51
|
HnRNPA2 is a novel histone acetyltransferase that mediates mitochondrial stress-induced nuclear gene expression. Cell Discov 2016; 2:16045. [PMID: 27990297 PMCID: PMC5148442 DOI: 10.1038/celldisc.2016.45] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022] Open
Abstract
Reduced mitochondrial DNA copy number, mitochondrial DNA mutations or disruption of
electron transfer chain complexes induce mitochondria-to-nucleus retrograde signaling,
which induces global change in nuclear gene expression ultimately contributing to various
human pathologies including cancer. Recent studies suggest that these mitochondrial
changes cause transcriptional reprogramming of nuclear genes although the mechanism of
this cross talk remains unclear. Here, we provide evidence that mitochondria-to-nucleus
retrograde signaling regulates chromatin acetylation and alters nuclear gene expression
through the heterogeneous ribonucleoprotein A2 (hnRNAP2). These processes are reversed
when mitochondrial DNA content is restored to near normal cell levels. We show that the
mitochondrial stress-induced transcription coactivator hnRNAP2 acetylates Lys 8 of H4
through an intrinsic histone lysine acetyltransferase (KAT) activity with Arg 48 and Arg
50 of hnRNAP2 being essential for acetyl-CoA binding and acetyltransferase activity. H4K8
acetylation at the mitochondrial stress-responsive promoters by hnRNAP2 is essential for
transcriptional activation. We found that the previously described mitochondria-to-nucleus
retrograde signaling-mediated transformation of C2C12 cells caused an increased expression
of genes involved in various oncogenic processes, which is retarded in hnRNAP2 silenced or
hnRNAP2 KAT mutant cells. Taken together, these data show that altered gene expression by
mitochondria-to-nucleus retrograde signaling involves a novel hnRNAP2-dependent epigenetic
mechanism that may have a role in cancer and other pathologies.
Collapse
|
52
|
Endoplasmic Reticulum Stress Enhances Mitochondrial Metabolic Activity in Mammalian Adrenals and Gonads. Mol Cell Biol 2016; 36:3058-3074. [PMID: 27697863 DOI: 10.1128/mcb.00411-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 01/21/2023] Open
Abstract
The acute response to stress consists of a series of physiological programs to promote survival by generating glucocorticoids and activating stress response genes that increase the synthesis of many chaperone proteins specific to individual organelles. In the endoplasmic reticulum (ER), short-term stress triggers activation of the unfolded protein response (UPR) module that either leads to neutralization of the initial stress or adaptation to it; chronic stress favors cell death. UPR induces expression of the transcription factor, C/EBP homology protein (CHOP), and its deletion protects against the lethal consequences of prolonged UPR. Here, we show that stress-induced CHOP expression coincides with increased metabolic activity. During stress, the ER and mitochondria come close to each other, resulting in the formation of a complex consisting of the mitochondrial translocase, translocase of outer mitochondrial membrane 22 (Tom22), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2) via its intermembrane space (IMS)-exposed charged unstructured loop region. Stress increased the circulation of phosphates, which elevated pregnenolone synthesis by 2-fold by increasing the stability of 3βHSD2 and its association with the mitochondrion-associated ER membrane (MAM) and mitochondrial proteins. In summary, cytoplasmic CHOP plays a central role in coordinating the interaction of MAM proteins with the outer mitochondrial membrane translocase, Tom22, to activate metabolic activity in the IMS by enhanced phosphate circulation.
Collapse
|
53
|
Kelly J, Murphy JEJ. Mitochondrial tolerance to single and repeat exposure to simulated sunlight in human epidermal and dermal skin cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:298-304. [PMID: 27838483 DOI: 10.1016/j.jphotobiol.2016.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sunlight represents the primary threat to mitochondrial integrity in skin given the unique nature of the mitochondrial genome and its proximity to the electron transport chain. The accumulation of mitochondrial DNA (mtDNA) mutations is a key factor in many human pathologies and this is linked to key roles of mitochondrial function in terms of energy production and cell regulation. OBJECTIVE The main objective of this study was to evaluate solar radiation induced changes in mitochondrial integrity, function and dynamics in human skin cells using a Q-Sun solar simulator to deliver a close match to the intensity of summer sunlight. METHODS Spontaneously immortalised human skin epidermal keratinocytes (HaCaT) and Human Dermal Fibroblasts (HDFn) were divided into two groups. Group A were irradiated once and Group B twice 7days apart and evaluated using cell survival, viability and mitochondrial membrane potential (MMP) and mass at 1, 4 and 7days post one exposure for Group A and 1, 4, 7 and 14days post second exposure for Group B. RESULTS Viability and survival of HaCaT and HDFn cells decreased after repeat exposure to Simulated Sunlight Irradiation (SSI) with no recovery. HDFn cells showed no loss in MMP after one or two exposures to SSI compared to HaCaT cells which showed a periodic loss of MMP after one exposure with a repeat exposure causing a dramatic decrease from which cells did not recover. Mitochondrial Mass in exposed HDFn cells was consistent with control after one or two exposures to SSI; however mitochondrial mass was significantly decreased in HaCaT cells. CONCLUSION Data presented here suggests that mitochondria in epidermal cells are more sensitive to sunlight damage compared to mitochondria in dermal cells, despite their origin, confirming a skin layer specific sensitivity to sunlight, but not as expected.
Collapse
Affiliation(s)
- J Kelly
- Mitochondrial Biology & Radiation Research Centre, Dept. of Life Sciences, Institute of Technology Sligo, Ash Lane, Sligo, Ireland.
| | - J E J Murphy
- Mitochondrial Biology & Radiation Research Centre, Dept. of Life Sciences, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| |
Collapse
|
54
|
Spotlight on the relevance of mtDNA in cancer. Clin Transl Oncol 2016; 19:409-418. [PMID: 27778302 DOI: 10.1007/s12094-016-1561-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
The potential role of the mitochondrial genome has recently attracted interest because of its high mutation frequency in tumors. Different aspects of mtDNA make it relevant for cancer's biology, such as it encodes a limited but essential number of genes for OXPHOS biogenesis, it is particularly susceptible to mutations, and its copy number can vary. Moreover, most ROS in mitochondria are produced by the electron transport chain. These characteristics place the mtDNA in the center of multiple signaling pathways, known as mitochondrial retrograde signaling, which modifies numerous key processes in cancer. Cybrid studies support that mtDNA mutations are relevant and exert their effect through a modification of OXPHOS function and ROS production. However, there is still much controversy regarding the clinical relevance of mtDNA mutations. New studies should focus more on OXPHOS dysfunction associated with a specific mutational signature rather than the presence of mutations in the mtDNA.
Collapse
|
55
|
Bohovych I, Khalimonchuk O. Sending Out an SOS: Mitochondria as a Signaling Hub. Front Cell Dev Biol 2016; 4:109. [PMID: 27790613 PMCID: PMC5061732 DOI: 10.3389/fcell.2016.00109] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Normal cellular physiology is critically dependent on numerous mitochondrial activities including energy conversion, cofactor and precursor metabolite synthesis, and regulation of ion and redox homeostasis. Advances in mitochondrial research during the last two decades provide solid evidence that these organelles are deeply integrated with the rest of the cell and multiple mechanisms are in place to monitor and communicate functional states of mitochondria. In many cases, however, the exact molecular nature of various mitochondria-to-cell communication pathways is only beginning to emerge. Here, we review various signals emitted by distressed or dysfunctional mitochondria and the stress-responsive pathways activated in response to these signals in order to restore mitochondrial function and promote cellular survival.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
- Nebraska Redox Biology Center, University of Nebraska-LincolnLincoln, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
56
|
Canto P, Benítez Granados J, Martínez Ramírez MA, Reyes E, Feria-Bernal G, García-García E, Tejeda ME, Zavala E, Tapia A, Rojano-Mejía D, Méndez JP. Genetic variants in ATP6 and ND3 mitochondrial genes are not associated with aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity. Aging Male 2016; 19:187-191. [PMID: 27187822 DOI: 10.1080/13685538.2016.1185409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mitochondrial defects have been related to obesity and prostate cancer. We investigated if Mexican-Mestizo men presenting this type of cancer, exhibited somatic mutations of ATP6 and/or ND3.Body mass index (BMI) was determined; the degree of prostate cancer aggressiveness was demarcated by the Gleason score. DNA from tumor tissue and from blood leukocytes was amplified by the polymerase chain reaction and ATP6 and ND3 were sequenced. We included 77 men: 20 had normal BMI, 38 were overweight and 19 had obesity; ages ranged from 52 to 83. After sequencing ATP6 and ND3, from DNA obtained from leukocytes and tumor tissue, we did not find any somatic mutations. All changes observed, in both genes, were polymorphisms. In ATP6 we identified, in six patients, two non-synonymous nucleotide changes and in ND3 we observed that twelve patients presented non-synonymous polymorphisms. To our knowledge, this constitutes the first report where the complete sequences of the ATP6 and ND3 have been analyzed in Mexican-Mestizo men with prostate cancer and diverse BMI. Our results differ with those reported in Caucasian populations, possibly due to ethnic differences.
Collapse
Affiliation(s)
- Patricia Canto
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Jesús Benítez Granados
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Mónica Adriana Martínez Ramírez
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Edgardo Reyes
- c Departamento de Patología , Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Guillermo Feria-Bernal
- d Departamento de Urología , Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México , and
| | - Eduardo García-García
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - María Elena Tejeda
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Esperanza Zavala
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - André Tapia
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - David Rojano-Mejía
- e Unidad de Medicina Física y Rehabilitación Centro, UMAE, Hospital de Traumatología y Ortopedia "Lomas Verdes", Instituto Mexicano del Seguro Social , México, D.F , México
| | - Juan Pablo Méndez
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| |
Collapse
|
57
|
Avcilar T, Kirac D, Ergec D, Koc G, Ulucan K, Kaya Z, Kaspar EC, Turkeri L, Guney AI. Investigation of the association between mitochondrial DNA and p53 gene mutations in transitional cell carcinoma of the bladder. Oncol Lett 2016; 12:2872-2879. [PMID: 27698873 DOI: 10.3892/ol.2016.5000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Bladder carcinoma is the most common malignancy of the urinary tract. The major aim of the present study is to investigate the association between mitochondrial DNA (mtDNA) and p53 gene mutations in bladder carcinoma. A total of 30 patients with transitional cell carcinoma and 27 controls were recruited for the study. Bladder cancer tissues were obtained by radical cystectomy or transurethral resection. Genomic DNA was extracted from peripheral blood. mtDNA and p53 genes were amplified by polymerase chain reaction and sequenced directly. A total of 37 polymorphisms were identified, among which, 2 mutations were significant in the patient group, and 1 mutation was significant in the control group. Additionally, 5 different moderate positive correlations between mtDNA mutations and 3 different positive correlations between p53 gene and mtDNA mutations were detected. The high incidence of mtDNA and p53 gene mutations in bladder cancer suggests that these genes could be important in carcinogenesis.
Collapse
Affiliation(s)
- Tuba Avcilar
- Department of Medical Genetics, Faculty of Medicine, Marmara University, Istanbul 34890, Turkey
| | - Deniz Kirac
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Deniz Ergec
- Department of Medical Genetics, Faculty of Medicine, Marmara University, Istanbul 34890, Turkey
| | - Gulsah Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydın University, Istanbul 34295, Turkey
| | - Korkut Ulucan
- Department of Medical Biology and Genetics, Faculty of Dentistry, Marmara University, Istanbul 34854, Turkey
| | - Zehra Kaya
- Department of Medical Biology, Faculty of Medicine, Yuzuncu Yıl University, Van 65080, Turkey
| | - Elif Cigdem Kaspar
- Department of Biostatistics, Faculty of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Levent Turkeri
- Department of Urology, Faculty of Medicine, Marmara University, Istanbul 34890, Turkey
| | - Ahmet Ilter Guney
- Department of Medical Genetics, Faculty of Medicine, Marmara University, Istanbul 34890, Turkey
| |
Collapse
|
58
|
Chen H, Wang J, Liu Z, Yang H, Zhu Y, Zhao M, Liu Y, Yan M. Mitochondrial DNA depletion causes decreased ROS production and resistance to apoptosis. Int J Mol Med 2016; 38:1039-46. [PMID: 27499009 PMCID: PMC5029958 DOI: 10.3892/ijmm.2016.2697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 06/14/2016] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) depletion occurs frequently in many diseases including cancer. The present study was designed in order to examine the hypothesis that mtDNA‑depleted cells are resistant to apoptosis and to explore the possible mechanisms responsible for this effect. Parental human osteosarcoma 143B cells and mtDNA‑deficient (Rho˚ or ρ˚) 206 cells (derived from 143B cells) were exposed to different doses of solar-simulated ultraviolet (UV) radiation. The effects of solar irradiation on cell morphology were observed under both light and fluorescence microscopes. Furthermore, apoptosis, mitochondrial membrane potential (MMP) disruption and reactive oxygen species (ROS) production were detected and measured by flow cytometry. In both cell lines, apoptosis and ROS production were clearly increased, whereas MMP was slightly decreased. However, apoptosis and ROS production were reduced in the Rho˚206 cells compared with the 143B cells. We also performed western blot analysis and demonstrated the increased release of cytosolic Cyt c from mitochondria in the 143B cells compared with that in the Rho˚206 cells. Thus, we concluded that Rho˚206 cells exhibit more resistance to solar‑simulated UV radiation‑induced apoptosis at certain doses than 143B cells and this is possibly due to decreased ROS production.
Collapse
Affiliation(s)
- Hulin Chen
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Junling Wang
- Gynecologic Department of Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Zhongrong Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Huilan Yang
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Yingjie Zhu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Minling Zhao
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Yan Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Miaomiao Yan
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
59
|
Chowdhury AR, Long A, Fuchs SY, Rustgi A, Avadhani NG. Mitochondrial stress-induced p53 attenuates HIF-1α activity by physical association and enhanced ubiquitination. Oncogene 2016; 36:397-409. [PMID: 27345397 PMCID: PMC5192009 DOI: 10.1038/onc.2016.211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Abstract
Retrograde signaling is a mechanism by which mitochondrial dysfunction is communicated to the nucleus for inducing a metabolic shift essential for cell survival. Previously we showed that partial mtDNA depletion in different cell types induced mitochondrial retrograde signaling pathway (MtRS) involving Ca+2 sensitive Calcineurin (Cn) activation as an immediate upstream event of stress response. In multiple cell types, this stress signaling was shown to induce tumorigenic phenotypes in immortalized cells. In this study we show that MtRS also induces p53 expression which was abrogated by Ca2+ chelators and shRNA mediated knock down of CnAβ mRNA. Mitochondrial dysfunction induced by mitochondrial ionophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and other respiratory inhibitors, which perturb the transmembrane potential, were equally efficient in inducing the expression of p53 and downregulation of MDM2. Stress-induced p53 physically interacted with HIF-1α and attenuated the latter’s binding to promoter DNA motifs. Additionally, p53 promoted ubiquitination and degradation of HIF-1α in partial mtDNA depleted cells. The mtDNA depleted cells, with inhibited HIF-1α, showed upregulation of glycolytic pathway genes, glucose transporter 1–4 (Glut1–4), phosphoglycerate kinase 1 (PGK1) and Glucokinase (GSK) but not of prolyl hydroxylase (PHD) isoforms. For the first time we show that p53 is induced as part of MtRS and it renders HIF-1α inactive by physical interaction. In this respect our results show that MtRS induces tumor growth independent of HIF-1α pathway.
Collapse
Affiliation(s)
- A Roy Chowdhury
- Department of Biomedical Sciences and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Long
- Division of Gastroenterology, Department of Medicine and Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S Y Fuchs
- Department of Biomedical Sciences and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Rustgi
- Division of Gastroenterology, Department of Medicine and Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N G Avadhani
- Department of Biomedical Sciences and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
60
|
Zhang HF, Wang KH. Relationship between mutations of mitochondrial DNA control region and tumors. Shijie Huaren Xiaohua Zazhi 2016; 24:2676-2681. [DOI: 10.11569/wcjd.v24.i17.2676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrion is the main place of cell respiration and participates in the process of cell apoptosis and proliferation, nucleic acid synthesis, and the production of free radicals. Mitochondrial DNA (mtDNA) is susceptible to the attack by oxygen free radicals and their products, and tends to develop somatic mutations, because of the lack of protection by histones and complete repair system. Somatic mutations in mtDNA will finally promote tumorigenesis. The control region of mtDNA is a region with a high mutation frequency. The association between control region mutations and tumorigenesis has attracted wide attention. Therefore, it is of great significance to elucidate the relationship between mtDNA control region mutations and tumorigenesis.
Collapse
|
61
|
Bao XR, Ong SE, Goldberger O, Peng J, Sharma R, Thompson DA, Vafai SB, Cox AG, Marutani E, Ichinose F, Goessling W, Regev A, Carr SA, Clish CB, Mootha VK. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife 2016; 5. [PMID: 27307216 PMCID: PMC4911214 DOI: 10.7554/elife.10575] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI:http://dx.doi.org/10.7554/eLife.10575.001 Mitochondria are found within virtually all of our body’s cells and are best known as their power plants. Damaged mitochondria cause many diseases in humans – from rare, inherited metabolic disorders that cause symptoms including muscle weakness and developmental problems, to age-related diseases such as diabetes and Parkinson’s disease. How does mitochondrial damage lead to such a variety of symptoms and conditions? To answer this question, researchers must understand how cells respond to and compensate for such damage. To mimic mitochondrial failure, Bao et al. reduced the amount of DNA in the mitochondria of human cells and observed that this caused the cells to accumulate more of an amino acid called serine. Further investigation showed that this accumulation comes in part from cells producing more serine, and that a protein called Activating Transcription Factor 4 is responsible for increasing the expression of the genes needed to produce serine in the cells. Bao et al. also found that damaged mitochondria are less able to consume serine to produce a compound called formate, which is a precursor for DNA building blocks. If cells cannot acquire enough extra serine to compensate for this inefficiency, they cannot produce some of the building blocks required to make DNA and other critical compounds in the cell. Supplementing the cells with formate or the DNA building blocks enabled the cells to recover, which suggests that formate supplements may help to treat some mitochondrial disorders. At a higher level, these results suggest that the mitochondrion’s role as a major chemical factory in the cell, and not just as the power plant, may also contribute to disease when the mitochondria are broken. Further work is now needed to investigate how cells know to turn on Activating Transcription Factor 4 when their mitochondria are damaged. It also remains to be discovered whether this reduces or exacerbates the symptoms of mitochondrial disease. DOI:http://dx.doi.org/10.7554/eLife.10575.002
Collapse
Affiliation(s)
- Xiaoyan Robert Bao
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Department of Systems Biology, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Shao-En Ong
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Olga Goldberger
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States
| | - Jun Peng
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Rohit Sharma
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States
| | - Dawn A Thompson
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Scott B Vafai
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Andrew G Cox
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Eizo Marutani
- Department of Anesthesia, Critical Care, and Pain Medicine, Masaschusetts General Hospital, Boston, United States
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Masaschusetts General Hospital, Boston, United States
| | - Wolfram Goessling
- Broad Institute of MIT and Harvard, Cambridge, United States.,Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Vamsi K Mootha
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Department of Systems Biology, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
62
|
Duncan OF, Bateman JM. Mitochondrial retrograde signaling in the Drosophila nervous system and beyond. Fly (Austin) 2016; 10:19-24. [PMID: 27064199 DOI: 10.1080/19336934.2016.1174353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial dysfunction has been suggested to contribute to neurodegenerative diseases, including Alzheimer and Parkinson disease. Cells respond to changes in the functional state of mitochondria via retrograde signaling pathways from the mitochondria to the nucleus, but little is known about retrograde signaling in the nervous system. We have recently shown that inhibition of retrograde signaling reduces the impact of neuronal mitochondrial dysfunction. We performed a study designed to characterize the mitochondrial retrograde signaling pathway in the Drosophila nervous system. Using several different models we found that neuronal specific mitochondrial dysfunction results in defects in synapse development and neuronal function. Moreover, we identified the Drosophila hypoxia inducible factor α (HIFα) ortholog Sima as a key neuronal transcriptional regulator. Knock-down of sima restores function in several Drosophila models of mitochondrial dysfunction, including models of human disease. Here we discuss these findings and speculate on the potential benefits of inhibition of retrograde signaling. We also describe how our results relate to other studies of mitochondrial retrograde signaling and the potential therapeutic applications of these discoveries.
Collapse
Affiliation(s)
- Olivia F Duncan
- a Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus , London , UK
| | - Joseph M Bateman
- a Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus , London , UK
| |
Collapse
|
63
|
Porporato PE, Payen VL, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism. Cell Mol Life Sci 2016; 73:1349-63. [PMID: 26646069 PMCID: PMC11108268 DOI: 10.1007/s00018-015-2100-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
Abstract
Metabolic alterations are a hallmark of cancer controlling tumor progression and metastasis. Among the various metabolic phenotypes encountered in tumors, this review focuses on the contributions of mitochondria, lipid and amino acid metabolism to the metastatic process. Tumor cells require functional mitochondria to grow, proliferate and metastasize, but shifts in mitochondrial activities confer pro-metastatic traits encompassing increased production of mitochondrial reactive oxygen species (mtROS), enhanced resistance to apoptosis and the increased or de novo production of metabolic intermediates of the TCA cycle behaving as oncometabolites, including succinate, fumarate, and D-2-hydroxyglutarate that control energy production, biosynthesis and the redox state. Lipid metabolism and the metabolism of amino acids, such as glutamine, glutamate and proline are also currently emerging as focal control points of cancer metastasis.
Collapse
Affiliation(s)
- Paolo E Porporato
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
| | - Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
| | - Bjorn Baselet
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, 2400 Mol, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium.
| |
Collapse
|
64
|
Hsu CC, Tseng LM, Lee HC. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood) 2016; 241:1281-95. [PMID: 27022139 DOI: 10.1177/1535370216641787] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deregulated cellular energetics was one of the cancer hallmarks. Several underlying mechanisms of deregulated cellular energetics are associated with mitochondrial dysfunction caused by mitochondrial DNA mutations, mitochondrial enzyme defects, or altered oncogenes/tumor suppressors. In this review, we summarize the current understanding about the role of mitochondrial dysfunction in cancer progression. Point mutations and copy number changes are the two most common mitochondrial DNA alterations in cancers, and mitochondrial dysfunction induced by chemical depletion of mitochondrial DNA or impairment of mitochondrial respiratory chain in cancer cells promotes cancer progression to a chemoresistance or invasive phenotype. Moreover, defects in mitochondrial enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, are associated with both familial and sporadic forms of cancer. Deregulated mitochondrial deacetylase sirtuin 3 might modulate cancer progression by regulating cellular metabolism and oxidative stress. These mitochondrial defects during oncogenesis and tumor progression activate cytosolic signaling pathways that ultimately alter nuclear gene expression, a process called retrograde signaling. Changes in the intracellular level of reactive oxygen species, Ca(2+), or oncometabolites are important in the mitochondrial retrograde signaling for neoplastic transformation and cancer progression. In addition, altered oncogenes/tumor suppressors including hypoxia-inducible factor 1 and tumor suppressor p53 regulate mitochondrial respiration and cellular metabolism by modulating the expression of their target genes. We thus suggest that mitochondrial dysfunction plays a critical role in cancer progression and that targeting mitochondrial alterations and mitochondrial retrograde signaling might be a promising strategy for the development of selective anticancer therapy.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan Taipei-Veterans General Hospital Comprehensive Breast Health Center, Taipei 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
65
|
Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17:213-26. [PMID: 26956194 DOI: 10.1038/nrm.2016.23] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
66
|
Kuo YT, Shih PH, Kao SH, Yeh GC, Lee HM. Pyrroloquinoline Quinone Resists Denervation-Induced Skeletal Muscle Atrophy by Activating PGC-1α and Integrating Mitochondrial Electron Transport Chain Complexes. PLoS One 2015; 10:e0143600. [PMID: 26646764 PMCID: PMC4672922 DOI: 10.1371/journal.pone.0143600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Denervation-mediated skeletal muscle atrophy results from the loss of electric stimulation and leads to protein degradation, which is critically regulated by the well-confirmed transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α). No adequate treatments of muscle wasting are available. Pyrroloquinoline quinone (PQQ), a naturally occurring antioxidant component with multiple functions including mitochondrial modulation, demonstrates the ability to protect against muscle dysfunction. However, it remains unclear whether PQQ enhances PGC-1α activation and resists skeletal muscle atrophy in mice subjected to a denervation operation. This work investigates the expression of PGC-1α and mitochondrial function in the skeletal muscle of denervated mice administered PQQ. The C57BL6/J mouse was subjected to a hindlimb sciatic axotomy. A PQQ-containing ALZET® osmotic pump (equivalent to 4.5 mg/day/kg b.w.) was implanted subcutaneously into the right lower abdomen of the mouse. In the time course study, the mouse was sacrificed and the gastrocnemius muscle was prepared for further myopathological staining, energy metabolism analysis, western blotting, and real-time quantitative PCR studies. We observed that PQQ administration abolished the denervation-induced decrease in muscle mass and reduced mitochondrial activities, as evidenced by the reduced fiber size and the decreased expression of cytochrome c oxidase and NADH-tetrazolium reductase. Bioenergetic analysis demonstrated that PQQ reprogrammed the denervation-induced increase in the mitochondrial oxygen consumption rate (OCR) and led to an increase in the extracellular acidification rate (ECAR), a measurement of the glycolytic metabolism. The protein levels of PGC-1α and the electron transport chain (ETC) complexes were also increased by treatment with PQQ. Furthermore, PQQ administration highly enhanced the expression of oxidative fibers and maintained the type II glycolytic fibers. This pre-clinical in vivo study suggests that PQQ may provide a potent therapeutic benefit for the treatment of denervation-induced atrophy by activating PGC-1α and maintaining the mitochondrial ETC complex in skeletal muscles.
Collapse
Affiliation(s)
- Yung-Ting Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsiao Shih
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Geng-Chang Yeh
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Mo Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
67
|
Abstract
Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer's and Parkinson's. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson's disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment.
Collapse
|
68
|
SINKOVICS JOSEPHG. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review). Int J Oncol 2015; 47:1211-29. [PMID: 26239915 PMCID: PMC4583530 DOI: 10.3892/ijo.2015.3102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it.
Collapse
Affiliation(s)
- JOSEPH G. SINKOVICS
- St. Joseph Hospital's Cancer Institute Affiliated with the H.L. Moffitt Comprehensive Cancer Center; Department of Molecular Medicine, The University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
69
|
Sun Y, Zhang L, Ho SS, Wu X, Gu J. Lower mitochondrial DNA copy number in peripheral blood leukocytes increases the risk of endometrial cancer. Mol Carcinog 2015; 55:1111-7. [PMID: 26258624 DOI: 10.1002/mc.22373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 01/18/2023]
Abstract
Mitochondria are the primary source of energy generation in human cells. Low mitochondrial DNA (mtDNA) copy number in peripheral blood leukocytes (PBLs) has been associated with obesity and increased risks of several cancers. Since obesity is a significant risk factor for endometrial cancer, we hypothesize that low mtDNA copy number in PBLs is associated with an increased susceptibility to endometrial cancer. Using a Caucasian case-control study, we measured mtDNA copy number in PBLs from 139 endometrial cancer patients and 139 age-matched controls and determined the association of mtDNA copy number with the risk of endometrial cancer using multivariate logistic regression analysis. The normalized mtDNA copy number was significantly lower in endometrial cancer cases (median, 0.84; range, 0.24-2.00) than in controls (median, 1.06; range, 0.64-1.96) (P < 0.001). Dichotomized into high and low groups based on the median mtDNA copy number value in the controls, individuals with low mtDNA copy number had a significantly increased risk of endometrial cancer (adjusted OR, 5.59; 95%CI, 3.05-10.25; P < 0.001) compared to those with high mtDNA copy number. There was a significant dose-response association in tertile analysis. In addition, there was a significant joint effect between lower mtDNA copy number and never smoking, hypertension, diabetes, and obesity in elevating the risk of endometrial cancer. Low mtDNA copy number in PBLs is significantly associated with an increased risk of endometrial cancer in Caucasians. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhui Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liren Zhang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon S Ho
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
70
|
Srinivasan S, Guha M, Dong DW, Whelan KA, Ruthel G, Uchikado Y, Natsugoe S, Nakagawa H, Avadhani NG. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene 2015; 35:1585-95. [PMID: 26148236 PMCID: PMC4703574 DOI: 10.1038/onc.2015.227] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/30/2015] [Accepted: 05/10/2015] [Indexed: 02/01/2023]
Abstract
Defects in mitochondrial oxidative phosphorylation complexes, altered bioenergetics and metabolic shift are often seen in cancers. Here we show a role for the dysfunction of electron transport chain component, cytochrome c oxidase (CcO) in cancer progression. We show that genetic silencing of the CcO complex by shRNA expression and loss of CcO activity in multiple cell types from the mouse and human sources resulted in metabolic shift to glycolysis, loss of anchorage dependent growth and acquired invasive phenotypes. Disruption of CcO complex caused loss of transmembrane potential and induction of Ca2+/Calcineurin-mediated retrograde signaling. Propagation of this signaling, includes activation of PI3-kinase, IGF1R and Akt, Ca2+ sensitive transcription factors and also, TGFβ1, MMP16, periostin that are involved in oncogenic progression. Whole genome expression analysis showed up regulation of genes involved in cell signaling, extracellular matrix interactions, cell morphogenesis, cell motility and migration. The transcription profiles reveal extensive similarity to retrograde signaling initiated by partial mtDNA depletion, though distinct differences are observed in signaling induced by CcO dysfunction. The possible CcO dysfunction as a biomarker for cancer progression was supported by data showing that esophageal tumors from human patients show reduced CcO subunits IVi1 and Vb in regions that were previously shown to be hypoxic core of the tumors. Our results show that mitochondrial electron transport chain defect initiates a retrograde signaling. These results suggest that a defect in CcO complex can potentially induce tumor progression.
Collapse
Affiliation(s)
- S Srinivasan
- Department of Biomedical Sciences, The Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - M Guha
- Department of Biomedical Sciences, The Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - D W Dong
- Department of Biomedical Sciences, The Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - K A Whelan
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Ruthel
- Department of Biomedical Sciences, The Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Y Uchikado
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - S Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - H Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N G Avadhani
- Department of Biomedical Sciences, The Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
71
|
Abnormal Glucose Metabolism in Alzheimer's Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches. Neurochem Res 2015; 40:2557-69. [PMID: 26077923 DOI: 10.1007/s11064-015-1631-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/09/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022]
Abstract
Diminished glucose metabolism accompanies many neurodegenerative diseases including Alzheimer's disease. An understanding of the relation of these metabolic changes to the disease will enable development of novel therapeutic strategies. Following a metabolic challenge, cells generally conserve energy to preserve viability. This requires activation of many cellular repair/regenerative processes such as mitophagy/autophagy and fusion/fission. These responses may diminish cell function in the long term. Prolonged fission induces mitophagy/autophagy which promotes repair but if prolonged progresses to mitochondrial degradation. Abnormal glucose metabolism alters protein signaling including the release of proteins from the mitochondria or migration of proteins from the cytosol to the mitochondria or nucleus. This overview provides an insight into the different mechanisms of autophagy/mitophagy and mitochondrial dynamics in response to the diminished metabolism that occurs with diseases, especially neurodegenerative diseases such as Alzheimer's disease. The review discusses multiple aspects of mitochondrial responses including different signaling proteins and pathways of mitophagy and mitochondrial biogenesis. Improving cellular bioenergetics and mitochondrial dynamics will alter protein signaling and improve cellular/mitochondrial repair and regeneration. An understanding of these changes will suggest new therapeutic strategies.
Collapse
|
72
|
The complex crosstalk between mitochondria and the nucleus: What goes in between? Int J Biochem Cell Biol 2015; 63:10-5. [DOI: 10.1016/j.biocel.2015.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
|
73
|
Guha M, Srinivasan S, Koenigstein A, Zaidi M, Avadhani NG. Enhanced osteoclastogenesis by mitochondrial retrograde signaling through transcriptional activation of the cathepsin K gene. Ann N Y Acad Sci 2015; 1364:52-61. [PMID: 25800988 DOI: 10.1111/nyas.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction has emerged as an important factor in wide ranging human pathologies. We have previously defined a retrograde signaling pathway that originates from dysfunctional mitochondria (Mt-RS) and causes a global nuclear transcriptional reprograming as its end point. Mitochondrial dysfunction causing disruption of mitochondrial membrane potential and consequent increase in cytosolic calcium [Ca(2) ](c) activates calcineurin and the transcription factors NF-κB, NFAT, CREB, and C/EBPδ. In macrophages, this signaling complements receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastic differentiation. Here, we show that the Mt-RS activated transcriptional coactivator heterogeneous ribonucleoprotein A2 (hnRNP A2) is induced by hypoxia in murine macrophages. We demonstrate that the cathepsin K gene (Ctsk), one of the key genes upregulated during osteoclast differentiation, is transcriptionally activated by Mt-RS factors. HnRNP A2 acts as a coactivator with nuclear transcription factors, cRel, and C/EBPδ for Ctsk promoter activation under hypoxic conditions. Notably, our study shows that hypoxia-induced activation of the stress target factors mediates effects similar to that of RANKL with regard to Ctsk activation. We therefore suggest that mitochondrial dysfunction and activation of Mt-RS, induced by various pathophysiologic conditions, is a potential risk factor for osteoclastogenesis and bone loss.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Satish Srinivasan
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Koenigstein
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mone Zaidi
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York
| | - Narayan G Avadhani
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
74
|
Meng XL, Meng H, Zhang W, Qin YH, Zhao NM. The role of mitochondrial tRNA variants in female breast cancer. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3199-201. [PMID: 25703847 DOI: 10.3109/19401736.2015.1007332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial tRNA (Mt-tRNA) variants have been found to be involved in the carcinogenesis of breast cancer. These tRNAs, which played critical roles in mitochondrial protein synthesis, were important regulators in tumorigenesis. Distinguishing the polymorphisms or mutations in mt-tRNA genes was still puzzling for the clinicians and geneticists when confronted with the breast cancer. In this study, we performed a detailed analysis of recently reported mutations in mt-tRNA genes and further discussed the relationship between these variants and breast cancer.
Collapse
Affiliation(s)
| | - Hua Meng
- b Department of Cardiology , Henan Provincial People's Hospital, Zhengzhou University People's Hospital , Zhengzhou , China
| | | | | | | |
Collapse
|
75
|
Lee H, Lee JH, Kim DC, Hwang I, Kang YN, Gwon GJ, Choi IJ, Kim S. Is Mitochondrial DNA Copy Number Associated with Clinical Characteristics and Prognosis in Gastric Cancer? Asian Pac J Cancer Prev 2015; 16:87-90. [DOI: 10.7314/apjcp.2015.16.1.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
76
|
Martínez-Reyes I, Cuezva JM. The H+-ATP synthase: A gate to ROS-mediated cell death or cell survival. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1099-112. [DOI: 10.1016/j.bbabio.2014.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
|
77
|
Lee HC, Huang KH, Yeh TS, Chi CW. Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World J Gastroenterol 2014; 20:3950-3959. [PMID: 24744584 PMCID: PMC3983450 DOI: 10.3748/wjg.v20.i14.3950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/26/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023] Open
Abstract
Energy metabolism reprogramming was recently identified as one of the cancer hallmarks. One of the underlying mechanisms of energy metabolism reprogramming is mitochondrial dysfunction caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the past decades, several types of somatic mtDNA alterations have been identified in gastric cancer. However, the role of these mtDNA alterations in gastric cancer progression remains unclear. In this review, we summarize recently identified somatic mtDNA alterations in gastric cancers as well as the relationship between these alterations and the clinicopathological features of gastric cancer. The causative factors and potential roles of the somatic mtDNA alterations in cancer progression are also discussed. We suggest that point mutations and mtDNA copy number decreases are the two most common mtDNA alterations that result in mitochondrial dysfunction in gastric cancers. The two primary mutation types (transition mutations and mononucleotide or dinucleotide repeat instability) imply potential causative factors. Mitochondrial dysfunction-generated reactive oxygen species may be involved in the malignant changes of gastric cancer. The search for strategies to prevent mtDNA alterations and inhibit the mitochondrial retrograde signaling will benefit the development of novel treatments for gastric cancer and other malignancies.
Collapse
|
78
|
Ghaffarpour M, Mahdian R, Fereidooni F, Kamalidehghan B, Moazami N, Houshmand M. The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients. Cancer Cell Int 2014; 14:21. [PMID: 24588805 PMCID: PMC3942513 DOI: 10.1186/1475-2867-14-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Background Breast cancer is the most common malignancy in women throughout the world. Mitochondria play important roles in cellular energy production, free radical generation and apoptosis. Identification of mitochondrial DNA mutations and/or polymorphisms as cancer biomarkers is rapidly developing in molecular oncology research. Methods In this study, the DNA alterations of the mitochondrial ATPase 6 and 8 genes were investigated in 49 breast cancer patients using PCR amplification and direct DNA sequencing on mtDNA. A possible association between these variants and tumorigenesis was assessed. Furthermore, the impact of non-synonymous substitutions on the amino acid sequence was evaluated using the PolyPhen-2 software. Results Twenty eight distinct somatic mitochondrial DNA variants were detected in tumor tissues but not in the corresponding adjacent non-tumor tissues. Among these variants, 9 were observed for the first time in breast cancer patients. The mtDNA variants of A8384 (T7A), T8567C (I14T), G8572A (G16S), A9041G (H172R) and G9055A (A177T) showed the most significant effects probably due to damaging changes to the resulting protein. Furthermore, non-synonymous amino acid changing variants were more frequent in the ATPase6 gene compared to the ATPase8 gene. Conclusion Our results showed that the ATPase6 gene is more susceptible to variations in breast cancer and may play an important role in tumorigenesis by changing the energy metabolism level in cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Massoud Houshmand
- Medical Genetics Department, National Institute for Genetic Engineering & Biotechnology, Tehran, Iran.
| |
Collapse
|
79
|
Xun J, Li Z, Feng J, Gao S, Yang H, Song X. Single nucleotide polymorphisms in the mitochondrial displacement loop region and outcome of malignant fibrous histiocytoma. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:177-81. [PMID: 24491095 DOI: 10.3109/19401736.2013.879650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Single nucleotide polymorphisms (SNPs) in the mitochondrial DNA displacement-loop (D-loop) region have been reported to be associated with cancer risk and disease outcome in several types of cancer. In this study, we investigated whether the SNPs in mitochondrial D-loop were associated with the outcome of malignant fibrous histiocytoma (MFH). EXPERIMENTAL DESIGN The D-loop region of mtDNA was sequenced for 80 MFH patients. The 3 years survival curve were calculated with the Kaplan-Meier method and compared by the log-rank test at each SNP site, a multivariate survival analysis was also performed with the Cox proportional hazards method. RESULTS The SNP sites of nucleotides 152T/C, 16,390G/A, 16,290C/T, 16,304T/C and the AC deletion at sites 523 and 524 were identified for prediction of post-operational survival by the log-rank test. In an overall multivariate analysis, the 16,290 and 16,390 alleles were identified as independent predictors of MFH outcome. The length of survival for patients with the rare allele 16,390A genotype was significantly shorter than that for patients with the frequent allele 16,390Gat the site 16,390. The same was seen for the rare allele 16,290T genotype when compared with matched allele 16,290C at the site 16,290 in MFH patients. CONCLUSIONS These results suggested that SNPs in the D-loop are independent prognostic markers for patients with MFH. The analysis of genetic polymorphisms in the D-loop can help identify patient subgroups at higher risk of a poor disease outcome.
Collapse
Affiliation(s)
| | | | | | - Shejun Gao
- b Department of Clinical Laboratory , and
| | - Huichai Yang
- c Department of Pathology , The Fourth Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | | |
Collapse
|
80
|
Arbini AA, Guerra F, Greco M, Marra E, Gandee L, Xiao G, Lotan Y, Gasparre G, Hsieh JT, Moro L. Mitochondrial DNA depletion sensitizes cancer cells to PARP inhibitors by translational and post-translational repression of BRCA2. Oncogenesis 2013; 2:e82. [PMID: 24336406 PMCID: PMC3940862 DOI: 10.1038/oncsis.2013.45] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that pharmacologic inhibition of poly (ADP-ribose) polymerase (PARP), a nuclear protein that is crucial in signaling single-strand DNA breaks, is synthetically lethal to cancer cells from patients with genetic deficiency in the DNA repair proteins BRCA1 and BRCA2. Herein, we demonstrate that depletion of the mitochondrial genome (mtDNA) in breast, prostate and thyroid transformed cells resulted in elevated steady-state cytosolic calcium concentration and activation of calcineurin/PI3-kinase/AKT signaling leading to upregulation of miR-1245 and the ubiquitin ligase Skp2, two potent negative regulators of the tumor suppressor protein BRCA2, thus resulting in BRCA2 protein depletion, severe reduction in homologous recombination (HR) and increased sensitivity to the PARP inhibitor rucaparib. Treatment of mtDNA-depleted cells with the PI3-kinase inhibitor LY294002, the calmodulin antagonist W-7, the calcineurin inhibitor FK506, the calcium chelator BAPTA-AM, or suppression of AKT activity by AKT small-interfering RNA (siRNA) enhanced BRCA2 protein levels as well as HR. Decreasing the intracellular calcium levels using BAPTA, or direct reconstitution of BRCA2 protein levels either by recombinant expression or by small molecule inhibition of both Skp2 and miR-1245 restored sensitivity to rucaparib to wild-type levels. Furthermore, by studying prostate tissue specimens from prostate carcinoma patients we found a direct correlation between the presence of mtDNA large deletions and loss of BRCA2 protein in vivo, suggesting that mtDNA status may serve as a marker to predict therapeutic efficacy to PARP inhibitors. In summary, our results uncover a novel mechanism by which mtDNA depletion restrains HR, and highlight the role of mtDNA in regulating sensitivity to PARP inhibitors in transformed cells.
Collapse
Affiliation(s)
- A A Arbini
- Department of Pathology, New York University Medical Center, New York, NY, USA
| | - F Guerra
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - M Greco
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - E Marra
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - L Gandee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Y Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Gasparre
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - J-T Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L Moro
- 1] Department of Pathology, New York University Medical Center, New York, NY, USA [2] Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy [3] Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
81
|
Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol 2013; 3:292. [PMID: 24350057 PMCID: PMC3844930 DOI: 10.3389/fonc.2013.00292] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022] Open
Abstract
A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Michelle L Boland
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Molecular Metabolism and Nutrition, The University of Chicago , Chicago, IL , USA
| | - Aparajita H Chourasia
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, The University of Chicago , Chicago, IL , USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Molecular Metabolism and Nutrition, The University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, The University of Chicago , Chicago, IL , USA
| |
Collapse
|
82
|
Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:1331-44. [PMID: 24513455 DOI: 10.1016/j.bbagen.2013.10.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/06/2013] [Accepted: 10/22/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases. SCOPE OF REVIEW We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases. MAJOR CONCLUSION Induction of adaptive responses via AMPK-PFK2, AMPK-FOXO3a, AMPK-PGC-1α, and AMPK-mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases. GENERAL SIGNIFICANCE Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Shi-Bei Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Tsung-Pu Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
83
|
Koochekpour S, Marlowe T, Singh KK, Attwood K, Chandra D. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men. PLoS One 2013; 8:e74688. [PMID: 24086362 PMCID: PMC3781126 DOI: 10.1371/journal.pone.0074688] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022] Open
Abstract
Reduction or depletion of mitochondrial DNA (mtDNA) has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA) and Caucasian American (CA) men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH) tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients <60 years of age. In addition, mtDNA content was higher in normal tissues from patients with malignant T3 stage disease compared to patients with T2 stage disease. mtDNA levels in matched normal prostate tissues were nearly doubled in Gleason grade of >7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.
Collapse
Affiliation(s)
- Shahriar Koochekpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Timothy Marlowe
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Keshav K. Singh
- Departments of Genetics, Pathology, and Environmental Health, UAB Comprehensive Cancer Center and Center for Free Radical Biology, School of Medicine, University of Alabama, Birmingham, Alabama, United States of America
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
84
|
Guha M, Avadhani NG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 2013; 13:577-91. [PMID: 24004957 DOI: 10.1016/j.mito.2013.08.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
Mitochondria play a central role not only in energy production but also in the integration of metabolic pathways as well as signals for apoptosis and autophagy. It is becoming increasingly apparent that mitochondria in mammalian cells play critical roles in the initiation and propagation of various signaling cascades. In particular, mitochondrial metabolic and respiratory states and status on mitochondrial genetic instability are communicated to the nucleus as an adaptive response through retrograde signaling. Each mammalian cell contains multiple copies of the mitochondrial genome (mtDNA). A reduction in mtDNA copy number has been reported in various human pathological conditions such as diabetes, obesity, neurodegenerative disorders, aging and cancer. Reduction in mtDNA copy number disrupts mitochondrial membrane potential (Δψm) resulting in dysfunctional mitochondria. Dysfunctional mitochondria trigger retrograde signaling and communicate their changing metabolic and functional state to the nucleus as an adaptive response resulting in an altered nuclear gene expression profile and altered cell physiology and morphology. In this review, we provide an overview of the various modes of mitochondrial retrograde signaling focusing particularly on the Ca(2+)/Calcineurin mediated retrograde signaling. We discuss the contribution of the key factors of the pathway such as Calcineurin, IGF1 receptor, Akt kinase and HnRNPA2 in the propagation of signaling and their role in modulating genetic and epigenetic changes favoring cellular reprogramming towards tumorigenesis.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
85
|
Sánchez-Aragó M, Formentini L, Cuezva JM. Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors. Antioxid Redox Signal 2013; 19:285-98. [PMID: 22901241 PMCID: PMC3691914 DOI: 10.1089/ars.2012.4883] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Since the signing of the National Cancer Act in 1971, cancer still remains a major cause of death despite significant progresses made in understanding the biology and treatment of the disease. After many years of ostracism, the peculiar energy metabolism of tumors has been recognized as an additional phenotypic trait of the cancer cell. RECENT ADVANCES While the enhanced aerobic glycolysis of carcinomas has already been translated to bedside for precise tumor imaging and staging of cancer patients, accepting that an impaired bioenergetic function of mitochondria is pivotal to understand energy metabolism of tumors and in its progression is debated. However, mitochondrial bioenergetics and cell death are tightly connected. CRITICAL ISSUES Recent clinical findings indicate that H(+)-ATP synthase, a core component of mitochondrial oxidative phosphorylation, is repressed at both the protein and activity levels in human carcinomas. This review summarizes the relevance that mitochondrial function has to understand energy metabolism of tumors and explores the connection between the bioenergetic function of the organelle and the activity of mitochondria as tumor suppressors. FUTURE DIRECTIONS The reversible nature of energy metabolism in tumors highlights the relevance that the microenvironment has for tumor progression. Moreover, the stimulation of mitochondrial activity or the inhibition of glycolysis suppresses tumor growth. Future research should elucidate the mechanisms promoting the silencing of oxidative phosphorylation in carcinomas. The aim is the development of new therapeutic strategies tackling energy metabolism to eradicate tumors or at least, to maintain tumor dormancy and transform cancer into a chronic disease.
Collapse
Affiliation(s)
- María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras, Centro de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | | | |
Collapse
|
86
|
Xu E, Sun W, Gu J, Chow WH, Ajani JA, Wu X. Association of mitochondrial DNA copy number in peripheral blood leukocytes with risk of esophageal adenocarcinoma. Carcinogenesis 2013; 34:2521-4. [PMID: 23803692 DOI: 10.1093/carcin/bgt230] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alterations of mitochondrial DNA (mtDNA) have been associated with the risk of a number of human cancers; however, the relationship between mtDNA copy number in peripheral blood leukocytes and the risk of esophageal adenocarcinoma (EAC) has not been reported. In this study, we determined relative mtDNA copy number in peripheral blood leukocytes of 218 EAC cases and 218 frequency-matched controls. We calculated odds ratios and 95% confidence intervals using unconditional logistic regression, adjusting for age, sex and smoking status. MtDNA copy number was significantly lower in cases than in controls (mean ± SD, 1.16 ± 0.30 versus 1.27 ± 0.43, P = 0.002). Dichotomized at the median value of mtDNA copy number in the controls, low mtDNA copy number was significantly associated with an increased risk of EAC (odds ratio: 1.55, 95% confidence interval: 1.05-2.29). A significant dose-response relationship was observed between mtDNA copy number and risk of EAC in quartile analysis. Our results suggest that low mtDNA copy number in peripheral blood leukocytes is associated with increased susceptibility to EAC.
Collapse
Affiliation(s)
- Enping Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
87
|
Zhao G, Zhou A, Lv G, Meng M, Sun M, Bai Y, Han Y, Wang L, Zhou H, Cong H, Zhao Q, Zhu XQ, He S. Toxoplasma gondii cathepsin proteases are undeveloped prominent vaccine antigens against toxoplasmosis. BMC Infect Dis 2013; 13:207. [PMID: 23651838 PMCID: PMC3659040 DOI: 10.1186/1471-2334-13-207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/01/2013] [Indexed: 12/31/2022] Open
Abstract
Background Toxoplasma gondii, an obligate intracellular apicomplexan parasite, infects a wide range of warm-blooded animals including humans. T. gondii expresses five members of the C1 family of cysteine proteases, including cathepsin B-like (TgCPB) and cathepsin L-like (TgCPL) proteins. TgCPB is involved in ROP protein maturation and parasite invasion, whereas TgCPL contributes to proteolytic maturation of proTgM2AP and proTgMIC3. TgCPL is also associated with the residual body in the parasitophorous vacuole after cell division has occurred. Both of these proteases are potential therapeutic targets in T. gondii. The aim of this study was to investigate TgCPB and TgCPL for their potential as DNA vaccines against T. gondii. Methods Using bioinformatics approaches, we analyzed TgCPB and TgCPL proteins and identified several linear-B cell epitopes and potential Th-cell epitopes in them. Based on these results, we assembled two single-gene constructs (TgCPB and TgCPL) and a multi-gene construct (pTgCPB/TgCPL) with which to immunize BALB/c mice and test their effectiveness as DNA vaccines. Results TgCPB and TgCPL vaccines elicited strong humoral and cellular immune responses in mice, both of which were Th-1 cell mediated. In addition, all of the vaccines protected the mice against infection with virulent T. gondii RH tachyzoites, with the multi-gene vaccine (pTgCPB/TgCPL) providing the highest level of protection. Conclusions T. gondii CPB and CPL proteases are strong candidates for development as novel DNA vaccines.
Collapse
Affiliation(s)
- Guanghui Zhao
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, P R China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Haynes CM, Fiorese CJ, Lin YF. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 2013; 23:311-8. [PMID: 23489877 DOI: 10.1016/j.tcb.2013.02.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/27/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022]
Abstract
During development and cellular differentiation, tissue- and cell-specific programs mediate mitochondrial biogenesis to meet physiological needs. However, environmental and disease-associated factors can perturb mitochondrial activities, requiring cells to adapt to protect mitochondria and maintain cellular homeostasis. Several mitochondrion-to-nucleus signaling pathways, or retrograde responses, have been described, but the mechanisms by which mitochondrial stress or dysfunction is sensed to coordinate precisely the appropriate response has only recently begun to be understood. Recent studies of the mitochondrial unfolded-protein response (UPRmt) indicate that the cell monitors mitochondrial protein import efficiency as an indicator of mitochondrial function. Here, we review how the cell evaluates mitochondrial function and regulates transcriptional induction of the UPRmt, adapts protein-synthesis rates and activates mitochondrial autophagy to promote mitochondrial function and cell survival during stress.
Collapse
Affiliation(s)
- Cole M Haynes
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
89
|
Cui H, Huang P, Wang Z, Zhang Y, Zhang Z, Xu W, Wang X, Han Y, Guo X. Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer 2013; 13:110. [PMID: 23497023 PMCID: PMC3606376 DOI: 10.1186/1471-2407-13-110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/21/2013] [Indexed: 11/13/2022] Open
Abstract
Background Experimental data suggest that mitochondria is involved in tumorigenesis. However, little is known about the qualitative and quantitative changes of mtDNA in colorectal cancer tissues. We therefore conducted possible correlations of the mitochondrial DNA (mtDNA) copy number in colorectal cancer (CRC) with clinical and pathological findings and CRC prognosis. Methods mtDNA copy numbers in CRC cancer tissue and adjacent non-cancerous tissue samples were measured using quantitative real-time polymerase chain reaction analyses from 60 patients admitted to our hospital. We examined the correlation of mtDNA copy numbers and clinicopathologic parameters of CRC patients. The correlation between mtDNA copy number and three-year survival was analyzed. Results The mtDNA copy number was lower in CRC tissue compared with the corresponding non-cancerous colorectal tissue (mean: 108.60 ± 20.11 vs. 153.68 ± 25.72) and was significantly correlated with lymph-node metastasis. Patients with a lower mtDNA copy number tended to have lower 3-year survival than patients with a higher mtDNA copy number assessed by Kaplan–Meier curves, but the correlation was not significant (overall survival, 63.0 vs 83%). Conclusions These results suggest that a reduced copy number of mtDNA is correlated with malignant potential in CRC.
Collapse
Affiliation(s)
- HaiHong Cui
- Department of Gastroenterology, 305 Hospital of PLA, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Mitochondrial DNA depletion promotes impaired oxidative status and adaptive resistance to apoptosis in T47D breast cancer cells. Eur J Cancer Prev 2013; 18:445-57. [PMID: 19609211 DOI: 10.1097/cej.0b013e32832f9bd6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mutation and reduction of mitochondrial DNA (mtDNA) have been extensively detected in human cancers. The effects of mitochondrial dysfunction are particularly important in breast cancer, because estrogen-mediated metabolites generate large quantities of local reactive oxygen species in the breast, which directly bind to mtDNA and facilitate neoplastic transformation. To further elucidate the molecular roles of mtDNA in breast cancer, we determined the oxidative status of a breast tumor cell line lacking mtDNA (T47D ρ⁰) and analyzed its susceptibility after exposure to various anticancer drugs as well as different proapoptotic signals. Our data showed that T47D ρ⁰ cells generated significantly increased levels of lactate with concomitantly reduced oxygen consumption and ATP production compared with the wild-type (WT). The amount of reactive oxygen species generation in ρ cells was lowered to approximately 12% that of parental cells, as evidenced by the oxidation of redox-sensitive probes. Although mtDNA depletion did not affect the expression of superoxide dismutase or its activity, the activities of antioxidant enzymes, catalase and glutathione peroxidase, were significantly higher in ρ⁰ cells compared with WT cells. In addition, mtDNA-depleted cells displayed a decreased sensitivity and accumulation of chemotherapeutic drugs (doxorubicin, vincristine, and paclitaxel), potentially because of the upregulated expression of multidrug resistance 1 (MDR1) gene and its product P-glycoprotein. When compared with their WT counterparts, T47D ρ⁰ cells were also more resistant to apoptosis induced by varying concentrations of staurosporine and anti-Fas antibody. Altogether, our results indicate the importance of intact mtDNA for maintaining the proper intracellular oxidative status. These data provide evidence for a possible role of mtDNA content reduction in acquiring an apoptosis-resistant phenotype during breast tumor progression and might contribute to effective therapeutic strategies for this common malignancy.
Collapse
|
91
|
Mitochondria and cancer: past, present, and future. BIOMED RESEARCH INTERNATIONAL 2013; 2013:612369. [PMID: 23509753 PMCID: PMC3581248 DOI: 10.1155/2013/612369] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/13/2012] [Indexed: 02/07/2023]
Abstract
The area of mitochondrial genomics has undergone unprecedented growth over the past several years. With the advent of the age of omics, investigations have reached beyond the nucleus to encompass the close biological communication and finely coordinated interactions between mitochondria and their nuclear cell mate. Application of this holistic approach, to all metabolic interactions within the cell, is providing a more complete understanding of the molecular transformation of the cell from normal to malignant behavior, before histopathological indications are evident. In this review the surging momentum in mitochondrial science, as it relates to cancer, is described in three progressive perspectives: (1) Past: the historical contributions to current directions of research; (2) Present: Contemporary findings, results and approaches to mitochondria and cancer, including the role of next generation sequencing and proteomics; (3) FUTURE: Based on the present body of knowledge, the potential assets and benefits of mitochondrial research are projected into the near future.
Collapse
|
92
|
Onishi Y, Kawamoto T, Ueha T, Kishimoto K, Hara H, Fukase N, Toda M, Harada R, Minoda M, Sakai Y, Miwa M, Kurosaka M, Akisue T. Transcutaneous application of carbon dioxide (CO2) induces mitochondrial apoptosis in human malignant fibrous histiocytoma in vivo. PLoS One 2012; 7:e49189. [PMID: 23166610 PMCID: PMC3499556 DOI: 10.1371/journal.pone.0049189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 10/04/2012] [Indexed: 01/11/2023] Open
Abstract
Mitochondria play an essential role in cellular energy metabolism and apoptosis. Previous studies have demonstrated that decreased mitochondrial biogenesis is associated with cancer progression. In mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) regulates the activities of multiple nuclear receptors and transcription factors involved in mitochondrial proliferation. Previously, we showed that overexpression of PGC-1α leads to mitochondrial proliferation and induces apoptosis in human malignant fibrous histiocytoma (MFH) cells in vitro. We also demonstrated that transcutaneous application of carbon dioxide (CO2) to rat skeletal muscle induces PGC-1α expression and causes an increase in mitochondrial proliferation. In this study, we utilized a murine model of human MFH to determine the effect of transcutaneous CO2 exposure on PGC-1α expression, mitochondrial proliferation and cellular apoptosis. PGC-1α expression was evaluated by quantitative real-time PCR, while mitochondrial proliferation was assessed by immunofluorescence staining and the relative copy number of mitochondrial DNA (mtDNA) was assessed by real-time PCR. Immunofluorescence staining and DNA fragmentation assays were used to examine mitochondrial apoptosis. We also evaluated the expression of mitochondrial apoptosis related proteins, such as caspases, cytochorome c and Bax, by immunoblot analysis. We show that transcutaneous application of CO2 induces PGC-1α expression, and increases mitochondrial proliferation and apoptosis of tumor cells, significantly reducing tumor volume. Proteins involved in the mitochondrial apoptotic cascade, including caspase 3 and caspase 9, were elevated in CO2 treated tumors compared to control. We also observed an enrichment of cytochrome c in the cytoplasmic fraction and Bax protein in the mitochondrial fraction of CO2 treated tumors, highlighting the involvement of mitochondria in apoptosis. These data indicate that transcutaneous application of CO2 may represent a novel therapeutic tool in the treatment of human MFH.
Collapse
Affiliation(s)
- Yasuo Onishi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Teruya Kawamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
- * E-mail:
| | - Takeshi Ueha
- NeoChemir Inc., Gokodori, Chuo-ku, Kobe, Hyogo, Japan
| | - Kenta Kishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Hitomi Hara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Naomasa Fukase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Mitsunori Toda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Risa Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Masaya Minoda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Yoshitada Sakai
- Faculty of Health Care Sciences, Himeji Dokkyo University, Kami-Ohno, Himeji, Hyogo, Japan
| | - Masahiko Miwa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Toshihiro Akisue
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| |
Collapse
|
93
|
TANG CHUN, LIN HENG, FENG CHUNLIN, WU QIAO, ZHANG YUJUN, BIE PING. Mitochondrial DNA damage and its effect on mitochondrial function in rats with obstructive jaundice. Mol Med Rep 2012; 6:1393-8. [DOI: 10.3892/mmr.2012.1114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/20/2012] [Indexed: 11/05/2022] Open
|
94
|
Abstract
Contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Although mutations in mitochondrial genes are common in cancer cells, they do not inactivate mitochondrial energy metabolism but rather alter the mitochondrial bioenergetic and biosynthetic state. These states communicate with the nucleus through mitochondrial 'retrograde signalling' to modulate signal transduction pathways, transcriptional circuits and chromatin structure to meet the perceived mitochondrial and nuclear requirements of the cancer cell. Cancer cells then reprogramme adjacent stromal cells to optimize the cancer cell environment. These alterations activate out-of-context programmes that are important in development, stress response, wound healing and nutritional status.
Collapse
Affiliation(s)
- Douglas C Wallace
- Children's Hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
95
|
Wittenburg LA, Ptitsyn AA, Thamm DH. A systems biology approach to identify molecular pathways altered by HDAC inhibition in osteosarcoma. J Cell Biochem 2012; 113:773-83. [PMID: 21976144 DOI: 10.1002/jcb.23403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary tumor in humans and dogs affecting the skeleton, and spontaneously occurring OS in dogs serves as an extremely useful model. Unacceptable toxicities using current treatment protocols prevent further dose-intensification from being a viable option to improve patient survival and thus, novel treatment strategies must be developed. Histone deacetylase inhibitors (HDACi) have recently emerged as a promising class of therapeutics demonstrating an ability to enhance the anti-tumor activity of traditional chemotherapeutics. To date, gene expression analysis of OS cell lines treated with HDACi has not been reported, and evaluation of the resultant gene expression changes may provide insight into the mechanisms that lead to success of HDACi. Canine OS cells, treated with a clinically relevant concentration of the HDACi valproic acid (VPA), were used for expression analysis on the Affymetrix canine v2.0 genechip. Differentially expressed genes were grouped into pathways based upon functional annotation; pathway analysis was performed with MetaCore and Ingenuity Pathways Analysis software. Validation of microarray results was performed by a combination of qRT-PCR and functional/biochemical assays revealing oxidative phosphorylation, cytoskeleton remodeling, cell cycle, and ubiquitin-proteasome among those pathways most affected by HDACi. The mitomycin C-bioactivating enzyme NQ01 also demonstrated upregulation following VPA treatment, leading to synergistic reductions in cell viability. These results provide a better understanding of the mechanisms by which HDACi exert their effect in OS, and have the potential to identify biomarkers that may serve as novel targets and/or predictors of response to HDACi-containing combination therapies in OS.
Collapse
Affiliation(s)
- Luke A Wittenburg
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University Animal Cancer Center, 300 W. Drake Rd., Fort Collins, Colorado 80523-1620, USA.
| | | | | |
Collapse
|
96
|
Abstract
Background: The role of mitochondrial DNA (mtDNA) mutations in the development of breast cancer is largely unknown. In this study, we investigated the frequency and pattern of mutations in the D310 region, the most commonly mutated region in mtDNA, in a series of breast lesions. Methods: Using capillary electrophoresis, we genotyped the D310 sequence of neoplastic epithelial cells from 23 patients with synchronous ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC), 26 patients with IDC only and 29 patients with DCIS only. Results: A majority of DCIS (68.4%) and IDC (71.4%) lesions harbour different D310 sequences compared with their matched normal control. Specific D310 sequences were more frequently identified in tumour samples (77.1% of DCIS and 75.5% of IDC) compared with normal tissues (35.3% of normal; P<0.0001). No difference was identified between DCIS lesions with synchronous IDC and those from pure DCIS cases. In five cases, histologically normal tissue adjacent to tumour was found to share D310 sequences with the tumour, while normal tissue taken further away did not. Conclusion: Although D310 alterations do not seem to be related to DCIS progression, they were found in histologically normal cells adjacent to tumour. This suggests a field of genetically altered cells, thus D310 mutations could represent a potential marker for the clonal expansion of premalignant breast cancer cells.
Collapse
|
97
|
Gibson GE, Chen HL, Xu H, Qiu L, Xu Z, Denton TT, Shi Q. Deficits in the mitochondrial enzyme α-ketoglutarate dehydrogenase lead to Alzheimer's disease-like calcium dysregulation. Neurobiol Aging 2012; 33:1121.e13-24. [PMID: 22169199 PMCID: PMC3321099 DOI: 10.1016/j.neurobiolaging.2011.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/27/2011] [Accepted: 11/03/2011] [Indexed: 01/08/2023]
Abstract
Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K(+) depolarization that occurs in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long-term (days), or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long-term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that affect endoplasmic reticulum calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium.
Collapse
Affiliation(s)
- Gary E Gibson
- Department of Neurology and Neuroscience, Weill Cornell Medical College, Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Tang W, Chowdhury AR, Guha M, Huang L, Van Winkle T, Rustgi AK, Avadhani NG. Silencing of IkBβ mRNA causes disruption of mitochondrial retrograde signaling and suppression of tumor growth in vivo. Carcinogenesis 2012; 33:1762-8. [PMID: 22637744 DOI: 10.1093/carcin/bgs190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of studies show that mitochondrial DNA (mtDNA) depletion and attendant activation of retrograde signaling induces tumor progression. We have reported previously that activation of a novel nuclear factor-Kappa B pathway is critical for the propagation of mitochondrial retrograde signaling, which induces both phenotypic and morphological changes in C2C12 myoblasts and A549 lung carcinoma cells. In this study, we investigated the role of stress-induced nuclear factor-Kappa B in tumor progression in xenotransplanted mice. We used a retroviral system for the inducible expression of small interfering RNA against IkBα and IkBβ mRNAs. Expression of small interfering RNA against IkBβ markedly impaired tumor growth and invasive ability of mtDNA-depleted C2C12 myoblasts and also thwarted anchorage-independent growth of the cells. Knockdown of IkBα mRNA, however, did not have any modulatory effect in this cell system. Moreover, expression of small interfering RNA against IkBβ reduced the expression of marker genes for retrograde signaling and tumor growth in xenografts of mtDNA-depleted cells. Our findings demonstrate that IkBβ is a master regulator of mitochondrial retrograde signaling pathway and that the retrograde signaling plays a role in tumor growth in vivo. In this regard, IkBβ supports the tumorigenic potential of mtDNA-depleted C2C12 cells.
Collapse
Affiliation(s)
- Weigang Tang
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, University of Pennsylvania, Philadelphia, PA 19104,USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Kim MJ, Lee W, Park EJ, Park SY. Depletion of mitochondrial DNA stabilizes C1qTNF-related protein 6 mRNA in muscle cells. J Korean Med Sci 2012; 27:465-70. [PMID: 22563208 PMCID: PMC3342534 DOI: 10.3346/jkms.2012.27.5.465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/26/2012] [Indexed: 12/27/2022] Open
Abstract
Mutation and reduction of mitochondrial DNA (mtDNA) have been suggested as factors in the pathogenesis of several metabolic diseases. Recently, we demonstrated that C1qTNF-related protein-6 (CTRP6) is involved in fatty acid metabolism in muscle cells. In this study, we showed that expression of CTRP6 was up-regulated in mtDNA-depleted C2C12 cells, which displayed a marked decrease in cellular mtDNA and ATP content. Replacement of mtDNA normalized the expression level of CTRP6 similar to that in normal C2C12 cells, indicating that CTRP6 expression was up-regulated by mtDNA depletion. However, CTRP6 promoter activity remained unchanged in mtDNA-depleted cells. We also found that mtDNA depletion inhibited decay of CTRP6 mRNA. Taken together, mtDNA depletion induces an increase in CTRP6 expression by increasing mRNA stability.
Collapse
Affiliation(s)
- Mi-Jin Kim
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Eun-Ju Park
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| |
Collapse
|
100
|
Rodriguez AR, Yu JJ, Guentzel MN, Navara CS, Klose KE, Forsthuber TG, Chambers JP, Berton MT, Arulanandam BP. Mast cell TLR2 signaling is crucial for effective killing of Francisella tularensis. THE JOURNAL OF IMMUNOLOGY 2012; 188:5604-11. [PMID: 22529298 DOI: 10.4049/jimmunol.1200039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLR signaling is critical for early host defense against pathogens, but the contributions of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection are largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the live vaccine strain were used to investigate the contribution of mast cell/TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHC class II and lysosomal-associated membrane protein 2. Infected TLR2(-/-) mast cells, in contrast to wild-type and TLR4(-/-) cells, lacked detectable IL-4 and displayed increased cell death with a 2-3 log increase of F. tularensis replication, but could be rescued with rIL-4 treatment. Importantly, MHC class II and lysosomal-associated membrane protein 2 localization with labeled F. tularensis in the lungs was greater in wild-type than in TLR2(-/-) mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses.
Collapse
Affiliation(s)
- Annette R Rodriguez
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|