mutters NT, Schmithausen RM, Kreyenschmidt J, García-Meniño I, Schmoger S, Käsbohrer A, Hammerl JA. Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater. Antibiotics (Basel) 2022; 11:antibiotics11040435. [PMID: 35453187 PMCID: PMC9027467 DOI: 10.3390/antibiotics11040435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Currently, human and veterinary medicine are threatened worldwide by an increasing resistance to carbapenems, particularly present in opportunistic Enterobacterales pathogens (e.g., Klebsiella spp.). However, there is a lack of comprehensive and comparable data on their occurrence in wastewater, as well as on the phenotypic and genotypic characteristics for various countries including Germany. Thus, this study aims to characterize carbapenem-resistant Klebsiella spp. isolated from municipal wastewater treatment plants (mWWTPs) and their receiving water bodies, as well as from wastewater and process waters from poultry and pig slaughterhouses. After isolation using selective media and determination of carbapenem (i.e., ertapenem) resistance using broth microdilution to apply epidemiological breakpoints, the selected isolates (n = 30) were subjected to WGS. The vast majority of the isolates (80.0%) originated from the mWWTPs and their receiving water bodies. In addition to ertapenem, Klebsiella spp. isolates exhibited resistance to meropenem (40.0%) and imipenem (16.7%), as well as to piperacillin-tazobactam (50.0%) and ceftolozan-tazobactam (50.0%). A high diversity of antibiotic-resistance genes (n = 68), in particular those encoding β-lactamases, was revealed. However, with the exception of blaGES-5-like, no acquired carbapenemase-resistance genes were detected. Virulence factors such as siderophores (e.g., enterobactin) and fimbriae type 1 were present in almost all isolates. A wide genetic diversity was indicated by assigning 66.7% of the isolates to 12 different sequence types (STs), including clinically relevant ones (e.g., ST16, ST252, ST219, ST268, ST307, ST789, ST873, and ST2459). Our study provides information on the occurrence of carbapenem-resistant, ESBL-producing Klebsiella spp., which is of clinical importance in wastewater and surface water in Germany. These findings indicate their possible dissemination in the environment and the potential risk of colonization and/or infection of humans, livestock and wildlife associated with exposure to contaminated water sources.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127 Bonn, Germany;
- Institute of Animal Sciences, University of Bonn, 53115 Bonn, Germany;
- Correspondence: (M.S.); (J.A.H.)
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53115 Bonn, Germany;
| | - Nico T. Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127 Bonn, Germany;
| | - Ricarda Maria Schmithausen
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, 53115 Bonn, Germany;
- Department of Fresh Produce Logistics, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Isidro García-Meniño
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Silvia Schmoger
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, AT-1210 Vienna, Austria
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Correspondence: (M.S.); (J.A.H.)
| |
Collapse
|
91
|
Du J, Xu T, Guo X, Yin D. Characteristics and removal of antibiotics and antibiotic resistance genes in a constructed wetland from a drinking water source in the Yangtze River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152540. [PMID: 34958838 DOI: 10.1016/j.scitotenv.2021.152540] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Safe drinking water is crucial to public health. However, approximately one-third of the world's population lacks access to clean drinking water. The presence of antibiotics and antibiotic resistance genes (ARGs) in drinking water sources has become a severe problem worldwide due to its potential threat to human health. We monitored the occurrence and variations of 23 antibiotics and 9 ARGs in different treatment processes in a constructed wetland serving as drinking water source in the Yangtze River Delta, China. The studied wetland is consisted of four treatment processes: pretreatment area, pump station lifting, root-channel ecological purification area and deep purification area. Except for sulfapyridine and roxithromycin, 21 antibiotics were detected at concentrations ranging from 0.15 to 59.52 ng/L. The concentration of macrolides was the highest in this wetland, especially tylosin (42.86-59.52 ng/L). TetG, tetX and sul2 were the dominant ARGs in both water (2.41 × 10-4-1.87 × 10-2) and sediment (6.65 × 10-5-4.92 × 10-3). In addition, a strong correlation between ARGs in water and ARGs in sediment (Pearson, R2 > 0.9, p < 0.05) indicated an exchange between the two phases. Moreover, the significantly positive correlation of ARGs between the inlet and outlet of each subsystem illustrated that upstream pollution was the primary source for downstream processes. In general, the wetland system could efficiently eliminate antibiotics (9.0-53.8%) and ARGs (14.5-94.1%), with the deep purification area having the highest removal efficiency. Overall, our results provide important insights into the occurrence, abundance and removal of antibiotics and ARGs in the constructed wetland serving as drinking water sources.
Collapse
Affiliation(s)
- Jinping Du
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
92
|
Humphreys H, Cormican M, Brennan W, Burns K, O'Donovan D, Dalchan T, Keane S, Sheahan A. Reflections on a national public health emergency response to carbapenemase-producing Enterobacterale s (CPE). Epidemiol Infect 2022; 150:1-19. [PMID: 35300746 PMCID: PMC9006571 DOI: 10.1017/s0950268822000218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) are important globally. In 2017, Ireland declared a national public health emergency to address CPE in acute hospitals. A National Public Health Emergency Team and an expert advisory group (EAG) were established. The EAG has identified key learnings to inform future strategies. First, there is still an opportunity to prevent CPE becoming endemic. Second, damp environmental reservoirs in hospitals are inadequately controlled. Third, antibiotic stewardship remains important in control. Finally, there is no current requirement to extend screening to detect CPE outside of acute hospitals. These conclusions and their implications may also be relevant in other countries.
Collapse
Affiliation(s)
- Hilary Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Infection Control Team, Health Service Executive, Dublin, Ireland
- Department of Bacteriology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Wendy Brennan
- Carbapenemase-producing Enterobacterales Reference Laboratory, Galway University Hospital, Galway, Ireland
| | - Karen Burns
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Diarmuid O'Donovan
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Therese Dalchan
- Antimicrobial Resistance and Infection Control Team, Health Service Executive, Dublin, Ireland
| | - Shirley Keane
- Antimicrobial Resistance and Infection Control Team, Health Service Executive, Dublin, Ireland
| | - Anne Sheahan
- Antimicrobial Resistance and Infection Control Team, Health Service Executive, Dublin, Ireland
| |
Collapse
|
93
|
Heselpoth RD, Euler CW, Fischetti VA. PaP1, a Broad-Spectrum Lysin-Derived Cationic Peptide to Treat Polymicrobial Skin Infections. Front Microbiol 2022; 13:817228. [PMID: 35369520 PMCID: PMC8965563 DOI: 10.3389/fmicb.2022.817228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Most skin infections, including those complicating burns, are polymicrobial involving multiple causative bacteria. Add to this the fact that many of these organisms may be antibiotic-resistant, and a simple skin lesion or burn could soon become life-threatening. Membrane-acting cationic peptides from Gram-negative bacteriophage lysins can potentially aid in addressing the urgent need for alternative therapeutics. Such peptides natively constitute an amphipathic region within the structural composition of these lysins and function to permit outer membrane permeabilization in Gram-negative bacteria when added externally. This consequently allows the lysin to access and degrade the peptidoglycan substrate, resulting in rapid hypotonic lysis and bacterial death. When separated from the lysin, some of these cationic peptides kill sensitive bacteria more effectively than the native molecule via both outer and cytoplasmic membrane disruption. In this study, we evaluated the antibacterial properties of a modified cationic peptide from the broad-acting lysin PlyPa01. The peptide, termed PaP1, exhibited potent in vitro bactericidal activity toward numerous high priority Gram-positive and Gram-negative pathogens, including all the antibiotic-resistant ESKAPE pathogens. Both planktonic and biofilm-state bacteria were sensitive to the peptide, and results from time-kill assays revealed PaP1 kills bacteria on contact. The peptide was bactericidal over a wide temperature and pH range and could withstand autoclaving without loss of activity. However, high salt concentrations and complex matrices were found to be largely inhibitory, limiting its use to topical applications. Importantly, unlike other membrane-acting antimicrobials, PaP1 lacked cytotoxicity toward human cells. Results from a murine burn wound infection model using methicillin-resistant Staphylococcus aureus or multidrug-resistant Pseudomonas aeruginosa validated the in vivo antibacterial efficacy of PaP1. In these studies, the peptide enhanced the potency of topical antibiotics used clinically for treating chronic wound infections. Despite the necessity for additional preclinical drug development, the collective data from our study support PaP1 as a potential broad-spectrum monotherapy or adjunctive therapy for the topical treatment of polymicrobial infections and provide a foundation for engineering future lysin-derived peptides with improved antibacterial properties.
Collapse
Affiliation(s)
- Ryan D. Heselpoth
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
- *Correspondence: Ryan D. Heselpoth,
| | - Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
- Department of Medical Laboratory Sciences, Hunter College, New York, NY, United States
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
94
|
Effectiveness of a Double-Carbapenem combinations against carbapenem-resistant Gram-negative bacteria. Saudi Pharm J 2022; 30:849-855. [PMID: 35812137 PMCID: PMC9257860 DOI: 10.1016/j.jsps.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
The emergence of carbapenem-resistant organisms posed considerable threat to global health while only limited treatment options are available and led to efforts to discover a novel way to treat them. To evaluate in vitro synergistic activity of meropenem plus ertapenem, a total of 203 carbapenem-resistant strains, collected from 12 provinces and municipalities in China, were examined with a dual carbapenem combination therapy. The statistical software R was used for analysis. Two hundred and one (201) of carbapenem-resistant strains mainly produced four types of carbapenemase: KPC-2 (n = 142, 69.95%), OXA-232 (n = 7, 3.45%), NDM (n = 38, 18.72%; 36 NDM-1, 1 NDM-4, 1 NDM-5), and IMP (n = 15, 7.39%; 1 IMP-26, 10 IMP-30, 4 IMP-4). Fifty-one out of two hundred and three (51/203 or 25.12%) of the examined strains showed a synergistic effect for the meropenem plus ertapenem combination throughout the checkerboard method, while only three isolates showed potential clinically relevant synergy (3/203, 1.48%). An additive effect was observed in 55/203 (27.09%) of the examined strains. Ninety-seven of the examined isolates (47.78%) showed fractional inhibitory concentration (FIC) greater or equal to 2 (indicating antagonism). The synergistic activity of meropenem plus ertapenem combination suggests this combination can be a possible way to treat the infection caused by the carbapenem-resistant organisms, especially for IMP or NDM producer with a lesser minimum inhibitory concentration (MIC) and the infected individual who was not recommended to use colistin or tigecycline.
Collapse
|
95
|
El papel del laboratorio de microbiología en el diagnóstico de infecciones por bacilos gramnegativos multirresistentes. Importancia de la determinación de mecanismos de resistencias. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
96
|
Kehl K, Schallenberg A, Szekat C, Albert C, Sib E, Exner M, Zacharias N, Schreiber C, Parčina M, Bierbaum G. Dissemination of carbapenem resistant bacteria from hospital wastewater into the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151339. [PMID: 34740643 DOI: 10.1016/j.scitotenv.2021.151339] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Infections with antibiotic resistant pathogens threaten lives and cause substantial costs. For effective interventions, knowledge of the transmission paths of resistant bacteria to humans is essential. In this study, carbapenem resistant bacteria were isolated from the wastewater of a maximum care hospital during a period of two years, starting in the patient rooms and following the sewer system to the effluent of the wastewater treatment plant (WWTP). The bacteria belonged to six different species and 44 different sequence types (STs). The most frequent STs, ST147 K. pneumoniae (blaNDM/blaOXA-48) and ST235 P. aeruginosa (blaVIM) strains, were present at nearly all sampling sites from the hospital to the WWTP effluent. After core genome multi-locus sequence typing (cgMLST), all ST147 K. pneumoniae strains presented a single epidemiological cluster. In contrast, ST235 P. aeruginosa formed five cgMLST clusters and the largest cluster contained the strain from the WWTP effluent, indicating without doubt, a direct dissemination of both high-risk clones into the environment. Thus, there are - at least two - possible transmission pathways to humans, (i) within the hospital by contact with the drains of the sanitary installations and (ii) by recreational or irrigation use of surface waters that have received WWTP effluent. In conclusion, remediation measures must be installed at both ends of the wastewater system, targeting the drains of the hospital as well as at the effluent of the WWTP.
Collapse
Affiliation(s)
- Katja Kehl
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Anja Schallenberg
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Christiane Szekat
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Cathrin Albert
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Esther Sib
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Marjio Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany.
| |
Collapse
|
97
|
Zhao Q, He H, Gao K, Li T, Dong B. Fate, mobility, and pathogenicity of drinking water treatment plant resistomes deciphered by metagenomic assembly and network analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150095. [PMID: 34509829 DOI: 10.1016/j.scitotenv.2021.150095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance genes (ARGs) have been regarded as emerging environmental contaminants. The profile of resistome (collection of all ARGs) in drinking water and its fate during drinking water treatment remain unclear. This study applied metagenomic assembly combined with network analysis to decipher the profile, mobility, host, and pathogenicity of resistomes in two full-scale drinking water treatment plants (DWTPs), each applying conventional treatment and advanced treatment of ozonation followed by biological activated carbon filtration. In source waters and effluents of each treatment process collected from both DWTPs, 215 ARGs belonging to 20 types were detected with total concentration ranging from 6.30 ± 1.83 to 5.20 ± 0.26 × 104 copies/mL. Both the conventional and advanced DWTPs were revealed to effectively reduce the concentration of total ARGs, with the average removal efficiency of 3.61-log10 and 2.21-log10, respectively. Multiple statistical analyses (including network analysis) indicated drinking water resistome correlated tightly with mobile gene elements (MGEs) and bacterial community, with the latter acting as the premier driver of resistome alteration in DWTPs. Further analysis of ARG-carrying contigs (ACCs) assembled from drinking water metagenomes (i) tracked down potential bacterial hosts of ARGs (e.g., Proteobacteria phylum as the major pool of resistome), (ii) provided co-localization information of ARGs and MGEs (e.g., MacB-E7196 plasmid1), and (iii) identified ARG-carrying human pathogens (e.g., Enterococcus faecium and Ralstonia pickettii). This work firstly determined the concentration, mobility incidence, and pathogenicity incidence of DWTP resistomes, based on which the actual health risk regarding antibiotic resistance could be quantitatively assessed in further study, providing a useful direction for decision-making concerning the risk control of ARGs in DWTPs.
Collapse
Affiliation(s)
- Qingqing Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Huan He
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota - Twin Cities, 500 Pillsbury Dr. SE, Minneapolis, MN 55445, United States.
| | - Kuo Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Bingzhi Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
98
|
Weinbren M, Inkster T, Lafferty F. Drains and the periphery of the water system - what do you do when the guidance is outdated? Infect Prev Pract 2022; 3:100179. [PMID: 34988421 PMCID: PMC8696270 DOI: 10.1016/j.infpip.2021.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
The periphery of the water system (defined as the last 2 m of pipework from an outlet and ensuing devices including drainage), is the juncture of multiple inherent risks: the necessity to use materials with higher risk of biofilm formation, difficulty in maintaining safe water temperatures, a human interface with drainage systems, poor design, poor layout and use by staff. Add to this risk a large new healthcare facility capital build programme in England, outdated guidance and bacteria emanating from drainage systems containing highly mobile genetic elements (threatening the end of the antibiotic era), and the scene is set for the perfect storm. There is an urgent need for the re-evaluation of the periphery of the water system and drainage systems. Consequently, in this article we examine the requirement and placement of hand wash stations (HWSs), design of showers, kitchens and the dirty utility with respect to water services. Lastly, we discuss the provision of safe water to high-risk patient groups. The purpose of this article is to stimulate debate and provide infection control and design teams with support in deviating from the outdated existing guidance and to challenge conventional thinking until new advice is forthcoming.
Collapse
Affiliation(s)
- M Weinbren
- Department of Microbiology, King's Mill Hospital, Sutton-in-Ashfield, UK
| | - T Inkster
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK
| | | |
Collapse
|
99
|
Probst K, Boutin S, Späth I, Scherrer M, Henny N, Sahin D, Heininger A, Heeg K, Nurjadi D. Direct-PCR from rectal swabs and environmental reservoirs: A fast and efficient alternative to detect bla OXA-48 carbapenemase genes in an Enterobacter cloacae outbreak setting. ENVIRONMENTAL RESEARCH 2022; 203:111808. [PMID: 34343553 DOI: 10.1016/j.envres.2021.111808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Carbapenemase-producing bacteria are a risk factor in clinical settings worldwide. The aim of the study was to accelerate the time to results during an outbreak situation with blaOXA-48-positive Enterobacter cloacae by using a real-time multiplex quantitative PCR (qPCR) directly on rectal swab specimens and on wastewater samples to detect carbapenemase-producing bacteria. Thus, we analyzed 681 rectal swabs and 947 environmental samples during a five-month period by qPCR and compared the results to culture screening. The qPCR showed a sensitivity of 100% by testing directly from rectal swabs and was in ten cases more sensitive than the culture-based methods. Environmental screening for blaOXA-48-carbapenemase genes by qPCR revealed reservoirs of different carbapenemase genes that are potential sources of transmission and might lead to new outbreaks. The rapid identification of patients colonized with those isolates and screening of the hospital environment is essential for earlier patient treatment and eliminating potential sources of nosocomial infections.
Collapse
Affiliation(s)
- Katja Probst
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany.
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg University Hospital, Heidelberg, Germany
| | - Isabel Späth
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Scherrer
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Henny
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Delal Sahin
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexandra Heininger
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany; Stabsstelle Krankenhaushygiene, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
100
|
Nurjadi D, Scherrer M, Frank U, Mutters NT, Heininger A, Späth I, Eichel VM, Jabs J, Probst K, Müller-Tidow C, Brandt J, Heeg K, Boutin S. Genomic Investigation and Successful Containment of an Intermittent Common Source Outbreak of OXA-48-Producing Enterobacter cloacae Related to Hospital Shower Drains. Microbiol Spectr 2021; 9:e0138021. [PMID: 34817232 PMCID: PMC8612159 DOI: 10.1128/spectrum.01380-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
The hospital environment has been reported as a source of transmission events and outbreaks of carbapenemase-producing Enterobacterales. Interconnected plumbing systems and the microbial diversity in these reservoirs pose a challenge for outbreak investigation and control. A total of 133 clinical and environmental OXA-48-producing Enterobacter cloacae isolates collected between 2015 and 2021 were characterized by whole-genome sequencing (WGS) to investigate a prolonged intermittent outbreak involving 41 patients in the hematological unit. A mock-shower experiment was performed to investigate the possible acquisition route. WGS indicated the hospital water environmental reservoir as the most likely source of the outbreak. The lack of diversity of the blaOXA-48-like harbouring plasmids was a challenge for data interpretation. The detection of blaOXA-48-like-harboring E. cloacae strains in the shower area after the mock-shower experiment provided strong evidence that showering is the most likely route of acquisition. Initially, in 20 out of 38 patient rooms, wastewater traps and drains were contaminated with OXA-48-positive E. cloacae. Continuous decontamination using 25% acetic acid three times weekly was effective in reducing the trap/drain positivity in monthly environmental screening but not in reducing new acquisitions. However, the installation of removable custom-made shower tubs did prevent new acquisitions over a subsequent 12-month observation period. In the present study, continuous decontamination was effective in reducing the bacterial burden in the nosocomial reservoirs but was not sufficient to prevent environment-to-patient transmission in the long term. Construction interventions may be necessary for successful infection prevention and control. IMPORTANCE The hospital water environment can be a reservoir for a multiward outbreak, leading to acquisitions or transmissions of multidrug-resistant organisms in a hospital setting. The majority of Gram-negative bacteria are able to build biofilms and persist in the hospital plumbing system over a long period of time. The elimination of the reservoir is essential to prevent further transmission and spread, but proposed decontamination regimens, e.g., using acetic acid, can only suppress but not fully eliminate the environmental reservoir. In this study, we demonstrated that colonization with multidrug-resistant organisms can be acquired by showering in showers with contaminated water traps and drains. A construction intervention by installing removable and autoclavable shower inserts to avoid sink contact during showering was effective in containing this outbreak and may be a viable alternative infection prevention and control measure in outbreak situations involving contaminated shower drains and water traps.
Collapse
Affiliation(s)
- Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Scherrer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Frank
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Institute for Hygiene and Public Health, Bonn University Hospital, Bonn, Germany
| | - Nico T. Mutters
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Hygiene and Public Health, Bonn University Hospital, Bonn, Germany
| | - Alexandra Heininger
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Department of Hospital Hygiene, University Medical Center Mannheim, Mannheim, Germany
| | - Isabel Späth
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Vanessa M. Eichel
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Jabs
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Hygiene and Public Health, Bonn University Hospital, Bonn, Germany
| | - Katja Probst
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Juliane Brandt
- Department of Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|