51
|
Pepper ASR, Lo TW, Killian DJ, Hall DH, Hubbard EJA. The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev Biol 2003; 259:336-50. [PMID: 12871705 DOI: 10.1016/s0012-1606(03)00203-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the control of proliferation and differentiation in the larval Caenorhabditis elegans hermaphrodite germ line through analysis of glp-1 and lag-2 mutants, cell ablations, and ultrastructural data. After the first several rounds of germ cell division, GLP-1, a receptor of the LIN-12/Notch family, governs germline proliferation. We analyzed the proximal proliferation (Pro) phenotype in glp-1(ar202) and found that initial meiosis was delayed and spatially mispositioned. This is due, at least in part, to a heightened response of the mutant GLP-1 receptor to multiple sources of the somatic ligand LAG-2, including the proximal somatic gonad. We investigated whether proximal LAG-2 affects germline proliferation in the wild type. Our results indicate that (1) LAG-2 is necessary for GLP-1-mediated germline proliferation and prevention of early meiosis, and (2) several distinct anatomical sources of LAG-2 in the larval somatic gonad functionally overlap to promote proliferation and prevent early meiosis. Ultrastructural studies suggest that mitosis is not restricted to areas of direct DTC-germ line contact and that the germ line shares a common cytoplasm in larval stages. We propose that downregulation of the GLP-1 signaling pathway in the proximal germ line at the time of meiotic onset is under tight temporal and spatial control.
Collapse
Affiliation(s)
- Anita S-R Pepper
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
52
|
Pepper ASR, Killian DJ, Hubbard EJA. Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics 2003; 163:115-32. [PMID: 12586701 PMCID: PMC1462416 DOI: 10.1093/genetics/163.1.115] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
glp-1 encodes a member of the highly conserved LIN-12/Notch family of receptors that mediates the mitosis/meiosis decision in the C. elegans germline. We have characterized three mutations that represent a new genetic and phenotypic class of glp-1 mutants, glp-1(Pro). The glp-1(Pro) mutants display gain-of-function germline pattern defects, most notably a proximal proliferation (Pro) phenotype. Each of three glp-1(Pro) alleles encodes a single amino acid change in the extracellular part of the receptor: two in the LIN-12/Notch repeats (LNRs) and one between the LNRs and the transmembrane domain. Unlike other previously described gain-of-function mutations that affect this region of LIN-12/Notch family receptors, the genetic behavior of glp-1(Pro) alleles is not consistent with simple hypermorphic activity. Instead, the mutant phenotype is suppressed by wild-type doses of glp-1. Moreover, a trans-heterozygous combination of two highly penetrant glp-1(Pro) mutations is mutually suppressing. These results lend support to a model for a higher-order receptor complex and/or competition among receptor proteins for limiting factors that are required for proper regulation of receptor activity. Double-mutant analysis with suppressors and enhancers of lin-12 and glp-1 further suggests that the functional defect in glp-1(Pro) mutants occurs prior to or at the level of ligand interaction.
Collapse
Affiliation(s)
- Anita S-R Pepper
- Department of Biology, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
53
|
Maine EM. RNAi As a tool for understanding germline development in Caenorhabditis elegans: uses and cautions. Dev Biol 2001; 239:177-89. [PMID: 11784027 DOI: 10.1006/dbio.2001.0394] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA-mediated genetic interference (RNAi) has become a very useful tool for analyzing gene function in development and other processes. RNAi can be used as a complement to traditional genetic studies or as a primary means of determining biological function. However, the efficacy of RNAi depends on a variety of factors that the researcher must take into consideration. This review focuses on germline development in the nematode, Caenorhabditis elegans, and discusses the uses and limitations of RNAi in providing new information about gene function as well as the possible endogenous role RNAi plays in germline physiology.
Collapse
Affiliation(s)
- E M Maine
- Department of Biology, Syracuse University, 108 College Place, Syracuse, New York 13244, USA.
| |
Collapse
|
54
|
Seydoux G, Schedl T. The germline in C. elegans: origins, proliferation, and silencing. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:139-85. [PMID: 11131515 DOI: 10.1016/s0074-7696(01)03006-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Germ cells are essential for reproduction, yet the molecular mechanisms that underlie their unique development are only beginning to be understood. Here we review important events that lead to the establishment of the germline and the initiation of meiotic development in C. elegans. Formation of the germline begins in the pregastrulation embryo, where it depends on polarization along the anterior/posterior axis and on the asymmetric segregation of P granules and associated factors. During postembryonic development, the germline expands using the GLP-1/Notch signaling pathway to promote proliferation and regulate entry into meiosis. Throughout their development, germ cells also employ unique "silencing" mechanisms to regulate their genome and protect themselves against unwanted expression from repetitive sequences including transposable elements. Together these mechanisms preserve the health and reproductive potential of the germline.
Collapse
Affiliation(s)
- G Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
55
|
Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2001; 2:110-9. [PMID: 11253050 DOI: 10.1038/35052556] [Citation(s) in RCA: 541] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Imagine being able to knock out your favourite gene with only a day's work. Not just in one model system, but in virtually any organism: plants, flies, mice or cultured cells. This sort of experimental dream might one day become reality as we learn to harness the power of RNA interference, the process by which double-stranded RNA induces the silencing of homologous endogenous genes. How this phenomenon works is slowly becoming clear, and might help us to develop an effortless tool to probe gene function in cells and animals.
Collapse
Affiliation(s)
- S M Hammond
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
56
|
Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101:25-33. [PMID: 10778853 DOI: 10.1016/s0092-8674(00)80620-0] [Citation(s) in RCA: 1802] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Double-stranded RNA (dsRNA) directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Using a recently developed Drosophila in vitro system, we examined the molecular mechanism underlying RNAi. We find that RNAi is ATP dependent yet uncoupled from mRNA translation. During the RNAi reaction, both strands of the dsRNA are processed to RNA segments 21-23 nucleotides in length. Processing of the dsRNA to the small RNA fragments does not require the targeted mRNA. The mRNA is cleaved only within the region of identity with the dsRNA. Cleavage occurs at sites 21-23 nucleotides apart, the same interval observed for the dsRNA itself, suggesting that the 21-23 nucleotide fragments from the dsRNA are guiding mRNA cleavage.
Collapse
Affiliation(s)
- P D Zamore
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655, USA.
| | | | | | | |
Collapse
|
57
|
Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol 2000; 10:169-78. [PMID: 10704412 DOI: 10.1016/s0960-9822(00)00323-7] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cell-fate determination requires that cells choose between alternative developmental pathways. For example, germ cells in the nematode worm Caenorhabditis elegans choose between mitotic and meiotic division, and between oogenesis and spermatogenesis. Germ-line mitosis depends on a somatic signal that is mediated by a Notch-type signaling pathway. The ego-1 gene was originally identified on the basis of genetic interactions with the receptor in this pathway and was also shown to be required for oogenesis. Here, we provide more insight into the role of ego-1 in germ-line development. RESULTS We have determined the ego-1 gene structure and the molecular basis of ego-1 alleles. Putative ego-1 null mutants had multiple, previously unreported defects in germ-line development. The ego-1 transcript was found predominantly in the germ line. The predicted EGO-1 protein was found to be related to the tomato RNA-directed RNA polymerase (RdRP) and to Neurospora crassa QDE-1, two proteins implicated in post-transcriptional gene silencing (PTGS). For a number of germ-line-expressed genes, ego-1 mutants were resistant to a form of PTGS called RNA interference. CONCLUSIONS The ego-1 gene is the first example of a gene encoding an RdRP-related protein with an essential developmental function. The ego-1 gene is also required for a robust response to RNA interference by certain genes. Hence, a protein required for germ-line development in C. elegans may be a component of the RNA interference/PTGS machinery.
Collapse
Affiliation(s)
- A Smardon
- Department of Biology, Syracuse University, 108 College Place, New York 13244, USA
| | | | | | | | | | | |
Collapse
|
58
|
Kitagawa R, Rose AM. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1999; 1:514-21. [PMID: 10587648 DOI: 10.1038/70309] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spindle-assembly checkpoint ensures that, during mitosis and meiosis, chromosomes do not segregate until they are properly attached to the microtubules of the spindle. Here we show that mdf-1 and mdf-2 are components of the spindle-assembly checkpoint in Caenorhabditis elegans, and are essential for the long-term survival and fertility of this organism. Loss of function of either of these genes leads to the accumulation of a variety of defects, including chromosome abnormalities, X-chromosome non-disjunction or loss, problems in gonad development, and embryonic lethality. Antibodies that recognize the MDF-2 protein localize to nuclei of the cleaving embryo in a cell-cycle-dependent manner. mdf-1, a gene encoding a product that interacts with MDF-2, is required for cell-cycle arrest and proper chromosome segregation in premeiotic germ cells treated with nocodazole, a microtubule-depolymerizing agent. In the absence of mdf gene products, errors in chromosome segregation arise and accumulate, ultimately leading to genetic lethality.
Collapse
Affiliation(s)
- R Kitagawa
- Department of Medical Genetics, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
59
|
Abstract
Notch, LIN-12, and GLP-1 are receptors that mediate a broad range of cell interactions during Drosophila and nematode development. Signaling by these receptors relies on a conserved pathway with three core components: DSL ligand, LNG receptor, and a CSL effector that links the receptor to its transcriptional response. Although key functional regions have been identified in each class of proteins, the mechanism for signal transduction is not yet understood. Diverse regulatory mechanisms influence signaling by the LIN-12/Notch pathway. Inductive signaling relies on the synthesis of ligand and receptor in distinct but neighboring cells. By contrast, lateral signaling leads to the transformation of equivalent cells that express both ligand and receptor into nonequivalent cells that express either ligand or receptor. This transformation appears to rely on regulatory feedback loops within the LIN-12/Notch pathway. In addition, the pathway can be regulated by intrinsic factors that are asymmetrically segregated during cell division or by extrinsic cues via other signaling pathways. Specificity in the pathway does not appear to reside in the particular ligand or receptor used for a given cell-cell interaction. The existence of multiple ligands and receptors may have evolved from the stringent demands placed upon the regulation of genes encoding them.
Collapse
Affiliation(s)
- J Kimble
- Department of Biochemistry and Medical Genetics, University of Wisconsin-Madison, USA.
| | | |
Collapse
|
60
|
Abstract
Germline stem cells (GSCs) are the self-renewing population of germ cells that serve as the source for gametogenesis. GSCs exist in diverse forms, from those that undergo strict self-renewing asymmetric divisions in Drosophila to those that maintain their population by balancing between mitosis and differentiation in Caenorhabditis elegans. Most vertebrate spermatogonial GSCs appear to adopt an intermediate strategy. In most animals, GSCs are established during preadult gonadogenesis following the proliferation and migration of embryonic primordial germ cells. GSCs produce numerous gametes throughout the sexually active period of adult life. The establishment and self-renewing division of GSCs are controlled by extracellular signals such as hormones from the hypothalamic-pituitary axis and local interactions between GSCs and their neighboring cells. These extracellular signals may then influence differential gene expression, cell cycle machinery, and cytoskeletal organization of GSCs for their formation and/or divisional asymmetry. In addition, the GSC mechanism is related to that for germline and sex determination. Current knowledge has provided a solid framework for further study of GSCs and stem cells in general.
Collapse
Affiliation(s)
- H Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
61
|
Tax FE, Thomas JH, Ferguson EL, Horvitz HR. Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. Genetics 1997; 147:1675-95. [PMID: 9409830 PMCID: PMC1208340 DOI: 10.1093/genetics/147.4.1675] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.
Collapse
Affiliation(s)
- F E Tax
- Department of Genetics, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
62
|
Regulation of Germline Proliferation in Caenorhabditis Elegans. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1566-3116(08)60035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
63
|
Kadyk LC, Lambie EJ, Kimble J. glp-3 is required for mitosis and meiosis in the Caenorhabditis elegans germ line. Genetics 1997; 145:111-21. [PMID: 9017394 PMCID: PMC1207770 DOI: 10.1093/genetics/145.1.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The germ line is the only tissue in Caenorhabditis elegans in which a stem cell population continues to divide mitotically throughout life; hence the cell cycles of the germ line and the soma are regulated differently. Here we report the genetic and phenotypic characterization of the glp-3 gene. In animals homozygous for each of five recessive loss-of-function alleles, germ cells in both hermaphrodites and males fail to progress through mitosis and meiosis, but somatic cells appear to divide normally. Germ cells in animals grown at 15 degrees appear by DAP1 staining to be uniformly arrested at the G2/M transition with < 20 germ cells per gonad on average, suggesting a checkpoint-mediated arrest. In contrast, germ cells in mutant animals grown at 25 degrees frequently proliferate slowly during adulthood, eventually forming small germ lines with several hundred germ cells. Nevertheless, cells in these small germ lines never undergo meiosis. Double mutant analysis with mutations in other genes affecting germ cell proliferation supports the idea that glp-3 may encode a gene product that is required for the mitotic and meiotic cell cycles in the C. elegans germ line.
Collapse
Affiliation(s)
- L C Kadyk
- Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
64
|
Christensen S, Kodoyianni V, Bosenberg M, Friedman L, Kimble J. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 1996; 122:1373-83. [PMID: 8625826 DOI: 10.1242/dev.122.5.1373] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homologous receptors LIN-12 and GLP-1 mediate diverse cell-signaling events during development of the nematode Caenorhabditis elegans. These two receptors appear to be functionally interchangeable and have sequence similarity to Drosophila Notch. Here we focus on a molecular analysis of the lag-1 gene (lin-12 -and glp-1), which plays a central role in LIN-12 and GLP-1-mediated signal transduction. We find that the predicted LAG-1 protein is homologous to two DNA-binding proteins: human C Promoter Binding Factor (CBF1) and Drosophila Suppressor of Hairless (Su(H)). Furthermore, we show that LAG-1 binds specifically to the DNA sequence RTGGGAA, previously identified as a CBF-1/Su(H)-binding site. Finally, we report that the 5′ flanking regions and first introns of the lin-12, glp-1 and lag-1 genes are enriched for potential LAG-1-binding sites. We propose that LAG-1 is a transcriptional regulator that serves as a primary link between the LIN-12 and GLP-1 receptors and downstream target genes in C. elegans. In addition, we propose that LAG-1 may be a key component of a positive feedback loop that amplifies activity of the LIN-12/GLP-1 pathway.
Collapse
Affiliation(s)
- S Christensen
- Department of Genetics, University of Wisconsin-Madison 53706, USA
| | | | | | | | | |
Collapse
|