51
|
Avilan L, Roumezi B, Risoul V, Bernard CS, Kpebe A, Belhadjhassine M, Rousset M, Brugna M, Latifi A. Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120. Appl Microbiol Biotechnol 2018; 102:5775-5783. [DOI: 10.1007/s00253-018-8989-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/11/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022]
|
52
|
Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds. J Bacteriol 2018; 200:JB.00757-17. [PMID: 29483165 DOI: 10.1128/jb.00757-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase catalyzes the reduction of dinitrogen (N2) using low-potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP-dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2)-sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds, including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd-/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified, and their distributions largely corresponded to differences in the host cells' ability to integrate O2 or light into energy metabolism. The predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the levels of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation.IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds, including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O2 or light into their energy metabolism. The acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex.
Collapse
|
53
|
Videau P, Rivers OS, Tom SK, Oshiro RT, Ushijima B, Swenson VA, Philmus B, Gaylor MO, Cozy LM. The hetZ gene indirectly regulates heterocyst development at the level of pattern formation in Anabaena sp. strain PCC 7120. Mol Microbiol 2018; 109:91-104. [PMID: 29676808 DOI: 10.1111/mmi.13974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Multicellular development requires the careful orchestration of gene expression to correctly create and position specialized cells. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are differentiated from vegetative cells in a reproducibly periodic and physiologically relevant pattern. While many genetic factors required for heterocyst development have been identified, the role of HetZ has remained unclear. Here, we present evidence to clarify the requirement of hetZ for heterocyst production and support a model where HetZ functions in the patterning stage of differentiation. We show that a clean, nonpolar deletion of hetZ fails to express the developmental genes hetR, patS, hetP and hetZ correctly and fails to produce heterocysts. Complementation and overexpression of hetZ in a hetP mutant revealed that hetZ was incapable of bypassing hetP, suggesting that it acts upstream of hetP. Complementation and overexpression of hetZ in a hetR mutant, however, demonstrated bypass of hetR, suggesting that it acts downstream of hetR and is capable of bypassing the need for hetR for differentiation irrespective of nitrogen status. Finally, protein-protein interactions were observed between HetZ and HetR, Alr2902 and HetZ itself. Collectively, this work suggests a regulatory role for HetZ in the patterning phase of cellular differentiation in Anabaena.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Orion S Rivers
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Sasa K Tom
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Reid T Oshiro
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Blake Ushijima
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Vaille A Swenson
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael O Gaylor
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Loralyn M Cozy
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| |
Collapse
|
54
|
Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community. Appl Environ Microbiol 2017; 83:AEM.01068-17. [PMID: 28754701 DOI: 10.1128/aem.01068-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
The cyanobacterial culture HT-58-2 was originally described as a strain of Tolypothrix nodosa with the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align with Brasilonema strains and not with Tolypothrix isolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated by Erythrobacteraceae, 97% of which are Porphyrobacter species. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophyll a, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis.IMPORTANCE A worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway.
Collapse
|
55
|
Bornikoel J, Carrión A, Fan Q, Flores E, Forchhammer K, Mariscal V, Mullineaux CW, Perez R, Silber N, Wolk CP, Maldener I. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120. Front Cell Infect Microbiol 2017; 7:386. [PMID: 28929086 PMCID: PMC5591844 DOI: 10.3389/fcimb.2017.00386] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023] Open
Abstract
Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell-cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell-cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.
Collapse
Affiliation(s)
- Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Alejandro Carrión
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Qing Fan
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern UniversityChicago, IL, United States
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, United Kingdom
| | - Rebeca Perez
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Nadine Silber
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - C Peter Wolk
- MSU-DOE Plant Research Laboratory and Department of Plant Biology, Michigan State UniversityEast Lansing, MI, United States
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| |
Collapse
|
56
|
Tailor V, Ballal A. Novel molecular insights into the function and the antioxidative stress response of a Peroxiredoxin Q protein from cyanobacteria. Free Radic Biol Med 2017; 106:278-287. [PMID: 28159708 DOI: 10.1016/j.freeradbiomed.2017.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
The Peroxiredoxin Q (PrxQ) proteins are thiol-based peroxidases that are important for maintaining redox homeostasis in several organisms. Activity of PrxQs is mediated by two cysteines, peroxidatic (Cp) and resolving (Cr), in association with a reducing partner. A PrxQ, Alr3183, from the cyanobacterium, Anabaena PCC 7120, was characterized in this study. Alr3183, which required thioredoxin A (TrxA) for peroxidase activity, was an intramolecular disulfide bond-containing monomeric protein. However, Alr3183 lacking Cp (Alr3183C46S) or Cr (Alr3183C51S) formed intermolecular disulfide linkages and was dimeric. Alr3183C46S was completely inactive, while Alr3183C51S required higher concentration of TrxA for peroxidase activity. Surface plasmon resonance analysis showed that unlike Alr3183 or Alr3183C46S, Alr3183C51S bound rather poorly to TrxA. Also, compared to the oxidized protein, the DTT-treated (reduced) Alr3183 displayed decreased interaction with TrxA. In vivo, Alr3183 was found to be induced in response to γ-radiation. On exposure to H2O2, Anabaena strain over-expressing Alr3183 showed reduced formation of ROS, intact photosynthetic pigments and consequently better survival than the wild-type, whereas overproduction of Alr3183C46S did not provide any protection. Significantly, this study (1) reveals the importance of Cr for interaction with thioredoxins and (2) demonstrates that over-expression of PrxQs can protect cyanobacteria from oxidative stresses.
Collapse
Affiliation(s)
- Vijay Tailor
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
57
|
Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2017; 199:JB.00876-16. [PMID: 28096449 DOI: 10.1128/jb.00876-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/26/2022] Open
Abstract
When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO2 through oxygenic photosynthesis and heterocysts that are specialized in N2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena, glucoside transporters influence the structure and function of septal junctions.IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO2 and N2 These organisms grow as filaments that fix these gases specifically in vegetative cells and heterocysts, respectively. For the filaments to grow, these types of cells exchange nutrients, including sucrose, which serves as a source of reducing power and of carbon skeletons for the heterocysts. Movement of sucrose between cells in the filament takes place through septal junctions and has been traced with a fluorescent sucrose analog, esculin, that can be taken up by the cells. Here, we identified α-glucoside transporters of Anabaena that mediate uptake of esculin and, notably, influence septal structure and the function of septal junctions.
Collapse
|
58
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
59
|
Masukawa H, Sakurai H, Hausinger RP, Inoue K. Increased heterocyst frequency by patN disruption in Anabaena leads to enhanced photobiological hydrogen production at high light intensity and high cell density. Appl Microbiol Biotechnol 2017; 101:2177-2188. [PMID: 28064366 DOI: 10.1007/s00253-016-8078-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/26/2016] [Accepted: 12/17/2016] [Indexed: 12/30/2022]
Abstract
The effects of increasing the heterocyst-to-vegetative cell ratio on the nitrogenase-based photobiological hydrogen production by the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were studied. Using the uptake hydrogenase-disrupted mutant (ΔHup) as the parent, a deletion-insertion mutant (PN1) was created in patN, known to be involved in heterocyst pattern formation and leading to multiple singular heterocysts (MSH) in Nostoc punctiforme strain ATCC 29133. The PN1 strain showed heterocyst differentiation but failed to grow in medium free of combined-nitrogen; however, a spontaneous mutant (PN22) was obtained on prolonged incubation of PN1 liquid cultures and was able to grow robustly on N2. The disruption of patN was confirmed in both PN1 and PN22 by PCR and whole genome resequencing. Under combined-nitrogen limitation, the percentage of heterocysts to total cells in the PN22 filaments was 13-15 and 16-18% under air and 1% CO2-enriched air, respectively, in contrast to the parent ΔHup which formed 6.5-11 and 9.7-13% heterocysts in these conditions. The PN22 strain exhibited a MSH phenotype, normal diazotrophic growth, and higher H2 productivity at high cell concentrations, and was less susceptible to photoinhibition by strong light than the parent ΔHup strain, resulting in greater light energy utilization efficiency in H2 production on a per unit area basis under high light conditions. The increase in MSH frequency shown here appears to be a viable strategy for enhancing H2 productivity by outdoor cultures of cyanobacteria in high-light environments.
Collapse
Affiliation(s)
- Hajime Masukawa
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| | - Hidehiro Sakurai
- Research Institute for Photobiological Hydrogen Production, Kanagawa University, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kazuhito Inoue
- Research Institute for Photobiological Hydrogen Production, Kanagawa University, Hiratsuka, Kanagawa, 259-1293, Japan.,Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, 259-1293, Japan
| |
Collapse
|
60
|
|
61
|
Drzyzga D, Forlani G, Vermander J, Kafarski P, Lipok J. Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway. Environ Microbiol 2016; 19:1065-1076. [PMID: 27907245 DOI: 10.1111/1462-2920.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using 31 P NMR analysis. Results showed a quantitative breakdown of DTPMP by cell-free extracts from cyanobacterial cells grown in the absence of any phosphonate. The identification of intermediates and products allowed us to propose a unique and new biodegradation pathway in which the formation of (N-acetylaminomethyl)phosphonic acid represents a key step. This hypothesis was strengthened by the results obtained by incubating cell-free extracts with pathway intermediates. When Anabaena cultures were grown in the presence of the phosphonate, or phosphorus-starved before the extraction, significantly higher biodegradation rates were found.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, I-44121, Italy
| | - Jochen Vermander
- Odisee Technologiecampus, Gebroeders de Smetstraat 1, Ghent, 9000, Belgium
| | - Paweł Kafarski
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland.,Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| |
Collapse
|
62
|
Herrero A, Stavans J, Flores E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev 2016; 40:831-854. [DOI: 10.1093/femsre/fuw029] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2016] [Accepted: 07/09/2016] [Indexed: 11/13/2022] Open
|
63
|
Videau P, Wells KN, Singh AJ, Gerwick WH, Philmus B. Assessment of Anabaena sp. Strain PCC 7120 as a Heterologous Expression Host for Cyanobacterial Natural Products: Production of Lyngbyatoxin A. ACS Synth Biol 2016; 5:978-88. [PMID: 27176641 DOI: 10.1021/acssynbio.6b00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are well-known producers of natural products of highly varied structure and biological properties. However, the long doubling times, difficulty in establishing genetic methods for marine cyanobacteria, and low compound titers have hindered research into the biosynthesis of their secondary metabolites. While a few attempts to heterologously express cyanobacterial natural products have occurred, the results have been of varied success. Here, we report the first steps in developing the model freshwater cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena 7120) as a general heterologous expression host for cyanobacterial secondary metabolites. We show that Anabaena 7120 can heterologously synthesize lyngbyatoxin A in yields comparable to those of the native producer, Moorea producens, and detail the design and use of replicative plasmids for compound production. We also demonstrate that Anabaena 7120 recognizes promoters from various biosynthetic gene clusters from both free-living and obligate symbiotic marine cyanobacteria. Through simple genetic manipulations, the titer of lyngbyatoxin A can be improved up to 13-fold. The development of Anabaena 7120 as a general heterologous expression host enables investigation of interesting cyanobacterial biosynthetic reactions and genetic engineering of their biosynthetic pathways.
Collapse
Affiliation(s)
| | | | | | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography
and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
64
|
Johnson TJ, Halfmann C, Zahler JD, Zhou R, Gibbons WR. Increasing the tolerance of filamentous cyanobacteria to next-generation biofuels via directed evolution. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
65
|
Gonzalez-Esquer CR, Smarda J, Rippka R, Axen SD, Guglielmi G, Gugger M, Kerfeld CA. Cyanobacterial ultrastructure in light of genomic sequence data. PHOTOSYNTHESIS RESEARCH 2016; 129:147-157. [PMID: 27344651 DOI: 10.1007/s11120-016-0286-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Cyanobacteria are physiologically and morphologically diverse photosynthetic microbes that play major roles in the carbon and nitrogen cycles of the biosphere. Recently, they have gained attention as potential platforms for the production of biofuels and other renewable chemicals. Many cyanobacteria were characterized morphologically prior to the advent of genome sequencing. Here, we catalog cyanobacterial ultrastructure within the context of genomic sequence information, including high-magnification transmission electron micrographs that represent the diversity in cyanobacterial morphology. We place the image data in the context of tabulated protein domains-which are the structural, functional, and evolutionary units of proteins-from the 126 cyanobacterial genomes comprising the CyanoGEBA dataset. In particular, we identify the correspondence between ultrastructure and the occurrence of genes encoding protein domains related to the formation of cyanobacterial inclusions. This compilation of images and genome-level domain occurrence will prove useful for a variety of analyses of cyanobacterial sequence data and provides a guidebook to morphological features.
Collapse
Affiliation(s)
- C R Gonzalez-Esquer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - J Smarda
- Department of Biology, Faculty of Medicine, Masaryk University, University Campus, Building A6, Kamenice 5, 625 00, Brno, Czech Republic
| | - R Rippka
- Unité des Cyanobactéries, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité de Recherche Associée (URA) 2172, 75724, Paris Cedex 15, France
| | - S D Axen
- Bioinformatics Graduate Group, University of California, San Francisco, CA, 94158, USA
| | - G Guglielmi
- Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Ecole Normale Supérieure, 75005, Paris, France
| | - M Gugger
- Unité des Cyanobactéries, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité de Recherche Associée (URA) 2172, 75724, Paris Cedex 15, France
| | - C A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA.
- Berkeley Synthetic Biology Institute, UC Berkeley, Berkeley, CA, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
66
|
Tiwari A, Singh P, Asthana RK. Role of calcium in the mitigation of heat stress in the cyanobacterium Anabaena PCC 7120. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:67-75. [PMID: 27302007 DOI: 10.1016/j.jplph.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 05/08/2023]
Abstract
The effects of exogenously added CaCl2 (0.25mM) on photopigments, photosynthetic O2-evolution, antioxidative enzyme activity, membrane damage, expression of two heat shock genes (groEL and groES) and apoptotic features in Anabaena 7120 under heat stress (45°C) for up to 24h were investigated. Heat stress lowered the level of photopigments; however, Ca2+--supplemented cultures showed a low level reduction in Chl a but induced accumulation of carotenoids and phycocyanin under heat stress. Photosynthetic O2-evolving capacity was maintained at a higher level in cells from Ca2+-supplemented medium. Among the antioxidative enzymes, superoxide dismutase activity was unaffected by the presence or absence of Ca2+ in contrast to increases in catalase, ascorbate peroxidase and glutathione reductase activities in cells grown in Ca2+-supplemented medium. Lower levels of lipid peroxidation were recorded in Anabaena cells grown in Ca2+-supplemented medium in comparison to cells from Ca2+--deprived medium. Target cells grown in Ca2+-deprived medium developed apoptotic features in the early stages of heat shock, while Ca2+ application seemed to interfere with apoptosis because only a few cells showed such features after 24 h of heat exposure, indicating a role for Ca2+ in maintaining cell viability under heat stress. There was also continuous up regulation of two important heat shock genes (groEL and groES) in Ca2+-supplemented cultures, exposed to heat shock, again indicating a role for Ca2+ in stress management.
Collapse
Affiliation(s)
- Anupam Tiwari
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Ravi Kumar Asthana
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
67
|
Mariscal V, Nürnberg DJ, Herrero A, Mullineaux CW, Flores E. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena. Mol Microbiol 2016; 101:968-81. [PMID: 27273832 DOI: 10.1111/mmi.13436] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/02/2016] [Indexed: 01/08/2023]
Abstract
Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.
Collapse
Affiliation(s)
- Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Dennis J Nürnberg
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain.
| |
Collapse
|
68
|
The genome and transcriptome of Trichormus sp. NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau. Sci Rep 2016; 6:29404. [PMID: 27381465 PMCID: PMC4933973 DOI: 10.1038/srep29404] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/20/2016] [Indexed: 11/09/2022] Open
Abstract
The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP.
Collapse
|
69
|
Walter J, Lynch F, Battchikova N, Aro EM, Gollan PJ. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3997-4008. [PMID: 27012282 PMCID: PMC4915528 DOI: 10.1093/jxb/erw112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Fiona Lynch
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
70
|
Abstract
Cyanobacteria carry out oxygenic photosynthesis and share many features with chloroplasts, including thylakoid membranes, which are mainly composed of membrane lipids and protein complexes that mediate photosynthetic electron transport. Although the functions of the various thylakoid protein complexes have been well characterized, the details underlying the biogenesis of thylakoid membranes remain unclear. Galactolipids are the major constituents of the thylakoid membrane system, and all the genes involved in galactolipid biosynthesis were recently identified. In this chapter, I summarize recent advances in our understanding of the factors involved in thylakoid development, including regulatory proteins and enzymes that mediate lipid biosynthesis.
Collapse
Affiliation(s)
- Koichiro Awai
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
71
|
Barón-Sola Á, Campo FFD, Sanz-Alférez S. Dynamics of Cylindrospermopsin Production and Toxin Gene Expression in <i>Aphanizomenon ovalisporum</i>. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.65037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
72
|
Rehm C, Wurmthaler LA, Li Y, Frickey T, Hartig JS. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp. PLoS One 2015; 10:e0144275. [PMID: 26695179 PMCID: PMC4692102 DOI: 10.1371/journal.pone.0144275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 12/04/2022] Open
Abstract
In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5
nucleotides (nt) are causative for phase and antigenic variation. Although an
increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs
of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity
to fold into G-quadruplex (G4) structures have received little attention. In silico
analysis of prokaryotic genomes show putative G4 forming sequences to be abundant.
This report focuses on a surprisingly enriched G-rich repeat of the type
GGGNATC in Xanthomonas and cyanobacteria
such as Nostoc. We studied in detail the genomes of
Xanthomonas campestris pv. campestris ATCC 33913
(Xcc), Xanthomonas axonopodis pv.
citri str. 306 (Xac), and Nostoc
sp. strain PCC7120 (Ana). In all three organisms repeats
are spread all over the genome with an over-representation in non-coding regions.
Extensive variation of the number of repetitive units was observed with repeat
numbers ranging from two up to 26 units. However a clear preference for four units
was detected. The strong bias for four units coincides with the requirement of four
consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus
repeat sequences was found in biophysical studies utilizing CD spectroscopy. The
G-rich repeats are preferably located between aligned open reading frames (ORFs) and
are under-represented in coding regions or between divergent ORFs. The G-rich repeats
are preferentially located within a distance of 50 bp upstream of an ORF on the
anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis
of whole transcriptome sequence data showed that the majority of repeat sequences are
transcribed. The genetic loci in the vicinity of repeat regions show increased
genomic stability. In conclusion, we introduce and characterize a special class of
highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.
Collapse
Affiliation(s)
- Charlotte Rehm
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Lena A Wurmthaler
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Yuanhao Li
- Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Tancred Frickey
- Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
73
|
Wang XP, Jiang YL, Dai YN, Cheng W, Chen Y, Zhou CZ. Structural and enzymatic analyses of a glucosyltransferase Alr3699/HepE involved in Anabaena heterocyst envelop polysaccharide biosynthesis. Glycobiology 2015; 26:520-31. [PMID: 26692049 DOI: 10.1093/glycob/cwv167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/13/2015] [Indexed: 01/18/2023] Open
Abstract
Formation of the heterocyst envelope polysaccharide (HEP) is a key process for cyanobacterial heterocyst differentiation. The maturation of HEP in Anabaena sp. strain PCC 7120 is controlled by a gene cluster termed HEP island in addition to an operon alr3698-alr3699, which encodes two putative proteins termed Alr3698/HepD and Alr3699/HepE. Here we report the crystal structures of HepE in the apo-form and three complex forms that bind to UDP-glucose (UDPG), UDP&glucose, and UDP, respectively. The overall structure of HepE displays a typical GT-B fold of glycosyltransferases, comprising two separate β/α/β Rossmann-fold domains that form an inter-domain substrate-binding crevice. Structural analyses combined with enzymatic assays indicate that HepE is a glucosyltransferase using UDPG as a sugar donor. Further site-directed mutageneses enable us to assign the key residues that stabilize the sugar donor and putative acceptor. Based on the comparative structural analyses, we propose a putative catalytic cycle of HepE, which undergoes "open-closed-open" conformational changes upon binding to the substrates and release of products. These findings provide structural and catalytic insights into the first enzyme involved in the HEP biosynthesis pathway.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Ya-Nan Dai
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Wang Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
74
|
Diao H, Zhang C, Wang S, Lu F, Lu Z. Enhanced Thermostability of Lipoxygenase from Anabaena sp. PCC 7120 by Site-Directed Mutagenesis Based on Computer-Aided Rational Design. Appl Biochem Biotechnol 2015; 178:1339-50. [DOI: 10.1007/s12010-015-1950-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/07/2015] [Indexed: 01/23/2023]
|
75
|
Yan Y, Ye J, Xue XM, Zhu YG. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14350-14358. [PMID: 26544154 DOI: 10.1021/acs.est.5b03357] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.
Collapse
Affiliation(s)
- Yu Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jun Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
| | - Xi-Mei Xue
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| |
Collapse
|
76
|
Kumari S, Chaurasia AK. In silico analysis and experimental validation of lipoprotein and novel Tat signal peptides processing in Anabaena sp. PCC7120. J Microbiol 2015; 53:837-46. [PMID: 26626354 DOI: 10.1007/s12275-015-5281-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
Signal peptide (SP) plays a pivotal role in protein translocation. Lipoprotein- and twin arginine translocase (Tat) dependent signal peptides were studied in All3087, a homolog of competence protein of Synechocystis PCC6803 and in two putative alkaline phosphatases (ALPs, Alr2234 and Alr4976), respectively. In silico analysis of All3087 is shown to possess the characteristics feature of competence proteins such as helix-hairpin-helix, N and C-terminal HKD endonuclease domain, calcium binding domain and N-terminal lipoprotein signal peptide. The SP recognition-cleavage site in All3087 was predicted (AIA-AC) using SignalP while further in-depth analysis using Pred-Lipo and WebLogo analysis for consensus sequence showed it as IAA-C. Activities of putative ALPs were confirmed by heterologous overexpression, activity assessment and zymogram analysis. ALP activity in Anabaena remains cell bound in log-phase, but during late log/stationary phase, an enhanced ALP activity was detected in extracellular milieu. The enhancement of ALP activity during stationary phase was not only due to inorganic phosphate limitation but also contributed by the presence of novel bipartite Tat-SP. The Tat signal transported the folded active ALPs to the membrane, followed by anchoring into the membrane and successive cleavage enabling transportation of the ALPs to the extracellular milieu, because of bipartite architecture and processing of transit Tat-SP.
Collapse
Affiliation(s)
- Sonika Kumari
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | | |
Collapse
|
77
|
Ramey CJ, Barón-Sola Á, Aucoin HR, Boyle NR. Genome Engineering in Cyanobacteria: Where We Are and Where We Need To Go. ACS Synth Biol 2015; 4:1186-96. [PMID: 25985322 DOI: 10.1021/acssynbio.5b00043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genome engineering of cyanobacteria is a promising area of development in order to produce fuels, feedstocks, and value-added chemicals in a sustainable way. Unfortunately, the current state of genome engineering tools for cyanobacteria lags far behind those of model organisms such as Escherichia coli and Saccharomyces cerevisiae. In this review, we present the current state of synthetic biology tools for genome engineering efforts in the most widely used cyanobacteria strains and areas that need concerted research efforts to improve tool development. Cyanobacteria pose unique challenges to genome engineering efforts because their cellular biology differs significantly from other eubacteria; therefore, tools developed for other genera are not directly transferrable. Standardized parts, such as promoters and ribosome binding sites, which control gene expression, require characterization in cyanobacteria in order to have fully predictable results. The application of these tools to genome engineering efforts is also discussed; the ability to do genome-wide searching and to introduce multiple mutations simultaneously is an area that needs additional research in order to enable fast and efficient strain engineering.
Collapse
Affiliation(s)
- C. Josh Ramey
- Chemical and Biological Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ángel Barón-Sola
- Chemical and Biological Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hanna R. Aucoin
- Chemical and Biological Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nanette R. Boyle
- Chemical and Biological Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
78
|
Magnuson A, Cardona T. Thylakoid membrane function in heterocysts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:309-19. [PMID: 26545609 DOI: 10.1016/j.bbabio.2015.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 01/19/2023]
Abstract
Multicellular cyanobacteria form different cell types in response to environmental stimuli. Under nitrogen limiting conditions a fraction of the vegetative cells in the filament differentiate into heterocysts. Heterocysts are specialized in atmospheric nitrogen fixation and differentiation involves drastic morphological changes on the cellular level, such as reorganization of the thylakoid membranes and differential expression of thylakoid membrane proteins. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase by developing an extra polysaccharide layer that limits air diffusion into the heterocyst and by upregulating heterocyst-specific respiratory enzymes. In this review article, we summarize what is known about the thylakoid membrane in heterocysts and compare its function with that of the vegetative cells. We emphasize the role of photosynthetic electron transport in providing the required amounts of ATP and reductants to the nitrogenase enzyme. In the light of recent high-throughput proteomic and transcriptomic data, as well as recently discovered electron transfer pathways in cyanobacteria, our aim is to broaden current views of the bioenergetics of heterocysts. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Ann Magnuson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120, Uppsala, Sweden.
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
79
|
Sato N. Is Monoglucosyldiacylglycerol a Precursor to Monogalactosyldiacylglycerol in All Cyanobacteria? PLANT & CELL PHYSIOLOGY 2015; 56:1890-9. [PMID: 26276824 DOI: 10.1093/pcp/pcv116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/05/2015] [Indexed: 05/08/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) is ubiquitous in the photosynthetic membranes of cyanobacteria and chloroplasts. It is synthesized by galactosylation of diacylglycerol (DAG) in the chloroplasts, whereas it is produced by epimerization of monoglucosyldiacylglycerol (GlcDG) in at least several cyanobacteria that have been analyzed such as Synechocystis sp. PCC 6803. A previous study, however, showed that the mgdE gene encoding the epimerase is absent in some cyanobacteria such as Gloeobacter violaceus, Thermosynechococcus elongatus and Acaryochloris marina. In addition, the N-terminal 'fatty acid hydroxylase' domain is lacking in the MgdE protein of Prochlorococcus marinus. These problems may cast doubt upon the general (or exclusive) role of MgdE in the epimerization of GlcDG to MGDG in cyanobacteria. In addition, GlcDG is usually present at a very low level, and the structural determination of endogenous GlcDG has not been accomplished with cyanobacterial samples. In this study, I determined the structure of GlcDG from Anabaena variabilis by (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy. I then showed that G. violaceus, T. elongatus, A. marina and P. marinus contain GlcDG. In all cases, GlcDG consisted of fewer unsaturated molecular species than MGDG, providing further evidence that GlcDG is a precursor to MGDG. The conversion of GlcDG to MGDG was also demonstrated by radiolabeling and chase experiments in G. violaceus and P. marinus. These results demonstrate that all the analyzed cyanobacteria contain GlcDG, which is converted to MGDG, and suggest that an alternative epimerase is required for MGDG synthesis in these cyanobacteria.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902 Japan JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
80
|
Zheng P, Sun X, Guo L, Shen J. Cloning, expression, and characterization of an acetolactate synthase (ALS) gene from Anabaena azotica. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
81
|
Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2015; 197:2442-52. [PMID: 25962912 DOI: 10.1128/jb.00198-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. IMPORTANCE Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria assimilate nitrate, but regulation of the nitrate assimilation system varies in different cyanobacterial groups. In the N2-fixing, heterocyst-forming cyanobacteria, the nirA operon, which includes the structural genes for the nitrate assimilation system, is expressed in the presence of nitrate or nitrite if ammonium is not available to the cells. Here we studied the genes required for production of an active nitrate reductase, providing information on the nitrate-dependent induction of the operon, and found evidence for possible protein-protein interactions in the maturation of nitrate reductase and nitrite reductase.
Collapse
|
82
|
Picossi S, Flores E, Herrero A. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation inAnabaena. Environ Microbiol 2015; 17:3341-51. [DOI: 10.1111/1462-2920.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/22/2015] [Accepted: 01/31/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 Seville E-41092 Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 Seville E-41092 Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 Seville E-41092 Spain
| |
Collapse
|
83
|
Ou T, Liao XY, Gao XC, Xu XD, Zhang QY. Unraveling the genome structure of cyanobacterial podovirus A-4L with long direct terminal repeats. Virus Res 2015; 203:4-9. [PMID: 25836275 DOI: 10.1016/j.virusres.2015.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/14/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
The freshwater cyanobacterial virus (cyanophage) A-4L, a podovirus, can infect the model cyanobacterium Anabaena sp. strain PCC 7120 resulting in a high burst size and forming concentric plaques on its lawns. The complete genome sequence of A-4L was determined by the combination of high-throughput sequencing, terminal transferase-mediated polymerase chain reaction and restriction mapping. It contains 41,750 bp with 810 bp direct terminal repeats and 38 potential open reading frames. As compared with other cyanobacterial podoviruses in diverse ecosystems, the A-4L has the longest terminal repeat and shares similar genome organizations with freshwater members. Furthermore, phylogenetic analysis based on concatenated sequences of eight core proteins indicated that freshwater cyanobacterial podoviruses were clustered together and distinct from marine counterparts, suggesting a clear divergence in the cyanobacterial podovirus lineage between freshwater and marine ecosystems. Our findings uncover the unique genome structure of A-4L which contains long direct terminal repeats, and create the first model system to address knowledge gaps in understanding cyanobacterial virus-host interactions at the molecular level.
Collapse
Affiliation(s)
- Tong Ou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiang-Yong Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xu-Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
84
|
Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, Maldener I, Flores E, Mullineaux CW. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio 2015; 6:e02109. [PMID: 25784700 PMCID: PMC4453526 DOI: 10.1128/mbio.02109-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/11/2015] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. IMPORTANCE Anabaena and its relatives are filamentous cyanobacteria that exhibit a sophisticated form of prokaryotic multicellularity, with the formation of differentiated cell types, including normal photosynthetic cells and specialized nitrogen-fixing cells called heterocysts. The question of how heterocysts communicate and exchange metabolites with other cells in the filament is key to understanding this form of bacterial multicellularity. Here we provide the first information on the intercellular exchange of a physiologically important molecule, sucrose. We show that a fluorescent sucrose analog can be imported into the Anabaena cytoplasm by a sucrose import system. Once in the cytoplasm, it is rapidly and reversibly exchanged among all of the cells in the filament by diffusion across the septal junctions. Photosynthetically produced sucrose likely follows the same route from cytoplasm to cytoplasm. We identify some of the septal proteins involved in sucrose exchange, and our results indicate that these proteins form structures functionally analogous to metazoan gap junctions.
Collapse
Affiliation(s)
- Dennis J Nürnberg
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Jan Bornikoel
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Norbert Krauß
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
85
|
Ramos-León F, Mariscal V, Frías JE, Flores E, Herrero A. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena. Mol Microbiol 2015; 96:566-80. [PMID: 25644579 DOI: 10.1111/mmi.12956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 12/15/2022]
Abstract
Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.
Collapse
Affiliation(s)
- Félix Ramos-León
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | | | | | | | | |
Collapse
|
86
|
Babele PK, Singh G, Kumar A, Tyagi MB. Induction and differential expression of certain novel proteins in Anabaena L31 under UV-B radiation stress. Front Microbiol 2015; 6:133. [PMID: 25759687 PMCID: PMC4338792 DOI: 10.3389/fmicb.2015.00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 12/12/2022] Open
Abstract
For examining how UV-B radiation alters the proteome of the N2-fixing cyanobacterium, Anabaena L31, we extracted proteins from cultures irradiated with UV-B + white light and controls (white light irradiated) and analyzed the proteins using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Twenty one proteins, including two hypothetical proteins (HPs) were identified and placed in eight functional categories. However several of the proteins were housekeeping proteins involved in key metabolic processes such as carbon, amino acid biosynthesis and energy metabolism, certain proteins seem to have a role in stress (antioxidative enzymes), translation, cellular processes and reductases. Two novel HPs (all3797 and all4050) were characterized in detail. These two were over-expressed after UV-B irradiation and characterized as FAS 1 (all3797) and PRC barrel-like (all4050) proteins. Bioinformatics analysis revealed that the genes of both the HPs have promoter regions as well as transcription binding sites in their upstream region (UTR). Promoters present in all3797 genes suggest their crucial role against UV-B and certain other abiotic stresses. To our knowledge these novel proteins have not been previously reported in any Anabaena strains subjected to UV-B stress. Although we have focused our study on a limited number of proteins, results obtained shed light on the highly complicated but poorly studied aspect of UV-B radiation-mediated changes in the proteome and expression of proteins in cyanobacteria.
Collapse
Affiliation(s)
- Piyoosh K Babele
- School of Biotechnology, Banaras Hindu University Varanasi, India
| | - Garvita Singh
- School of Biotechnology, Banaras Hindu University Varanasi, India
| | - Ashok Kumar
- School of Biotechnology, Banaras Hindu University Varanasi, India
| | - Madhu B Tyagi
- Botany Section, Mahila Maha Vidyalaya, Banaras Hindu University Varanasi, India
| |
Collapse
|
87
|
Banerjee M, Chakravarty D, Ballal A. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. BMC PLANT BIOLOGY 2015; 15:60. [PMID: 25849452 PMCID: PMC4349727 DOI: 10.1186/s12870-015-0444-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/29/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cyanobacteria, progenitors of plant chloroplasts, provide a suitable model system for plants to study adaptation towards different abiotic stresses. Genome of the filamentous, heterocystous, nitrogen-fixing cyanobacterium Anabaena PCC7120 harbours a single gene (alr4641) encoding a typical 2-Cys-Peroxiredoxins (2-Cys-Prxs). 2-Cys-Prxs are thiol-based peroxidases that also function as molecular chaperones in plants and other systems. The Alr4641 protein from Anabaena PCC7120 shows high level biochemical similarities with the plant 2-Cys-Prx. The physiological role played by the Alr4641 protein in Anabaena was addressed in this study. RESULTS In Anabaena PCC7120, alr4641 transcript /Alr4641 protein was induced in response to abiotic stresses and its promoter was active in the vegetative cells as well as heterocysts. The wild-type Alr4641 protein or Alr4641 lacking the peroxidatic cysteine (Alr4641C56S) or the resolving cysteine (Alr4641C178S) existed as higher oligomers in their native form. The wild-type or the mutant Alr4641 proteins showed similar chaperone activity, but only the wild-type protein exhibited peroxidase activity indicating that unlike peroxidase activity, chaperone activity was not dependent on cysteines. In contrast to other 2-Cys-Prxs, chaperone/peroxidase activity of Alr4641 was dependent on its redox state and not oligomerization status. Alr4641 could protect plasmid DNA from oxidative damage and physically associate with NADPH-dependent thioredoxin reductase (NTRC). Like 2-Cys-Prxs from plants (e.g. rice), Alr4641 could detoxify various peroxides using NTRC as reductant. On exposure to H2O2, recombinant Anabaena PCC7120 strain over-expressing Alr4641 (An4641+) showed reduced content of reactive oxygen species (ROS), intact photosynthetic functions and consequently better survival than the wild-type Anabaena PCC7120, indicating that Alr4641 can protect Anabaena from oxidative stress. CONCLUSIONS The peroxidase/chaperone function of Alr4641, its inherent transcriptional/translational induction under different abiotic stresses and localization in both vegetative cells and heterocysts could be an adaptive strategy to battle various oxidative stresses that Anabaena encounters during its growth. Moreover, the recombinant Anabaena strain over expressing Alr4641 showed higher resistance to oxidative stress, suggesting its potential to serve as stress-tolerant biofertilizers in rice fields.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| |
Collapse
|
88
|
Los DA, Mironov KS. Modes of Fatty Acid desaturation in cyanobacteria: an update. Life (Basel) 2015; 5:554-67. [PMID: 25809965 PMCID: PMC4390868 DOI: 10.3390/life5010554] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/16/2022] Open
Abstract
Fatty acid composition of individual species of cyanobacteria is conserved and it may be used as a phylogenetic marker. The previously proposed classification system was based solely on biochemical data. Today, new genomic data are available, which support a need to update a previously postulated FA-based classification of cyanobacteria. These changes are necessary in order to adjust and synchronize biochemical, physiological and genomic data, which may help to establish an adequate comprehensive taxonomic system for cyanobacteria in the future. Here, we propose an update to the classification system of cyanobacteria based on their fatty acid composition.
Collapse
Affiliation(s)
- Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street, Moscow 127276, Russia.
| | - Kirill S Mironov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street, Moscow 127276, Russia.
| |
Collapse
|
89
|
Ehira S, Miyazaki S. Regulation of Genes Involved in Heterocyst Differentiation in the Cyanobacterium Anabaena sp. Strain PCC 7120 by a Group 2 Sigma Factor SigC. Life (Basel) 2015; 5:587-603. [PMID: 25692906 PMCID: PMC4390870 DOI: 10.3390/life5010587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/17/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates specialized cells for nitrogen fixation called heterocysts upon limitation of combined nitrogen in the medium. During heterocyst differentiation, expression of approximately 500 genes is upregulated with spatiotemporal regulation. In the present study, we investigated the functions of sigma factors of RNA polymerase in the regulation of heterocyst differentiation. The transcript levels of sigC, sigE, and sigG were increased during heterocyst differentiation, while expression of sigJ was downregulated. We carried out DNA microarray analysis to identify genes regulated by SigC, SigE, and SigG. It was indicated that SigC regulated the expression of genes involved in heterocyst differentiation and functions. Moreover, genes regulated by SigC partially overlapped with those regulated by SigE, and deficiency of SigC was likely to be compensated by SigE.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Shogo Miyazaki
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
90
|
Yang Y, Feng J, Li T, Ge F, Zhao J. CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bau127. [PMID: 25632108 PMCID: PMC4309022 DOI: 10.1093/database/bau127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics’s usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics
Collapse
Affiliation(s)
- Yaohua Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| | - Jie Feng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| | - Tao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| |
Collapse
|
91
|
Shrivastava AK, Singh S, Singh PK, Pandey S, Rai LC. A novel alkyl hydroperoxidase (AhpD) of Anabaena PCC7120 confers abiotic stress tolerance in Escherichia coli. Funct Integr Genomics 2014; 15:77-92. [PMID: 25391500 DOI: 10.1007/s10142-014-0407-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 09/26/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022]
Abstract
In silico analysis together with cloning, molecular characterization and heterologous expression reports that the hypothetical protein All5371 of Anabaena sp. PCC7120 is a novel hydroperoxide scavenging protein similar to AhpD of bacteria. The presence of E(X)11CX HC(X)3H motif in All5371 confers peroxidase activity and closeness to bacterial AhpD which is also reflected by its highest 3D structure homology with Rhodospirillum rubrum AhpD. Heterologous expression of all5371 complimented for ahpC and conferred resistance in MJF178 strain (ahpCF::Km) of Escherichia coli. All5371 reduced the organic peroxide more efficiently than inorganic peroxide and the recombinant E. coli strain following exposure to H2O2, CdCl2, CuCl2, heat, UV-B and carbofuron registered increased growth over wild-type and mutant E. coli transformed with empty vector. Appreciable expression of all5371 in Anabaena sp. PCC7120 as measured by qRT-PCR under selected stresses and their tolerance against H2O2, tBOOH, CuOOH and menadione attested its role in stress tolerance. In view of the above, All5371 of Anabaena PCC7120 emerged as a new hydroperoxide detoxifying protein.
Collapse
Affiliation(s)
- Alok Kumar Shrivastava
- Molecular Biology Section, Laboratory of Algal Biology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | | | |
Collapse
|
92
|
Burnat M, Flores E. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena. Microbiologyopen 2014; 3:777-92. [PMID: 25209059 PMCID: PMC4234267 DOI: 10.1002/mbo3.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 11/12/2022] Open
Abstract
Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [14C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The Δalr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [14C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the Δalr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium.
Collapse
Affiliation(s)
- Mireia Burnat
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | | |
Collapse
|
93
|
Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2014; 196:4026-35. [PMID: 25201945 DOI: 10.1128/jb.02128-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ.
Collapse
|
94
|
Corrales-Guerrero L, Flores E, Herrero A. Relationships between the ABC-exporter HetC and peptides that regulate the spatiotemporal pattern of heterocyst distribution in Anabaena. PLoS One 2014; 9:e104571. [PMID: 25121608 PMCID: PMC4133259 DOI: 10.1371/journal.pone.0104571] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022] Open
Abstract
In the model cyanobacterium Anabaena sp. PCC 7120, cells called heterocysts that are specialized in the fixation of atmospheric nitrogen differentiate from vegetative cells of the filament in the absence of combined nitrogen. Heterocysts follow a specific distribution pattern along the filament, and a number of regulators have been identified that influence the heterocyst pattern. PatS and HetN, expressed in the differentiating cells, inhibit the differentiation of neighboring cells. At least PatS appears to be processed and transferred from cell to cell. HetC is similar to ABC exporters and is required for differentiation. We present an epistasis analysis of these regulatory genes and of genes, hetP and asr2819, successively downstream from hetC, and we have studied the localization of HetC and HetP by use of GFP fusions. Inactivation of patS, but not of hetN, allowed differentiation to proceed in a hetC background, whereas inactivation of hetC in patS or patS hetN backgrounds decreased the frequency of contiguous proheterocysts. A HetC-GFP protein is localized to the heterocysts and especially near their cell poles, and a putative HetC peptidase domain was required for heterocyst differentiation but not for HetC-GFP localization. hetP is also required for heterocyst differentiation. A HetP-GFP protein localized mostly near the heterocyst poles. ORF asr2819, which we denote patC, encodes an 84-residue peptide and is induced upon nitrogen step-down. Inactivation of patC led to a late spreading of the heterocyst pattern. Whereas HetC and HetP appear to have linked functions that allow heterocyst differentiation to progress, PatC may have a role in selecting sites of differentiation, suggesting that these closely positioned genes may be functionally related.
Collapse
Affiliation(s)
- Laura Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
95
|
Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120. J Bacteriol 2014; 196:3452-60. [PMID: 25049089 DOI: 10.1128/jb.01922-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide.
Collapse
|
96
|
Hahn A, Stevanovic M, Brouwer E, Bublak D, Tripp J, Schorge T, Karas M, Schleiff E. Secretome analysis of Anabaena sp. PCC 7120 and the involvement of the TolC-homologue HgdD in protein secretion. Environ Microbiol 2014; 17:767-80. [PMID: 24890022 DOI: 10.1111/1462-2920.12516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/18/2014] [Indexed: 12/01/2022]
Abstract
Secretion of proteins is a central strategy of bacteria to influence and respond to their environment. Until now, there has been very few discoveries regarding the cyanobacterial secrotome or the secretion machineries involved. For a mutant of the outer membrane channel TolC-homologue HgdD of Anabaena sp. PCC 7120, a filamentous and heterocyst-forming cyanobacterium, an altered secretome profile was reported. To define the role of HgdD in protein secretion, we have developed a method to isolate extracellular proteins of Anabaena sp. PCC 7120 wild type and an hgdD loss-of-function mutant. We identified 51 proteins of which the majority is predicted to have an extracellular secretion signal, while few seem to be localized in the periplasmic space. Eight proteins were exclusively identified in the secretome of wild-type cells, which coincides with the distribution of type I secretion signal. We selected three candidates and generated hemagglutinin-tagged fusion proteins which could be exclusively detected in the extracellular protein fraction. However, these proteins are not secreted in the hgdD-mutant background, where they are rapidly degraded. This confirms a direct function of HgdD in protein secretion and points to the existence of a quality control mechanism at least for proteins secreted in an HgdD-dependent pathway.
Collapse
Affiliation(s)
- Alexander Hahn
- Institute of Molecular Biosciences, Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, Frankfurt/am Main, 60438, Germany
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Panda B, Basu B, Rajaram H, Kumar Apte S. Methyl viologen responsive proteome dynamics ofAnabaenasp. strain PCC7120. Proteomics 2014; 14:1895-904. [DOI: 10.1002/pmic.201300522] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/16/2014] [Accepted: 06/11/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Bandita Panda
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Bhakti Basu
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Hema Rajaram
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Shree Kumar Apte
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
98
|
Sucrose synthesis in the nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120 is controlled by the two-component response regulator OrrA. Appl Environ Microbiol 2014; 80:5672-9. [PMID: 25002430 DOI: 10.1128/aem.01501-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression of spsA, which encodes a sucrose-phosphate synthase, and susA and susB, which encode sucrose synthases, was induced by salt stress. In the orrA disruptant, salt induction of these genes was completely abolished. The cellular sucrose level of the orrA disruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression of orrA resulted in enhanced expression of spsA, susA, and susB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2.
Collapse
|
99
|
Hernández-Prieto MA, Semeniuk TA, Futschik ME. Toward a systems-level understanding of gene regulatory, protein interaction, and metabolic networks in cyanobacteria. Front Genet 2014; 5:191. [PMID: 25071821 PMCID: PMC4079066 DOI: 10.3389/fgene.2014.00191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria are essential primary producers in marine ecosystems, playing an important role in both carbon and nitrogen cycles. In the last decade, various genome sequencing and metagenomic projects have generated large amounts of genetic data for cyanobacteria. This wealth of data provides researchers with a new basis for the study of molecular adaptation, ecology and evolution of cyanobacteria, as well as for developing biotechnological applications. It also facilitates the use of multiplex techniques, i.e., expression profiling by high-throughput technologies such as microarrays, RNA-seq, and proteomics. However, exploration and analysis of these data is challenging, and often requires advanced computational methods. Also, they need to be integrated into our existing framework of knowledge to use them to draw reliable biological conclusions. Here, systems biology provides important tools. Especially, the construction and analysis of molecular networks has emerged as a powerful systems-level framework, with which to integrate such data, and to better understand biological relevant processes in these organisms. In this review, we provide an overview of the advances and experimental approaches undertaken using multiplex data from genomic, transcriptomic, proteomic, and metabolomic studies in cyanobacteria. Furthermore, we summarize currently available web-based tools dedicated to cyanobacteria, i.e., CyanoBase, CyanoEXpress, ProPortal, Cyanorak, CyanoBIKE, and CINPER. Finally, we present a case study for the freshwater model cyanobacteria, Synechocystis sp. PCC6803, to show the power of meta-analysis, and the potential to extrapolate acquired knowledge to the ecologically important marine cyanobacteria genus, Prochlorococcus.
Collapse
Affiliation(s)
| | - Trudi A Semeniuk
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve Faro, Portugal
| | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve Faro, Portugal ; Centre of Marine Sciences, University of Algarve Faro, Portugal
| |
Collapse
|
100
|
Singh P, Kaushik MS, Srivastava M, Mishra AK. Phylogenetic analysis of heterocystous cyanobacteria (Subsections IV and V) using highly iterated palindromes as molecular markers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:331-342. [PMID: 25049460 PMCID: PMC4101137 DOI: 10.1007/s12298-014-0244-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 06/01/2023]
Abstract
Highly iterated palindromes (HIP) have been used as high resolution molecular markers for assessing the genetic variability and phylogenetic relatedness of heterocystous cyanobacteria (subsections IV and V) representing 12 genera of heterocystous cyanobacteria, collected from different geographical areas of India. DNA fingerprints generated using four HIP markers viz. HIP-AT, HIP-CA, HIP-GC, and HIP-TG showed 100 % polymorphism in all the heterocystous cyanobacteria studied and each marker produced unique and strain-specific banding pattern. Furthermore, phylogenetic affinities based on the dendrogram constructed using HIP DNA profiles of heterocystous cyanobacteria suggest the monophyletic origin of this entire heterocystous clade along with a clear illustration of the polyphyletic origin of the branched Stigonematalean order (Subsection V). In addition, phylogenetic affinities were validated by principal component analysis of the HIP fingerprints. The overall data obtained by both the phylogeny and principal component assessments proved that the entire heterocystous clade was intermixed, and there are immediate needs for classificatory reforms that satisfy morphological plasticity and environmental concerns.
Collapse
Affiliation(s)
- Prashant Singh
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Manish Singh Kaushik
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Meenakshi Srivastava
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|