51
|
Galenko O, Jacobs V, Knight S, Taylor M, Cutler MJ, Muhlestein JB, Carlquist JL, Knowlton KU, Jared Bunch T. The role of microRNAs in the development, regulation, and treatment of atrial fibrillation. J Interv Card Electrophysiol 2019; 55:297-305. [PMID: 30607665 DOI: 10.1007/s10840-018-0495-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs (miRNA)s regulate expression of genes involved in various processes including cardiac automaticity, conduction, excitability, and fibrosis and therefore may provide a diagnostic utility to identify high-risk patients for atrial fibrillation (AF). In this study, we tested the hypothesis that specific profiles of circulating miRNAs can identify patients with AF and can also help to identify patients at high risk of AF recurrence after ablation. METHODS Two patient populations were studied: 140 AF cases (93 paroxysmal and 47 persistent) and 50 healthy controls, and 141 AF ablation cases with (n = 86) and without (n = 55) 1-year recurrence. Assessment of several previously identified AF-associated plasma miRNAs (21, 29a, 133a, 133b, 150, 328) was performed with TaqMan assays, using synthetic miRNAs as standards. RESULTS The AF cases compared to the healthy controls were older and were more often male and hypertensive. After multivariate adjustment, higher miRNA-21 levels significantly decreased the risk of AF (OR = 0.93 per fmol/μl (95% CI = 0.89-0.98, p = 0.007)). There were no significant differences in circulating miRNAs between the AF subtypes of persistent and paroxysmal. Among the AF ablation cases, miRNA-150 was lower for those with AF recurrences at 1 year (adjusted OR = 0.98 per 500,000 fmol/μl; 95% CI = 0.965, 0.998; p = 0.039). CONCLUSIONS Decreased circulating miRNA-21 is associated with AF, but not with AF subtypes, suggestive that molecular mechanisms responsible for the onset and progression of the AF may be different. Circulating miRNA-150 was significantly associated with a reduction in 1-year AF recurrence post ablation suggestive of adverse structural and electrical remodeling as recurrence mechanisms.
Collapse
Affiliation(s)
- Oxana Galenko
- Intermountain Medical Center Heart Institute, Murray, UT, USA
| | - Victoria Jacobs
- Intermountain Medical Center Heart Institute, Murray, UT, USA
| | - Stacey Knight
- Intermountain Medical Center Heart Institute, Murray, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Madisyn Taylor
- Intermountain Medical Center Heart Institute, Murray, UT, USA
| | | | - Joseph B Muhlestein
- Intermountain Medical Center Heart Institute, Murray, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Kirk U Knowlton
- Intermountain Medical Center Heart Institute, Murray, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - T Jared Bunch
- Intermountain Medical Center Heart Institute, Murray, UT, USA. .,Department of Internal Medicine, Stanford University, Palo Alto, CA, USA. .,Intermountain Medical Center Heart Institute, Intermountain Medical Center, 5169 Cottonwood St, Salt Lake City, UT, 84107, USA.
| |
Collapse
|
52
|
Santovito D, Weber C. Zooming in on microRNAs for refining cardiovascular risk prediction in secondary prevention. Eur Heart J 2018; 38:524-528. [PMID: 27371715 DOI: 10.1093/eurheartj/ehw259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
53
|
Johnson JL. Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vascul Pharmacol 2018; 114:31-48. [PMID: 30389614 PMCID: PMC6445803 DOI: 10.1016/j.vph.2018.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/13/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases encompassing atherosclerosis, aortic aneurysms, restenosis, and pulmonary arterial hypertension, remain the leading cause of morbidity and mortality worldwide. In response to a range of stimuli, the dynamic interplay between biochemical and biomechanical mechanisms affect the behaviour and function of multiple cell types, driving the development and progression of cardiovascular diseases. Accumulating evidence has highlighted microRNAs (miRs) as significant regulators and micro-managers of key cellular and molecular pathophysiological processes involved in predominant cardiovascular diseases, including cell mitosis, motility and viability, lipid metabolism, generation of inflammatory mediators, and dysregulated proteolysis. Human pathological and clinical studies have aimed to identify select microRNA which may serve as biomarkers of disease and their progression, which are discussed within this review. In addition, I provide comprehensive coverage of in vivo investigations elucidating the modulation of distinct microRNA on the pathophysiology of atherosclerosis, abdominal aortic aneurysms, restenosis, and pulmonary arterial hypertension. Collectively, clinical and animal studies have begun to unravel the complex and often diverse effects microRNAs and their targets impart during the development of cardiovascular diseases and revealed promising therapeutic strategies through which modulation of microRNA function may be applied clinically.
Collapse
Affiliation(s)
- Jason L Johnson
- Laboratory of Cardiovascular Pathology, Bristol Medical School, University of Bristol, UK.
| |
Collapse
|
54
|
Do MicroRNAs Modulate Visceral Pain? BIOMED RESEARCH INTERNATIONAL 2018; 2018:5406973. [PMID: 30627562 PMCID: PMC6304628 DOI: 10.1155/2018/5406973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
Visceral pain, a common characteristic of multiple diseases relative to viscera, impacts millions of people worldwide. Although hundreds of studies have explored mechanisms underlying visceral pain, it is still poorly managed. Over the past decade, strong evidence emerged suggesting that microRNAs (miRNAs) play a significant role in visceral nociception through altering neurotransmitters, receptors and other genes at the posttranscriptional level. Under pathological conditions, one kind of miRNA may have several target mRNAs and several kinds of miRNAs may act on one target, suggesting complex interactions and mechanisms between miRNAs and target genes lead to pathological states. In this review we report on recent progress in examining miRNAs responsible for visceral sensitization and provide miRNA-based therapeutic targets for the management of visceral pain.
Collapse
|
55
|
Guerrero Orriach JL, Escalona Belmonte JJ, Ramirez Aliaga M, Ramirez Fernandez A, Raigón Ponferrada A, Rubio Navarro M, Cruz Mañas J. Anesthetic-induced Myocardial Conditioning: Molecular Fundamentals and Scope. Curr Med Chem 2018; 27:2147-2160. [PMID: 30259804 DOI: 10.2174/0929867325666180926161427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The pre- and post-conditioning effects of halogenated anesthetics make them most suitable for cardiac surgery. Several studies have demonstrated that the mechanism of drug-induced myocardial conditioning is enzyme-mediated via messenger RNA and miRNA regulation. The objective of this study was to investigate the role that miRNAs play in the cardioprotective effect of halogenated anesthetics. For such purpose, we reviewed the literature to determine the expression profile of miRNAs in ischemic conditioning and in the complications prevented by these phenomena. METHODS A review was conducted of more than 100 studies to identify miRNAs involved in anesthetic-induced myocardial conditioning. Our objective was to determine the miRNAs that play a relevant role in ischemic disease, heart failure and arrhythmogenesis, which expression is modulated by the perioperative administration of halogenated anesthetics. So far, no studies have been performed to assess the role of miRNAs in anesthetic-induced myocardial conditioning. The potential of miRNAs as biomarkers and miRNAs-based therapies involving the synthesis, inhibition or stimulation of miRNAs are a promising avenue for future research in the field of cardiology. RESULTS Each of the cardioprotective effects of myocardial conditioning is related to the expression of several (not a single) miRNAs. The cumulative evidence on the role of miRNAs in heart disease and myocardial conditioning opens new therapeutic and diagnostic opportunities. CONCLUSION Halogenated anesthetics regulate the expression of miRNAs involved in heart conditions. Further research is needed to determine the expression profile of miRNAs after the administration of halogenated drugs. The results of these studies would contribute to the development of new hypnotics for cardiac surgery patients.
Collapse
Affiliation(s)
- Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga [IBIMA], Malaga, Spain.,Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain.,Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga, Spain
| | | | - Marta Ramirez Aliaga
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | | | - Aida Raigón Ponferrada
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Manuel Rubio Navarro
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Jose Cruz Mañas
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| |
Collapse
|
56
|
Wang Y, Chang W, Zhang Y, Zhang L, Ding H, Qi H, Xue S, Yu H, Hu L, Liu D, Zhu W, Wang Y, Li P. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol 2018; 234:4778-4786. [PMID: 30256407 DOI: 10.1002/jcp.27274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS This study sought to evaluate the potential of circulating microRNAs (miRNAs) as novel indicators for acute myocardial infarction (AMI). METHODS Plasma samples were collected from each participant, and total RNA was extracted. Quantitative real-time polymerase chain reaction were used to investigate the expression of circulating miRNAs. We measured circulating levels of six individual miRNAs, which are known to be relevant to AMI, in the plasma samples from 66 AMI patients and 70 non-AMI healthy comparisons. RESULTS Five small RNAs were specifically expressed in AMI patients, plasma miR-122-5p levels is significantly elevated (p < 0.0001) in AMI patients, while plasma miR-22-5p ( p < 0.05) levels were significantly decreased. In addition, significant correlations between miR-22-5p and miR-122-5p ( R = 0.773), miR-122-5p and creatine kinase isoenzyme (CK-MB; R = 0.6296) were detected. Further, receiver operating characteristic (ROC) analysis indicated that miR-22-5p showed considerable diagnostic efficiency for predicting AMI (area under the curve [AUC] = 0.975). Combining miR-22-5p and miR-122-5p in a panel increased the sensitivity (98.6%) of distinguishing between patients with AMI and healthy comparisons. CONCLUSION Circulating miR-22-5p and miR-122-5p could be considered promising novel diagnostic biomarkers for AMI.
Collapse
Affiliation(s)
- Yu Wang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Han Ding
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Hongzhao Qi
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Sheng Xue
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- Department of Cardiovascular Medicine, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Longgang Hu
- Department of Cardiovascular Medicine, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Dacheng Liu
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yin Wang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
57
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
58
|
de Gonzalo-Calvo D, Dávalos A, Fernández-Sanjurjo M, Amado-Rodríguez L, Díaz-Coto S, Tomás-Zapico C, Montero A, García-González Á, Llorente-Cortés V, Heras ME, Boraita Pérez A, Díaz-Martínez ÁE, Úbeda N, Iglesias-Gutiérrez E. Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise. Int J Cardiol 2018; 264:130-136. [DOI: 10.1016/j.ijcard.2018.02.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/27/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
59
|
Hally KE, Danielson KM, Larsen PD. Looking to the Future: Spotlight on Emerging Biomarkers for Predicting Cardiovascular Risk. CURR EPIDEMIOL REP 2018. [DOI: 10.1007/s40471-018-0158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
60
|
The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1085-1099. [PMID: 29877319 DOI: 10.1038/aps.2018.35] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/20/2018] [Indexed: 12/21/2022]
Abstract
Pervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.
Collapse
|
61
|
Di Francesco A, Fedrigo M, Santovito D, Natarelli L, Castellani C, De Pascale F, Toscano G, Fraiese A, Feltrin G, Benazzi E, Nocco A, Thiene G, Valente M, Valle G, Schober A, Gerosa G, Angelini A. MicroRNA signatures in cardiac biopsies and detection of allograft rejection. J Heart Lung Transplant 2018; 37:1329-1340. [PMID: 30174164 DOI: 10.1016/j.healun.2018.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/28/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Identification of heart transplant (HTx) rejection currently relies on immunohistology and immunohistochemistry. We aimed to identify specific sets of microRNAs (miRNAs) to characterize acute cellular rejection (ACR), antibody-mediated rejection (pAMR), and mixed rejection (MR) in monitoring formalin-fixed paraffin-embedded (FFPE) endomyocardial biopsies (EMBs) in HTx patients. METHODS In this study we selected 33 adult HTx patients. For each, we chose the first positive EMB for study of each type of rejection. The next-generation sequencing (NGS) IonProton technique and reverse transcript quantitative polymerase chain reaction (RT-qPCR) analysis were performed on FFPE EMBs. Using logistic regression analysis we created unique miRNA signatures as predictive models of each rejection. In situ PCR was carried out on the same EMBs. RESULTS We obtained >2,257 mature miRNAs from all the EMBs. The 3 types of rejection showed a different miRNA profile for each group. The logistic regression model formed by miRNAs 208a, 126-5p, and 135a-5p identified MR; that formed by miRNAs 27b-3p, 29b-3p, and 199a-3p identified ACR; and that formed by miRNAs 208a, 29b-3p, 135a-5p, and 144-3p identified pAMR. The expression of miRNAs on tissue, through in situ PCR, showed different expressions of the same miRNA in different rejections. miRNA 126-5p was expressed in endothelial cells in ACR but in cardiomyocytes in pAMR. In ACR, miRNA 29b-3p was significantly overexpressed and detected in fibroblasts, whereas in pAMR it was underexpressed and detected only in cardiomyocytes. CONCLUSIONS miRNA profiling on FFPE EMBs differentiates the 3 types of rejection. Localization of expression of miRNAs on tissue showed different expression of the same miRNA for different cells, suggesting different roles of the same miRNA in different rejections.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Marny Fedrigo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy.
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximillians University, Munich, Germany
| | - Lucia Natarelli
- Institute for Cardiovascular Prevention, Ludwig-Maximillians University, Munich, Germany
| | - Chiara Castellani
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Giuseppe Toscano
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Angela Fraiese
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Giuseppe Feltrin
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Elena Benazzi
- Organ and Tissue Transplantation Immunology, Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Angela Nocco
- Organ and Tissue Transplantation Immunology, Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Marialuisa Valente
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximillians University, Munich, Germany
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
62
|
Abstract
Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology.
Collapse
|
63
|
Affiliation(s)
- Thomas F Lüscher
- Editor-in-Chief, Zurich Heart House, Careum Campus, Moussonstrasse 4, 8091 Zurich, Switzerland
| |
Collapse
|
64
|
Li S, Lee C, Song J, Lu C, Liu J, Cui Y, Liang H, Cao C, Zhang F, Chen H. Circulating microRNAs as potential biomarkers for coronary plaque rupture. Oncotarget 2018. [PMID: 28624816 PMCID: PMC5564633 DOI: 10.18632/oncotarget.18308] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coronary plaque rupture is the most common cause of acute coronary syndrome. However, the timely biomarker-based diagnosis of plaque rupture remains a major unmet clinical challenge. Balloon dilatation and stent implantation during percutaneous coronary intervention (PCI) could cause plaque injury and rupture. Here we aimed to assess the possibility of circulating microRNAs (miRNAs) as biomarkers of acute coronary plaque rupture by virtue of the natural model of PCI-induced plaque rupture. Stable coronary artery disease patients underwent PCI with single stent implantation were recruited and a three-phase approach was conducted in the present study: (i) profiling of plasma miRNAs in a group of patients before (0 h) and after balloon dilatation for 1 h (1 h vs. 0 h), (ii) replication of significant miRNAs in the second group of patients (1 h vs. 0 h), (iii) validation of a multi-miRNAs panel in the third group of patients (0.5 h, 1 h vs. 0 h). Out of 24 miRNAs selected for replication, 6 miRNAs remained significantly associated with plaque rupture. In the validation phase, combinations of miR-483-5p and miR-451a showed the highest area under the receiver-operating-characteristic curve (AUC) (0.982; CI: 0.907-0.999) in patients with plaque rupture for 0.5 h; combinations of miR-483-5p and miR-155-5p showed the highest AUC (0.898; CI: 0.790-0.962) after plaque rupture for 1 h. In conclusion, using a profiling-replication-validation model, we identified 3 miRNAs including miR-155-5p, miR-483-5p and miR-451a, which may be biomarkers for the early identification of plaque rupture.
Collapse
Affiliation(s)
- Sufang Li
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Chongyou Lee
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Changlin Lu
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jun Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Yuxia Cui
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Huizhu Liang
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Chengfu Cao
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| |
Collapse
|
65
|
Parizadeh SM, Ferns GA, Ghandehari M, Hassanian SM, Ghayour-Mobarhan M, Parizadeh SMR, Avan A. The diagnostic and prognostic value of circulating microRNAs in coronary artery disease: A novel approach to disease diagnosis of stable CAD and acute coronary syndrome. J Cell Physiol 2018; 233:6418-6424. [PMID: 29215707 DOI: 10.1002/jcp.26324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
Abstract
Coronary artery disease (CAD) is the most common manifestation of CVD and the acute coronary syndrome (ACS) is associated with a substantial morbidity and mortality in most populations globally. There are several biomarkers for diagnosis of MI. Troponin is routinely used as a biomarker in patients with chest pain, but it lacks sensitivity in the first hours of onset of symptoms, and so there is still a clinical need for new biomarkers for the diagnosis of CAD events. Recent studies have shown that miRNAs are involved in atherosclerotic plaque formation and their expression is altered during CAD events. Whilst studies have shown that several miRNAs are not superior to troponin in the diagnosis of a MI, they may be useful in the early diagnosis and prognosis of patients with CAD, however further studies are required. In this review we have summarized the recent studies investigating circulating miRNAs as novel biomarkers for the early detection of MI, CVD risk stratification and in the assessment of the prognosis of patients with ACS.
Collapse
Affiliation(s)
- Seyed Mostafa Parizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Reza Parizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
66
|
Jakob P, Kacprowski T, Briand-Schumacher S, Heg D, Klingenberg R, Stähli BE, Jaguszewski M, Rodondi N, Nanchen D, Räber L, Vogt P, Mach F, Windecker S, Völker U, Matter CM, Lüscher TF, Landmesser U. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction. Eur Heart J 2018; 38:511-515. [PMID: 28011706 DOI: 10.1093/eurheartj/ehw563] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Aims MicroRNAs (miRNA) are important non-coding modulators controlling patterns of gene expression. However, profiling and validation of circulating miRNA levels related to adverse cardiovascular outcome has not been performed in patients with an acute coronary syndrome (ACS). Methods and results In a multicentre, prospective ACS cohort, 1002 out of 2168 patients presented with ST-segment elevation myocardial infarction (STEMI). Sixty-three STEMI patients experienced an adjudicated major cardiovascular event (MACE, defined as cardiac death or recurrent myocardial infarction) within 1 year of follow-up. From a miRNA profiling in a matched derivation case-control cohort, 14 miRNAs were selected for validation. Comparing 63 cases vs. 126 controls, 3 miRNAs were significantly differentially abundant. In patients with MACE, miR-26b-5p levels (P = 0.038) were decreased, whereas miR-320a (P = 0.047) and miR-660-5p (P = 0.01) levels were increased. MiR-26b-5p has been suggested to prevent adverse cardiomyocyte hypertrophy, whereas miR-320a promotes cardiomyocyte death and apoptosis, and miR-660-5p has been related to active platelet production. This suggests that miR-26b-5p, miR-320a, and miR-660-5p may reflect alterations of different pathophysiological pathways involved in clinical outcome after ACS. Consistently, these three miRNAs reliably discriminated cases from controls [area under the receiver-operating characteristic curve (AUC) in age- and sex-adjusted Cox regression for miR-26b-5p = 0.707, miR-660-5p = 0.683, and miR-320a =0.672]. Combination of the three miRNAs further increased AUC to 0.718. Importantly, addition of the three miRNAs to both, the Global Registry of Acute Coronary Events (GRACE) score and a clinical model increased AUC from 0.679 to 0.720 and 0.722 to 0.732, respectively, with a net reclassification improvement of 0.20 in both cases. Conclusion This is the first study performing profiling and validation of miRNAs that are associated with adverse cardiovascular outcome in patients with STEMI. MiR-26b-5p, miR-320a, and miR-660-5p discriminated for MACE and increased risk prediction when added to the GRACE score and a clinical model. These findings suggest that the release of specific miRNAs into circulation may reflect the activation of molecular pathways that impact on clinical outcome after STEMI.
Collapse
Affiliation(s)
- Philipp Jakob
- Department of Cardiology, Charité Berlin - University Medicine, Campus Benjamin Franklin and Berlin Institute of Health (BIH), Hindenburgdamm 30, 12203 Berlin, Germany.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | | | - Dik Heg
- Institute of Social and Preventive Medicine (ISPM), and Clinical Trials Unit, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Roland Klingenberg
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Barbara E Stähli
- Department of Cardiology, Charité Berlin - University Medicine, Campus Benjamin Franklin and Berlin Institute of Health (BIH), Hindenburgdamm 30, 12203 Berlin, Germany.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Milosz Jaguszewski
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Nicolas Rodondi
- Department of General Internal Medicine, University Hospital Bern, Bern, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
| | - David Nanchen
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Pierre Vogt
- Department of Cardiology, Cardiovascular Center, University Hospital Lausanne, Lausanne, Switzerland
| | - Francois Mach
- Department of Cardiology, Cardiovascular Center, University Hospital Geneva, Geneva, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Thomas F Lüscher
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Ulf Landmesser
- Department of Cardiology, Charité Berlin - University Medicine, Campus Benjamin Franklin and Berlin Institute of Health (BIH), Hindenburgdamm 30, 12203 Berlin, Germany.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
67
|
Gong FH, Cheng WL, Wang H, Gao M, Qin JJ, Zhang Y, Li X, Zhu X, Xia H, She ZG. Reduced atherosclerosis lesion size, inflammatory response in miR-150 knockout mice via macrophage effects. J Lipid Res 2018; 59:658-669. [PMID: 29463607 DOI: 10.1194/jlr.m082651] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is considered to be a chronic inflammatory disease that can lead to severe clinically important cardiovascular events. miR-150 is a small noncoding RNA that significantly enhances inflammatory responses by upregulating endothelial cell proliferation and migration, as well as intravascular environmental homeostasis. However, the exact role of miR-150 in atherosclerosis remains unknown. Here, we investigated the effect of miR-150 deficiency on atherosclerosis development. Using double-knockout (miR-150-/- and ApoE-/-) mice, we measured atherosclerotic lesion size and stability. Meanwhile, we conducted in vivo bone marrow transplantation to identify cellular-level components of the inflammatory response. Compared with mice deficient only in ApoE, the double-knockout mice had significantly smaller atherosclerotic lesions and displayed an attenuated inflammatory response. Moreover, miR-150 ablation promoted plaque stabilization via increases in smooth muscle cell and collagen content and decreased macrophage infiltration and lipid accumulation. The in vitro experiments indicated that an inflammatory response with miR-150 deficiency in atherosclerosis results directly from upregulated expression of the cytoskeletal protein, PDZ and LIM domain 1 (PDLIM1), in macrophages. More importantly, the decreases in phosphorylated p65 expression and inflammatory cytokine secretion induced by miR-150 ablation were reversed by PDLIM1 knockdown. These findings suggest that miR-150 is a promising target for the management of atherosclerosis.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Wen-Lin Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Haiping Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Maomao Gao
- Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Juan-Juan Qin
- Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Xia Li
- Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
68
|
Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, Malek L, Postula M. The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular Events in High-Risk Populations, Including Diabetic Patients: A Review. Front Endocrinol (Lausanne) 2018; 9:74. [PMID: 29615970 PMCID: PMC5869202 DOI: 10.3389/fendo.2018.00074] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a pivotal role in the development and progression of atherosclerosis, which often leads to potentially fatal ischemic events at later stages of the disease. Platelets and platelet microvesicles (PMVs) contain large amounts of microRNA (miRNA), which contributes largely to the pool of circulating miRNAs. Hence, they represent a promising option for the development of innovative diagnostic biomarkers, that can be specific for the underlying etiology. Circulating miRNAs can be responsible for intracellular communication and may have a biological effect on target cells. As miRNAs associated to both cardiovascular diseases (CVD) and diabetes mellitus can be measured by means of a wide array of techniques, they can be exploited as an innovative class of smart disease biomarkers. In this manuscript, we provide an outline of miRNAs associated with platelet function and reactivity (miR-223, miR-126, miR-197, miR-191, miR-21, miR-150, miR-155, miR-140, miR-96, miR-98) that should be evaluated as novel biomarkers to improve diagnostics and treatment of CVD.
Collapse
Affiliation(s)
- Justyna Pordzik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Pisarz
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Axel Dyve Jones
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- URT-CNR, Department of Medicine, Consiglio Nazionale delle Ricerche of IFC, Catanzaro, Italy
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postula,
| |
Collapse
|
69
|
Paiva S, Agbulut O. MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction. Front Cardiovasc Med 2017; 4:73. [PMID: 29209617 PMCID: PMC5701911 DOI: 10.3389/fcvm.2017.00073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
At present, cardiovascular diseases are depicted to be the leading cause of death worldwide according to the World Health Organization. In the future, projections predict that ischemic heart disease will persist in the top main causes of illness. Within this alarming context, some tiny master regulators of gene expression programs, namely, microRNAs (miRNAs) carry three promising potentials. In fact, miRNAs can prove to be useful not only in terms of biomarkers allowing heart injury detection but also in terms of therapeutics to overcome limitations of past strategies and treat the lesions. In a more creative approach, they can even be used in the area of human engineered cardiac tissues as maturation tools for cardiomyocytes (CMs) derived from pluripotent stem cell. Very promising not only for patient-specific cell-based therapies but also to develop biomimetic microsystems for disease modeling and drug screening, these cells greatly contribute to personalized medicine. To get into the heart of the matter, the focus of this review lies primarily on miRNAs as acute myocardial infarction (AMI) biomarkers. Only large cohort studies comprising over 100 individuals to reach a potent statistical value were considered. Certain miRNAs appeared to possibly complement protein-based biomarkers and classical risk factors. Some were even described to bear potential in the discrimination of similar symptomatic pathologies. However, differences between pre-analytical and analytical approaches substantially influenced miRNA data. Further supported by meta-analysis studies, this problem had to be addressed. A detailed critical analysis of each step to define miRNAs biomarker potential is provided to inspire a future improved universal strategy. Interestingly, a recurrent set of cardiomyocyte-enriched miRNAs was found, namely, miR-1; miR-133; miR-208a/b; and miR-499a. Each member of this myomiRs group displayed promising roles either individually or in combination as AMI diagnostic or prognostic biomarkers. Furthermore, a precise combo was shown to be powerful enough to transdifferentiate human fibroblasts into CMs opening doors in the therapeutics. Following these discoveries, they also emerged as optional tools to transfect in order to mature CMs derived from pluripotent stem cells. Ultimately, the multiple potentials carried by the myomiRs miR-1; miR-133; miR-208a/b; and miR-499a still remain to be fully unveiled.
Collapse
Affiliation(s)
- Solenne Paiva
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Aging, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Aging, Paris, France
| |
Collapse
|
70
|
Li S, Geng Q, Chen H, Zhang J, Cao C, Zhang F, Song J, Liu C, Liang W. The potential inhibitory effects of miR‑19b on vulnerable plaque formation via the suppression of STAT3 transcriptional activity. Int J Mol Med 2017; 41:859-867. [PMID: 29207010 PMCID: PMC5752162 DOI: 10.3892/ijmm.2017.3263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/06/2017] [Indexed: 02/01/2023] Open
Abstract
Atherosclerotic plaque growth requires angiogenesis, and acute coronary syndrome (ACS) is usually triggered by the rupture of unstable atherosclerotic plaques. Previous studies have identified typically circulating microRNA (miRNA/miR) profiles in patients with ACS. miRNAs serve important roles in the pathophysiology of atherosclerotic plaque progression. The present study aimed to investigate the potential role and mechanism of miR‑19b in plaque stability. miRNA array data indicated that 28 miRNAs were differentially expressed in the plasma of patients with unstable angina (UA; n=12) compared with in control individuals (n=12), and miR‑19b exhibited the most marked upregulation. Circulating miR‑19b levels were further validated in another independent cohort, which consisted of 34 patients with UA and 24 controls, by quantitative polymerase chain reaction. Gene Ontology annotations of the predicted target genes of miR‑19b suggested that miR‑19b may be involved in endothelial cell (EC) proliferation, migration and angiogenesis, which was confirmed by Cell Counting kit‑8, wound healing and tube formation assays in the present study. Finally, the present study indicated that miR‑19b may suppress signal transducer and activator of transcription 3 (STAT3) tyrosine phosphorylation and transcriptional activity in ECs, as determined by western blot analysis and luciferase reporter assay. In conclusion, the present study revealed that increased miR‑19b expression may delay unstable plaque progression in patients with UA by inhibiting EC proliferation, migration and angiogenesis via the suppression of STAT3 transcriptional activity.
Collapse
Affiliation(s)
- Sufang Li
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Qiang Geng
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Jing Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Chengfu Cao
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Chuanfen Liu
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Wenqing Liang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
71
|
Masson S, Batkai S, Beermann J, Bär C, Pfanne A, Thum S, Magnoli M, Balconi G, Nicolosi GL, Tavazzi L, Latini R, Thum T. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur J Heart Fail 2017; 20:78-85. [PMID: 29027324 DOI: 10.1002/ejhf.961] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/13/2023] Open
Abstract
AIMS Non-coding microRNAs (miRNAs) are critically involved in cardiovascular pathophysiology. Since they are measurable in most body fluids, they have been proposed as circulating biomarkers. We examined the prognostic value of a specific candidate miRNA in a large cohort of patients with chronic heart failure (HF) enrolled in a multicentre clinical trial. METHODS AND RESULTS Plasma levels of miR-132 were measured using miRNA-specific PCR-based technologies at randomization in 953 patients with chronic, symptomatic HF from the GISSI-Heart Failure trial. The association with fatal (all-cause and cardiovascular death) and non-fatal events (time to first admission to hospital for cardiovascular reasons or worsening of HF) and the incremental risk prediction were estimated in adjusted models. Higher circulating miR-132 levels were independently associated with younger age, better renal filtration, ischaemic aetiology of HF, more severe HF symptoms, higher diastolic blood pressure, higher cholesterol, and male sex. After extensive adjustment for demographic, clinical, and echocardiographic risk factors and baseline NT-proBNP concentrations, miR-132 remained associated only with HF hospitalizations (hazard ratio 0.79, 95% confidence interval 0.66-0.95, P = 0.01) and improved its risk prediction with the continuous net reclassification index (cNRI 0.205, P = 0.001). CONCLUSION In well characterized patients with chronic HF, circulating miR-132 levels rise with the severity of HF. Lower circulating miR-132 levels improved risk prediction for HF readmission beyond traditional risk factors, but not for mortality. MiR-132 may be helpful to intensify strategies aimed at reducing re-hospitalization, which has a substantial health and economic burden in HF.
Collapse
Affiliation(s)
- Serge Masson
- Department of Cardiovascular Research, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies and Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Julia Beermann
- Institute of Molecular and Translational Therapeutic Strategies and Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies and Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies and Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Sabrina Thum
- Institute of Molecular and Translational Therapeutic Strategies and Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michela Magnoli
- Department of Cardiovascular Research, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - Giovanna Balconi
- Department of Cardiovascular Research, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | | | - Luigi Tavazzi
- Maria Cecilia Hospital, GVM Care & Research - E.S. Health Science Foundation, Cotignola, (RA), Italy
| | - Roberto Latini
- Department of Cardiovascular Research, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies and Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
72
|
Li S, Zhang F, Cui Y, Wu M, Lee C, Song J, Cao C, Chen H. Modified high-throughput quantification of plasma microRNAs in heparinized patients with coronary artery disease using heparinase. Biochem Biophys Res Commun 2017; 493:556-561. [PMID: 28867189 DOI: 10.1016/j.bbrc.2017.08.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022]
Abstract
Heparin, a widely used anticoagulant in cardiovascular diseases, is notorious for its inhibitory effect on qRT-PCR-based detection. Heparinase I could degrade heparin in RNA. qRT-PCR-based TaqMan Low Density Array (TLDA) technology is commonly used for circulating microRNAs (miRNAs) profiling analysis. However, the effect of heparin contamination on inhibition of miRNAs TLDA amplification, as well as the method for removing heparin during this process, are not yet well investigated. We obtained the plasma RNA samples from patients undergoing percutaneous coronary intervention (PCI) before and after heparinization (n = 26). We found that heparin suppressed the miRNAs amplification by ∼8 cycles in the TLDA assay, which was absolutely reversed after treating the RNA samples with heparinase I using the components from TLDA reverse transcription system. We further observed that heparin inhibited the miRNAs amplification by ∼4 cycles in the qRT-PCR assay, which was also reversed by heparinase I using the similar method. Furthermore, we demonstrated that plasma miR-92a and miR-155 were differentially expressed in the patients undergoing PCI tested by TLDA assay, which was validated by qRT-PCR. In conclusion, we present a simple method for the removal of heparin with heparinase I, and for the subsequent successful miRNAs TLDA or RT-qPCR amplification.
Collapse
Affiliation(s)
- Sufang Li
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, 100044, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, 100044, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, 100044, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, 100044, China
| | - Yuxia Cui
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, 100044, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, 100044, China
| | - Manyan Wu
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, 100044, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, 100044, China
| | - Chongyou Lee
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, 100044, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, 100044, China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, 100044, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, 100044, China
| | - Chengfu Cao
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, 100044, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, 100044, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, 100044, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
73
|
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Biomarcadores epigenéticos y enfermedad cardiovascular: los microARN circulantes. Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2017.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
74
|
Bai R, Yang Q, Xi R, Li L, Shi D, Chen K. miR-941 as a promising biomarker for acute coronary syndrome. BMC Cardiovasc Disord 2017; 17:227. [PMID: 28830367 PMCID: PMC5568367 DOI: 10.1186/s12872-017-0653-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Circulating miRNAs can function as biomarkers for diagnosis, treatment, and prevention of diseases. However, it is unclear whether miRNAs can be used as biomarkers for acute coronary syndrome (ACS). To this end, we applied gene chip technology to analyze miRNA expression in patients with stable angina (SA), non-ST elevation ACS (NSTE-ACS), and ST-segment elevation myocardial infarction (STEMI). METHODS We enrolled patients with chest pain who underwent diagnostic coronary angiography, including five patients each with SA, NSTE-ACS, or STEMI, and five controls without coronary artery disease (CAD) but with three or more risk factors. After microarray analysis, differential miRNA expression was confirmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). RESULTS Compared with those in patients with STEMI, differentially expressed microRNAs in controls and patients with SA or NSTE-ACS were involved in inflammation, protein phosphorylation, and cell adhesion. Pathway analysis showed that differentially expressed miRNAs were related to the mitogen-activated protein kinase signaling, calcium ion pathways, and cell adhesion pathways. Compared with their expression levels in patients with STEMI, miR-941, miR-363-3p, and miR-182-5p were significantly up-regulated (fold-change: 2.0 or more, P < 0.05) in controls and patients with SA or NSTE-ACS. Further, qRT-PCR showed that plasma miR-941 level was elevated in patients with NSTE-ACS or STEMI as compared with that in patients without CAD (fold-change: 1.65 and 2.28, respectively; P < 0.05). Additionally, miR-941 expression was significantly elevated in the STEMI group compared with that in the SA (P < 0.01) and NSTE-ACS groups (P < 0.05). Similarly, miR-941 expression was higher in patients with ACS (NSTE-ACS or STEMI) than in patients without ACS (without CAD or with SA; P < 0.01). There were no significant differences in miR-182-5p and miR-363-3p expression. The areas under the receiver operating characteristic curves were 0.896, 0.808, and 0.781 for patients in the control, SA, and NSTE-ACS groups, respectively, compared with that for patients with STEMI; that for the ACS group compared with the non-ACS group was 0.734. CONCLUSION miR-941 expression was relatively higher in patients with ACS and STEMI. Thus, miR-941 may be a potential biomarker of ACS or STEMI.
Collapse
Affiliation(s)
- Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian district, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian district, Beijing, China
| | - Ruixi Xi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian district, Beijing, China
| | - Lizhi Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian district, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian district, Beijing, China.
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian district, Beijing, China
| |
Collapse
|
75
|
Jansen F, Schäfer L, Wang H, Schmitz T, Flender A, Schueler R, Hammerstingl C, Nickenig G, Sinning JM, Werner N. Kinetics of Circulating MicroRNAs in Response to Cardiac Stress in Patients With Coronary Artery Disease. J Am Heart Assoc 2017; 6:JAHA.116.005270. [PMID: 28751542 PMCID: PMC5586407 DOI: 10.1161/jaha.116.005270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Circulating microRNAs (miRNAs/miRs) are regulated in patients with coronary artery disease. The impact of transient coronary ischemia on circulating miRNA levels is unknown. We aimed to investigate circulating miRNA kinetics in response to cardiac stress in patients with or without significant coronary stenosis. Methods and Results Eighty of 105 screened patients with stable coronary artery disease underwent dobutamine stress echocardiography before coronary angiography. Nine circulating vascular miRNAs (miRNA‐21, miRNA‐26, miRNA‐27a, miRNA‐92a, miRNA‐126‐3p, miRNA‐133a, miRNA‐222, miRNA‐223, and miRNA‐199‐5p) were quantified in plasma by reverse transcription polymerase chain reaction before, immediately after, and 4 and 24 hours after dobutamine stress echocardiography. Quantitative polymerase chain reaction revealed increased miRNA‐21, miRNA‐126‐3p, and miRNA‐222 levels at 24 hours after dobutamine stress echocardiography in all patients. On coronary angiography, significant coronary artery stenoses (>80% diameter stenosis) were found in 41 patients. Stratifying patients according to the prevalence of significant stenoses, patients with stenosis showed an increase of circulating miRNA‐21, miRNA‐126‐3p, and miRNA‐222 in response to cardiac stress. In patients without significant stenoses (<50% diameter stenosis), miRNA‐92a levels gradually increased in response to cardiac stress. Conclusions miRNAs are distinctly released into the circulation in response to cardiac stress depending on the prevalence of significant coronary stenoses.
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Lisa Schäfer
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Han Wang
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Theresa Schmitz
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Anna Flender
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Robert Schueler
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Christoph Hammerstingl
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Jan-Malte Sinning
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| |
Collapse
|
76
|
Abstract
Despite rapid advances in cardiovascular research and therapeutic strategies, ischemic heart disease (IHD) remains the leading cause of mortality worldwide. MicroRNAs (miRNAs) are small, noncoding RNAs which post transcriptionally regulate gene expression. In the past few years, miRNAs have emerged as key tools for the understanding of the pathophysiology of IHD, with potential uses as new biomarkers and therapeutic targets. Several studies report a regulatory role of miRNAs, with regard to fundamental components of IHD pathogenesis and progression, such as lipoprotein metabolism, atherogenesis, vascular calcification, platelet function, and angiogenesis. Due to their high stability in biofluids, circulating miRNAs have attracted attention as promising biomarkers of IHD, especially in cardiovascular risk prediction and the diagnosis of myocardial infarction. Furthermore, experimental studies have demonstrated the potential of miRNA-targeted therapy in improving hyperlipidemia, atherosclerosis, and angiogenesis. In this review, the current knowledge on the role of miRNAs in IHD and translational perspectives of their use is discussed.
Collapse
|
77
|
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Epigenetic Biomarkers and Cardiovascular Disease: Circulating MicroRNAs. ACTA ACUST UNITED AC 2017. [PMID: 28623159 DOI: 10.1016/j.rec.2017.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA (20-25 nucleotides) involved in gene regulation. In recent years, miRNAs have emerged as a key epigenetic mechanism in the development and physiology of the cardiovascular system. These molecular species regulate basic functions in virtually all cell types, and are therefore directly associated with the pathophysiology of a large number of cardiovascular diseases. Since their relatively recent discovery in extracellular fluids, miRNAs have been studied as potential biomarkers of disease. A wide array of studies have proposed miRNAs as circulating biomarkers of different cardiovascular pathologies (eg, myocardial infarction, coronary heart disease, and heart failure, among others), which may have superior physicochemical and biochemical properties than the conventional protein indicators currently used in clinical practice. In the present review, we provide a brief introduction to the field of miRNAs, paying special attention to their potential clinical application. This includes their possible role as new diagnostic or prognostic biomarkers in cardiovascular disease.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Grupo de Lípidos y Patología Cardiovascular, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Vicenta Llorente-Cortés
- Grupo de Lípidos y Patología Cardiovascular, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas de Barcelona (IibB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
78
|
Choong OK, Lee DS, Chen CY, Hsieh PCH. The roles of non-coding RNAs in cardiac regenerative medicine. Noncoding RNA Res 2017; 2:100-110. [PMID: 30159427 PMCID: PMC6096405 DOI: 10.1016/j.ncrna.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023] Open
Abstract
The emergence of non-coding RNAs (ncRNAs) has challenged the central dogma of molecular biology that dictates that the decryption of genetic information starts from transcription of DNA to RNA, with subsequent translation into a protein. Large numbers of ncRNAs with biological significance have now been identified, suggesting that ncRNAs are important in their own right and their roles extend far beyond what was originally envisaged. ncRNAs do not only regulate gene expression, but are also involved in chromatin architecture and structural conformation. Several studies have pointed out that ncRNAs participate in heart disease; however, the functions of ncRNAs still remain unclear. ncRNAs are involved in cellular fate, differentiation, proliferation and tissue regeneration, hinting at their potential therapeutic applications. Here, we review the current understanding of both the biological functions and molecular mechanisms of ncRNAs in heart disease and describe some of the ncRNAs that have potential heart regeneration effects.
Collapse
Affiliation(s)
- Oi Kuan Choong
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Desy S Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Patrick C H Hsieh
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University & Hospital, Taipei 100, Taiwan
| |
Collapse
|
79
|
Xiao FY, Liu M, Chen BL, Cao S, Fan L, Liu ZQ, Zhou HH, Zhang W, Zhou G. Effects of four novel genetic polymorphisms on clopidogrel efficacy in Chinese acute coronary syndromes patients. Gene 2017; 623:63-71. [PMID: 28438693 DOI: 10.1016/j.gene.2017.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
Abstract
Dual antiplatelet therapy is the gold standard for the clinical treatment of coronary artery disease, especially for acute coronary syndromes patients. However, a substantial number of patients do not respond to clopidogrel despite a standardized dosage regimen, and this is directly associated with poor prognosis. Genetic polymorphisms may be one of the most important factors that contribute to this phenomenon. In this study, we aimed to detect new single nucleotide polymorphisms that can influence the efficacy of clopidogrel in 851 acute coronary syndromes (ACS) patients. Four outcomes (cerebrovascular event, Acute Myocardium Infarction, unstable angina and death) were used as endpoints among three cohorts (northern, central and southern China) of acute coronary syndromes patients. Three SNPs (rs2244923, rs2773341 and rs34428341) were significantly associated with at least one outcome in all subjects. One SNP rs16863352, may play a role in predicting unstable angina in acute coronary syndrome patients ≥75years of age.
Collapse
Affiliation(s)
- Fei-Yan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Min Liu
- Department of Cardiovascular, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou 450007, PR China
| | - Bi-Lian Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Lan Fan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
80
|
Schulte C, Karakas M, Zeller T. microRNAs in cardiovascular disease - clinical application. Clin Chem Lab Med 2017; 55:687-704. [PMID: 27914211 DOI: 10.1515/cclm-2016-0576] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) are well-known, powerful regulators of gene expression, and their potential to serve as circulating biomarkers is widely accepted. In cardiovascular disease (CVD), numerous studies have suggested miRNAs as strong circulating biomarkers with high diagnostic as well as prognostic power. In coronary artery disease (CAD) and heart failure (HF), miRNAs have been suggested as reliable biomarkers matching up to established protein-based such as cardiac troponins (cT) or natriuretic peptides. Also, in other CVD entities, miRNAs were identified as surprisingly specific biomarkers - with great potential for clinical applicability, especially in those entities that lack specific protein-based biomarkers such as atrial fibrillation (AF) and acute pulmonary embolism (APE). In this regard, miRNA signatures, comprising a set of miRNAs, yield high sensitivity and specificity. Attempts to utilize miRNAs as therapeutic agents have led to promising results. In this article, we review the clinical applicability of circulating miRNAs in CVD. We are giving an overview of miRNAs as biomarkers in numerous CVD entities to depict the variety of their potential clinical deployment. We illustrate the function of miRNAs by means of single miRNA examples in CVD.
Collapse
Affiliation(s)
- Christian Schulte
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg
| | - Mahir Karakas
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg
| |
Collapse
|
81
|
de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, Smit JWA, Revuelta-Lopez E, Nasarre L, Escola-Gil JC, Lamb HJ, Llorente-Cortes V. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep 2017; 7:47. [PMID: 28246388 PMCID: PMC5428350 DOI: 10.1038/s41598-017-00070-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Using in vitro, in vivo and patient-based approaches, we investigated the potential of circulating microRNAs (miRNAs) as surrogate biomarkers of myocardial steatosis, a hallmark of diabetic cardiomyopathy. We analysed the cardiomyocyte-enriched miRNA signature in serum from patients with well-controlled type 2 diabetes and with verified absence of structural heart disease or inducible ischemia, and control volunteers of the same age range and BMI (N = 86), in serum from a high-fat diet-fed murine model, and in exosomes from lipid-loaded HL-1 cardiomyocytes. Circulating miR-1 and miR-133a levels were robustly associated with myocardial steatosis in type 2 diabetes patients, independently of confounding factors in both linear and logistic regression analyses (P < 0.050 for all models). Similar to myocardial steatosis, miR-133a levels were increased in type 2 diabetes patients as compared with healthy subjects (P < 0.050). Circulating miR-1 and miR-133a levels were significantly elevated in high-fat diet-fed mice (P < 0.050), which showed higher myocardial steatosis, as compared with control animals. miR-1 and miR-133a levels were higher in exosomes released from lipid-loaded HL-1 cardiomyocytes (P < 0.050). Circulating miR-1 and miR-133a are independent predictors of myocardial steatosis. Our results highlight the value of circulating miRNAs as diagnostic tools for subclinical diabetic cardiomyopathy.
Collapse
Affiliation(s)
- D de Gonzalo-Calvo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain. .,CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| | - R W van der Meer
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - L J Rijzewijk
- Department of Medicine, Kantonsspital Baden AG, Baden, Switzerland
| | - J W A Smit
- Department of Internal Medicine, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - E Revuelta-Lopez
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - L Nasarre
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J C Escola-Gil
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | - H J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Llorente-Cortes
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain. .,CIBERCV, Institute of Health Carlos III, Madrid, Spain. .,Biomedical Research Institute of Barcelona, CSIC, Barcelona, Spain.
| |
Collapse
|
82
|
Luchting B, Heyn J, Hinske LC, Azad SC. Expression of miRNA-124a in CD4 Cells Reflects Response to a Multidisciplinary Treatment Program in Patients With Chronic Low Back Pain. Spine (Phila Pa 1976) 2017; 42:E226-E233. [PMID: 28207662 DOI: 10.1097/brs.0000000000001763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective evaluation of microRNA (miRNA) expression in patients with chronic low back pain (CLBP). OBJECTIVE The aim of this study was to evaluate whether pain- and T cell-related miRNAs are differentially expressed in CLBP when compared with healthy volunteers and whether these miRNAs may distinguish between responders and nonresponders to a multidisciplinary treatment program. SUMMARY OF BACKGROUND DATA CLBP is a common health problem worldwide. Multidisciplinary pain treatment programs have been proven as an effective treatment option. miRNAs are known to be important mediators of gene regulation in various processes, including pathophysiology of pain. The expression of miRNAs in CLBP and changes due to a multidisciplinary treatment programs are still unknown. METHODS Thirty-four patients with CLBP were enrolled (46.5 ± 12.7 yrs). CLBP was defined as low back pain with an average intensity of numerical rating scale (NRS) ≥3 during the last 4 weeks, persisting longer than 6 months, and not attributable to a recognized specific pathological condition. Expression of pain- and T cell-related miRNAs in human CD4 cells were determined using TaqMan assays and RealTime PCR. MiRNA expression in patients with CLBP was compared with the expression in healthy volunteers before a multidisciplinary treatment program started. The multidisciplinary outpatient program (4 weeks, 5 days a week, 8 h per day) is a clinically established outpatient program and comprises medical (examination, education), physical (exercise), work-related, and psychological therapy components. After the program, differentially expressed miRNAs in CLBP (before treatment) were analyzed once more. Expression of these miRNAs in patients who respond to the treatment (n = 14) was compared with those who did not respond (n = 20). Response to therapy was defined as reduction of pain of ≥50% (NRS) from baseline. RESULTS MiRNA-124a (patients: 0.79 ± 0.63 vs. healthy volunteers: 0.30 ± 0.16; P < 0.001), miRNA-150 (patients: 0.75 ± 0.21 vs. healthy volunteers: 0.56 ± 0.20; P = 0.025), and miRNA-155 (patients: 0.55 ± 0.14 vs. healthy volunteers: 0.38 ± 0.16; P = 0.017) were significantly upregulated in CLBP patients when compared with healthy volunteers. After the multidisciplinary treatment program, patients who respond to the treatment showed only an increase of miRNA-124a expression (before treatment: 0.54 ± 0.26 vs. after treatment: 1.05 ± 0.56, P = 0.007). CONCLUSION MiRNA-124a upregulation is associated with therapy response in a multidisciplinary treatment programs and might help to identify more specific and mechanism-based treatment strategies for CLBP. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Benjamin Luchting
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
83
|
Novel Biomarker MicroRNAs for Subtyping of Acute Coronary Syndrome: A Bioinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4618323. [PMID: 28044128 PMCID: PMC5156791 DOI: 10.1155/2016/4618323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023]
Abstract
Acute coronary syndrome (ACS) is a life-threatening disease that affects more than half a million people in United States. We currently lack molecular biomarkers to distinguish the unstable angina (UA) and acute myocardial infarction (AMI), which are the two subtypes of ACS. MicroRNAs play significant roles in biological processes and serve as good candidates for biomarkers. In this work, we collected microRNA datasets from the Gene Expression Omnibus database and identified specific microRNAs in different subtypes and universal microRNAs in all subtypes based on our novel network-based bioinformatics approach. These microRNAs were studied for ACS association by pathway enrichment analysis of their target genes. AMI and UA were associated with 27 and 26 microRNAs, respectively, nine of them were detected for both AMI and UA, and five from each subtype had been reported previously. The remaining 22 and 21 microRNAs are novel microRNA biomarkers for AMI and UA, respectively. The findings are then supported by pathway enrichment analysis of the targets of these microRNAs. These novel microRNAs deserve further validation and will be helpful for personalized ACS diagnosis.
Collapse
|
84
|
de Ronde MWJ, Pinto YM, Pinto-Sietsma SJ. Circulating microRNA biomarkers for cardiovascular risk prediction: are we approaching clinical application? ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:490. [PMID: 28149852 DOI: 10.21037/atm.2016.12.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maurice W J de Ronde
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yigal M Pinto
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
85
|
Kränkel N, Blankenberg S, Zeller T. Early detection of myocardial infarction-microRNAs right at the time? ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:502. [PMID: 28149864 DOI: 10.21037/atm.2016.12.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nicolle Kränkel
- Department of Cardiology, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany; ; German Center for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Stefan Blankenberg
- Univeristy Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany; ; German Center for Cardiovascular Research, partner site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Tanja Zeller
- Univeristy Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany; ; German Center for Cardiovascular Research, partner site Hamburg/Lübeck/Kiel, Hamburg, Germany
| |
Collapse
|
86
|
Mair J. Circulating micro ribonucleic acids in cardiovascular disease: a look beyond myocardial injury. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S30. [PMID: 27867998 DOI: 10.21037/atm.2016.10.67] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johannes Mair
- Department of Internal Medicine III - Cardiology and Angiology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| |
Collapse
|
87
|
Van Craenenbroeck AH, Van Craenenbroeck EM, Van Ackeren K, Hoymans VY, Verpooten GA, Vrints CJ, Couttenye MM. Impaired vascular function contributes to exercise intolerance in chronic kidney disease. Nephrol Dial Transplant 2016; 31:2064-2072. [PMID: 27540045 DOI: 10.1093/ndt/gfw303] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/03/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Exercise intolerance is an important feature in patients with chronic kidney disease (CKD) and is prognostic for both increased morbidity and mortality. Little is known about the underlying mechanisms in predialysis CKD. This study aimed to gain more insight into the role of vascular dysfunction in the exercise intolerance of predialysis CKD. In addition, vascular-related microRNAs (miRNAs)-as epigenetic regulators of exercise capacity-were analysed. METHODS Sixty-three patients with CKD stages 1-5 and 18 healthy controls were included. Peak oxygen consumption (VO2peak) was determined by cardiopulmonary exercise testing, endothelial function by flow-mediated dilation (FMD) and arterial stiffness by carotid-femoral pulse wave velocity (PWV). Plasma miRNA levels (miR-21, miR-126, miR-146a, miR-150 and miR-210) were quantified by quantitative RT-PCR. RESULTS VO2peak was already impaired in mild CKD (stages 1-3A) and significantly correlated with estimated glomerular filtration rate (eGFR; r = 0.525, P < 0.001). Likewise, both FMD and PWV were significantly correlated with eGFR (r = 0.319, P = 0.007 and r = -0.365, P = 0.001, respectively). In multiple regression analysis, PWV remained one of the strongest independent determinants of VO2peak (β = -0.301, P = 0.01). Of the studied miRNA, circulating levels of miR-146a and miR-150 correlated with eGFR, PWV and VO2peak, but the association with the latter was lost when correcting for PWV. CONCLUSIONS Arterial stiffness contributes to the observed reduced aerobic capacity in predialysis CKD, independent of age, haemoglobin levels and endothelial function and represents a promising therapeutic target for improving exercise capacity in this population. Future work is required to elucidate why higher circulating levels of miR-146a and miR-150 are associated with impaired renal function and increased arterial stiffness.
Collapse
Affiliation(s)
- Amaryllis H Van Craenenbroeck
- Department of Nephrology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium.,Laboratory for Molecular and Cellular Cardiology, University of Antwerp, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Edegem, Belgium
| | - Emeline M Van Craenenbroeck
- Laboratory for Molecular and Cellular Cardiology, University of Antwerp, Edegem, Belgium.,Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Katrijn Van Ackeren
- Laboratory for Molecular and Cellular Cardiology, University of Antwerp, Edegem, Belgium
| | - Vicky Y Hoymans
- Laboratory for Molecular and Cellular Cardiology, University of Antwerp, Edegem, Belgium
| | - Gert A Verpooten
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Edegem, Belgium
| | - Christiaan J Vrints
- Laboratory for Molecular and Cellular Cardiology, University of Antwerp, Edegem, Belgium.,Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Marie M Couttenye
- Department of Nephrology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| |
Collapse
|
88
|
Busch A, Eken SM, Maegdefessel L. Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:236. [PMID: 27429962 DOI: 10.21037/atm.2016.06.06] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-coding RNA (ncRNA) is a class of genetic, epigenetic and translational regulators, containing short and long transcripts with intriguing abilities for use as biomarkers due to their superordinate role in disease development. In the past five years many of these have been investigated in cardiovascular diseases (CVD), mainly myocardial infarction (MI) and heart failure. To extend this view, we summarize the existing data about ncRNA as biomarker in the whole entity of CVDs by literature-based review and comparison of the identified candidates. The myomirs miRNA-1, -133a/b, -208a, -499 with well-defined cellular functions have proven equal to classic protein biomarkers for disease detection in MI. Other microRNAs (miRNAs) were reproducibly found to correlate with disease, disease severity and outcome in heart failure, stroke, coronary artery disease (CAD) and aortic aneurysm. An additional utilization has been discovered for therapeutic monitoring. The function of long non-coding transcripts is only about to be unraveled, yet shows great potential for outcome prediction. ncRNA biomarkers have a distinct role if no alternative test is available or has is performing poorly. With increasing mechanistic understanding, circulating miRNA and long non-coding transcripts will provide useful disease information with high predictive power.
Collapse
Affiliation(s)
- Albert Busch
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Suzanne M Eken
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Lars Maegdefessel
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
89
|
MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine γ-lyase in THP-1 macrophages. Atherosclerosis 2016; 250:122-32. [DOI: 10.1016/j.atherosclerosis.2016.04.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 11/24/2022]
|
90
|
Karakas M, Schulte C, Appelbaum S, Ojeda F, Lackner KJ, Münzel T, Schnabel RB, Blankenberg S, Zeller T. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease—results from the large AtheroGene study. Eur Heart J 2016; 38:516-523. [DOI: 10.1093/eurheartj/ehw250] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 05/31/2016] [Indexed: 12/28/2022] Open
|
91
|
Navickas R, Gal D, Laucevičius A, Taparauskaitė A, Zdanytė M, Holvoet P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc Res 2016; 111:322-37. [PMID: 27357636 PMCID: PMC4996262 DOI: 10.1093/cvr/cvw174] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study is to identify microRNAs (miRs) with high potential to be used as biomarkers in plasma and/or serum to clinically diagnose, or provide accurate prognosis for survival in, patients with atherosclerosis, coronary artery disease, and acute coronary syndrome (ACS). A systematic search of published original research yielded a total of 72 studies. After review of the risk of bias of the published studies, according to Cochrane Collaboration and the QUADUAS Group standards, 19 studies were selected. Overall 52 different miRs were reported. In particular, miR-133a/b (5 studies), miR-208a/b (6 studies), and miR-499 (7 studies) were well studied and found to be significant diagnostic and/or prognostic markers across different cardiovascular disease progression stages. miR-1 and miR-145b are potential biomarkers of ACS; miR-1 with higher sensitivity for all acute myocardial infarction (AMI), and miR-145 for STEMI and worse outcome of AMI. But when miRs were studied across different ACS study populations, patients had varying degrees of coronary stenosis, which was identified as an important confounder that limited the ability to quantitatively pool the study results. The identified miRs were found to regulate endothelial function and angiogenesis (miR-1, miR-133), vascular smooth muscle cell differentiation (miR-133, miR-145), communication between vascular smooth muscle and endothelial cell to stabilize plaques (miR-145), apoptosis (miR-1, miR-133, miR-499), cardiac myocyte differentiation (miR-1, miR-133, miR-145, miR-208, miR-499), and to repress cardiac hypertrophy (miR-133). Their role in these processes may be explained by regulation of shared RNA targets such as cyclin-dependent kinase inhibitor 1A (or p21), ETS proto-oncogene 1, fascin actin-bundling protein 1, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4, insulin-like growth factor 1 receptor LIM and SH3 protein 1, purine nucleoside phosphorylase, and transgelin 2. These mechanistic data further support the clinical relevance of the identified miRs. miR-1, miR-133a/b, miR-145, miR-208a/b, and miR-499(a) in plasma and/or serum show some potential for diagnosis of cardiovascular disease. However, biased selection of miRs in most studies and unexplained contrasting results are major limitations of current miR research. Inconsistencies need to be addressed in order to definitively identify clinically useful miRs. Therefore, this paper presents important aspects to improve future miR research, including unbiased selection of miRs, standardization/normalization of reference miRs, adjustment for patient comorbidities and medication, and robust protocols of data-sharing plans that could prevent selective publication and selective reporting of miR research outcomes.
Collapse
Affiliation(s)
- Rokas Navickas
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Diane Gal
- Department of Cardiovascular Sciences, Atherosclerosis and Metabolism Unit, KU Leuven, Leuven, Belgium
| | - Aleksandras Laucevičius
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | | | | | - Paul Holvoet
- Department of Cardiovascular Sciences, Atherosclerosis and Metabolism Unit, KU Leuven, Leuven, Belgium
| |
Collapse
|
92
|
Shalaby SM, El-Shal AS, Shoukry A, Khedr MH, Abdelraheim N. Serum miRNA-499 and miRNA-210: A potential role in early diagnosis of acute coronary syndrome. IUBMB Life 2016; 68:673-82. [DOI: 10.1002/iub.1529] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Amal S. El-Shal
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Amira Shoukry
- Internal Medicine Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Mohamad H. Khedr
- Cardiology Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Nader Abdelraheim
- Cardiothoracic Surgery Department, Faculty of Medicine; Zagazig University Zagazig; Egypt
| |
Collapse
|
93
|
B-type natriuretic peptide signal peptide (BNPsp) in patients presenting with chest pain. Clin Biochem 2016; 49:645-650. [DOI: 10.1016/j.clinbiochem.2016.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/18/2016] [Accepted: 02/27/2016] [Indexed: 02/07/2023]
|
94
|
Ahlin F, Arfvidsson J, Vargas KG, Stojkovic S, Huber K, Wojta J. MicroRNAs as circulating biomarkers in acute coronary syndromes: A review. Vascul Pharmacol 2016; 81:15-21. [PMID: 27084396 DOI: 10.1016/j.vph.2016.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/02/2016] [Accepted: 04/03/2016] [Indexed: 12/15/2022]
Abstract
Coronary artery disease (CAD) and its complications remain the most common cause of death worldwide. Cardiac troponins (cTn) are standard biomarkers used today for diagnosis and risk stratification of myocardial infarction (MI). Increasing efforts are made to develop additional, new biomarkers for more effective and safe rule-in and rule-out of MI patients at the emergency department. During the past decade, microRNAs (miRNAs) have emerged as new, potential diagnostic biomarkers in several diseases, including MI. In this review, we aimed to summarize some of the prominent studies in the field, and discuss the potential value of miRNAs in the diagnosis of MI.
Collapse
Affiliation(s)
- Fredrik Ahlin
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen hospital, Vienna, Austria; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - John Arfvidsson
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen hospital, Vienna, Austria; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Kris G Vargas
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen hospital, Vienna, Austria
| | - Stefan Stojkovic
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Kurt Huber
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen hospital, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Sigmund Freud University, Medical Faculty, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
95
|
Leistner DM, Boeckel JN, Reis SM, Thome CE, De Rosa R, Keller T, Palapies L, Fichtlscherer S, Dimmeler S, Zeiher AM. Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Eur Heart J 2016; 37:1738-49. [DOI: 10.1093/eurheartj/ehw047] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/23/2015] [Indexed: 11/13/2022] Open
|
96
|
Abstract
Atherosclerosis and its attendant clinical complications, such as myocardial infarction, stroke, and peripheral artery disease, are the leading cause of morbidity and mortality in Western societies. In response to biochemical and biomechanical stimuli, atherosclerotic lesion formation occurs from the participation of a range of cell types, inflammatory mediators, and shear stress. Over the past decade, microRNAs (miRNAs) have emerged as evolutionarily conserved, noncoding small RNAs that serve as important regulators and fine-tuners of a range of pathophysiological cellular effects and molecular signaling pathways involved in atherosclerosis. Accumulating studies reveal the importance of miRNAs in regulating key signaling and lipid homeostasis pathways that alter the balance of atherosclerotic plaque progression and regression. In this review, we highlight current paradigms of miRNA-mediated effects in atherosclerosis progression and regression. We provide an update on the potential use of miRNAs diagnostically for detecting increasing severity of coronary disease and clinical events. Finally, we provide a perspective on therapeutic opportunities and challenges for miRNA delivery in the field.
Collapse
Affiliation(s)
- Mark W Feinberg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.W.F.); and Departments of Medicine and Cell Biology, Leon H Charney Division of Cardiology, New York University Medical Center (K.J.M.).
| | - Kathryn J Moore
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.W.F.); and Departments of Medicine and Cell Biology, Leon H Charney Division of Cardiology, New York University Medical Center (K.J.M.)
| |
Collapse
|
97
|
Fiedler J, Breckwoldt K, Remmele CW, Hartmann D, Dittrich M, Pfanne A, Just A, Xiao K, Kunz M, Müller T, Hansen A, Geffers R, Dandekar T, Eschenhagen T, Thum T. Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization. J Am Coll Cardiol 2016; 66:2005-2015. [PMID: 26516004 PMCID: PMC4631810 DOI: 10.1016/j.jacc.2015.07.081] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
Background Long noncoding ribonucleic acids (lncRNAs) are a subclass of regulatory noncoding ribonucleic acids for which expression and function in human endothelial cells and angiogenic processes is not well studied. Objectives The authors discovered hypoxia-sensitive human lncRNAs via next-generation ribonucleic acid sequencing and microarray approaches. To address their functional importance in angiogenic processes, several endothelial lncRNAs were characterized for their angiogenic characteristics in vitro and ex vivo. Methods Ribonucleic acid sequencing and microarray-derived data showed specific endothelial lncRNA expression changes after hypoxia. Validation experiments confirmed strong hypoxia-dependent activation of 2 intergenic lncRNAs: LINC00323 and MIR503HG. Results Silencing of these lncRNA transcripts led to angiogenic defects, including repression of growth factor signaling and/or the key endothelial transcription factor GATA2. Endothelial loss of these hypoxia-driven lncRNAs impaired cell-cycle control and inhibited capillary formation. The potential clinical importance of these endothelial lncRNAs to vascular structural integrity was demonstrated in an ex vivo model of human induced pluripotent stem cell–based engineered heart tissue. Conclusions The authors report an expression atlas of human hypoxia-sensitive lncRNAs and identified 2 lncRNAs with important functions to sustain endothelial cell biology. LncRNAs hold great promise to serve as important future therapeutic targets of cardiovascular disease.
Collapse
Affiliation(s)
- Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Eppendorf, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | | | - Dorothee Hartmann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany; Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Meik Kunz
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Eppendorf, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Eppendorf, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College London, London, United Kingdom; REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
98
|
Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, Hartmann T, Lackner KJ, Westermann D, Schnabel RB, Blankenberg S, Zeller T. miRNA-197 and miRNA-223 Predict Cardiovascular Death in a Cohort of Patients with Symptomatic Coronary Artery Disease. PLoS One 2015; 10:e0145930. [PMID: 26720041 PMCID: PMC4699820 DOI: 10.1371/journal.pone.0145930] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
Background Circulating microRNAs (miRNAs) have been described as potential diagnostic biomarkers in cardiovascular disease and in particular, coronary artery disease (CAD). Few studies were undertaken to perform analyses with regard to risk stratification of future cardiovascular events. miR-126, miR-197 and miR-223 are involved in endovascular inflammation and platelet activation and have been described as biomarkers in the diagnosis of CAD. They were identified in a prospective study in relation to future myocardial infarction. Objectives The aim of our study was to further evaluate the prognostic value of these miRNAs in a large prospective cohort of patients with documented CAD. Methods Levels of miR-126, miR-197 and miR-223 were evaluated in serum samples of 873 CAD patients with respect to the endpoint cardiovascular death. miRNA quantification was performed using real time polymerase chain reaction (RT-qPCR). Results The median follow-up period was 4 years (IQR 2.78–5.04). The median age of all patients was 64 years (IQR 57–69) with 80.2% males. 38.9% of the patients presented with acute coronary syndrome (ACS), 61.1% were diagnosed with stable angina pectoris (SAP). Elevated levels of miRNA-197 and miRNA-223 reliably predicted future cardiovascular death in the overall group (miRNA-197: hazard ratio (HR) 1.77 per one standard deviation (SD) increase (95% confidence interval (CI) 1.20; 2.60), p = 0.004, C-index 0.78; miRNA-223: HR 2.23 per one SD increase (1.20; 4.14), p = 0.011, C-index 0.80). In ACS patients the prognostic power of both miRNAs was even higher (miRNA-197: HR 2.24 per one SD increase (1.25; 4.01), p = 0.006, C-index 0.89); miRA-223: HR 4.94 per one SD increase (1.42; 17.20), p = 0.012, C-index 0.89). Conclusion Serum-derived circulating miRNA-197 and miRNA-223 were identified as predictors for cardiovascular death in a large patient cohort with CAD. These results reinforce the assumption that circulating miRNAs are promising biomarkers with prognostic value with respect to future cardiovascular events.
Collapse
Affiliation(s)
- Christian Schulte
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Simon Molz
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Sebastian Appelbaum
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Mahir Karakas
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Francisco Ojeda
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Denise M. Lau
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Tim Hartmann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Mainz, Germany
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Renate B. Schnabel
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Luebeck/Kiel, Hamburg, Germany
- * E-mail:
| |
Collapse
|
99
|
Bank IEM, Timmers L, Gijsberts CM, Zhang YN, Mosterd A, Wang JW, Chan MY, De Hoog V, Lim SK, Sze SK, Lam CSP, De Kleijn DPV. The diagnostic and prognostic potential of plasma extracellular vesicles for cardiovascular disease. Expert Rev Mol Diagn 2015; 15:1577-88. [DOI: 10.1586/14737159.2015.1109450] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
100
|
Lüscher TF. Neglected cardiovascular risk factors. Eur Heart J 2015; 36:2621-3. [PMID: 26468255 DOI: 10.1093/eurheartj/ehv540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas F Lüscher
- Editor-in-Chief, Zurich Heart House, Careum Campus, Moussonstrasse 4, 8091 Zurich, Switzerland
| |
Collapse
|