51
|
A multispecies approach for comparing sequence evolution of X-linked and autosomal sites inDrosophila. Genet Res (Camb) 2008; 90:421-31. [DOI: 10.1017/s0016672308009804] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SummaryPopulation genetics models show that, under certain conditions, the X chromosome is expected to be under more efficient selection than the autosomes. This could lead to ‘faster-X evolution’, if a large proportion of mutations are fixed by positive selection, as suggested by recent studies inDrosophila. We used a multispecies approach to test this: Muller's element D, an autosomal arm, is fused to the ancestral X chromosome inDrosophila pseudoobscuraand its sister species,Drosophila affinis. We tested whether the same set of genes had higher rates of non-synonymous evolution when they were X-linked (in theD. pseudoobscura/D. affiniscomparison) than when they were autosomal (inDrosophila melanogaster/Drosophila yakuba). Although not significant, our results suggest this may be the case, but only for genes under particularly strong positive selection/weak purifying selection. They also suggest that genes that have become X-linked have higher levels of codon bias and slower synonymous site evolution, consistent with more effective selection on codon usage at X-linked sites.
Collapse
|
52
|
Wright SI, Andolfatto P. The Impact of Natural Selection on the Genome: Emerging Patterns inDrosophilaandArabidopsis. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008. [DOI: 10.1146/annurev.ecolsys.39.110707.173342] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2 Canada,
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544,
| |
Collapse
|
53
|
Ingvarsson PK. Molecular evolution of synonymous codon usage in Populus. BMC Evol Biol 2008; 8:307. [PMID: 18983655 PMCID: PMC2586637 DOI: 10.1186/1471-2148-8-307] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 11/04/2008] [Indexed: 11/12/2022] Open
Abstract
Background Evolution of synonymous codon usage is thought to be determined by a balance between mutation, genetic drift and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. Results I examined the evolution of synonymous codons using EST data from five species of Populus. Data on relative synonymous codon usage in genes with high and low gene expression were used to identify 25 codons from 18 different amino acids that were deemed to be preferred codons across all five species. All five species show significant correlations between codon bias and gene expression, independent of base composition, thus indicating that translational selection has shaped synonymous codon usage. Using a set of 158 orthologous genes I detected an excess of unpreferred to preferred (U → P) mutations in two lineages, P. tremula and P. deltoides. Maximum likelihood estimates of the strength of selection acting on synonymous codons was also significantly greater than zero in P. tremula, with the ML estimate of 4Nes = 0.720. Conclusion The data is consistent with weak selection on preferred codons in all five species. There is also evidence suggesting that selection on synonymous codons has increased in P. tremula. Although the reasons for the increase in selection on codon usage in the P. tremula lineage are not clear, one possible explanation is an increase in the effective population size in P. tremula.
Collapse
Affiliation(s)
- Pär K Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, SE90187 Umeå, Sweden.
| |
Collapse
|
54
|
Vicario S, Mason CE, White KP, Powell JR. Developmental stage and level of codon usage bias in Drosophila. Mol Biol Evol 2008; 25:2269-77. [PMID: 18755761 DOI: 10.1093/molbev/msn189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Codon usage bias (CUB) is a ubiquitous observation in molecular evolution. As a model, Drosophila has been particularly well-studied and indications show that selection at least partially controls codon usage, probably through selection for translational efficiency. Although many aspects of Drosophila CUB have been studied, this is the first study relating codon usage to development in this holometabolous insect with very different life stages. Here we ask the question: What developmental stage of Drosophila melanogaster has the greatest CUB? Genes with maximum expression in the larval stage have the greatest overall CUB when compared with embryos, pupae, and adults. (The same pattern was observed in Drosophila pseudoobscura, see Supplementary Material online.) We hypothesize this is related to the very rapid growth of larvae, placing increased selective pressure to produce large amounts of protein: a 300-fold increase requiring an approximate doubling of protein content every 10 h. Genes with highest expression in adult males and early embryos, stages with the least de novo protein synthesis, display the least CUB. These results are consistent with the hypothesis that CUB is caused (at least in part) by selection for efficient protein production. This seems to hold on the individual gene level (highly expressed genes are more biased than lowly expressed genes) as well as on a more global scale where genes with maximum expression during times of very rapid growth and protein synthesis are more biased than genes with maximum expression during times of low growth.
Collapse
Affiliation(s)
- Saverio Vicario
- Department of Ecology and Evolutionary Biology, Yale University, USA
| | | | | | | |
Collapse
|
55
|
Ometto L, De Lorenzo D, Stephan W. Contrasting patterns of sequence divergence and base composition between Drosophila introns and intergenic regions. Biol Lett 2008; 2:604-7. [PMID: 17148300 PMCID: PMC1833996 DOI: 10.1098/rsbl.2006.0521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two non-coding DNA classes, introns and intergenic regions, of Drosophila melanogaster exhibit contrasting evolutionary patterns. GC content is significantly higher in intergenic regions and affects their degree of nucleotide variability. Divergence is positively correlated with recombination rate in intergenic regions, but not in introns. We argue that these differences are due to different selective constraints rather than mutational or recombinational mechanisms.
Collapse
Affiliation(s)
- Lino Ometto
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
56
|
Almeida FC, Desalle R. Evidence of adaptive evolution of accessory gland proteins in closely related species of the Drosophila repleta group. Mol Biol Evol 2008; 25:2043-53. [PMID: 18635677 DOI: 10.1093/molbev/msn155] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accessory gland proteins (Acps) are part of the seminal fluid of Drosophila species. These proteins have important reproductive functions, being responsible for the proper functioning of several steps of the fertilization process. Acps also contribute indirectly for the reproductive success of males by modulating female behavior. Evidence that Acps participate in sperm competition and sexual conflict includes findings that, on average, Acps have fast evolutionary rates, suggestive of adaptive evolution. This is especially true in species of the Drosophila repleta group. Nevertheless, only in a few occasions have robust statistical tests been used to determine whether observed evolutionary rates are in fact due to positive selection on amino acid substitutions between related species. Here we apply maximum likelihood tests for positive selection on 14 Acps of the D. repleta group. To increase statistical robustness, we use at least 8 sequences, all belonging to species of the Drosophila mulleri complex, for each gene analyzed. We found significant evidence of adaptive evolution for 10 of the tested genes. Among these, the ones with a conserved protein domain had positively selected sites within the functional region of the sequence. We also detected one instance of lineage-specific adaptive evolution in a clade formed by 2 sister species.
Collapse
Affiliation(s)
- Francisca C Almeida
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| | | |
Collapse
|
57
|
Holloway AK, Begun DJ, Siepel A, Pollard KS. Accelerated sequence divergence of conserved genomic elements in Drosophila melanogaster. Genome Res 2008; 18:1592-601. [PMID: 18583644 DOI: 10.1101/gr.077131.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent genomic sequencing of 10 additional Drosophila genomes provides a rich resource for comparative genomics analyses aimed at understanding the similarities and differences between species and between Drosophila and mammals. Using a phylogenetic approach, we identified 64 genomic elements that have been highly conserved over most of the Drosophila tree, but that have experienced a recent burst of evolution along the Drosophila melanogaster lineage. Compared to similarly defined elements in humans, these regions of rapid lineage-specific evolution in Drosophila differ dramatically in location, mechanism of evolution, and functional properties of associated genes. Notably, the majority reside in protein-coding regions and primarily result from rapid adaptive synonymous site evolution. In fact, adaptive evolution appears to be driving substitutions to unpreferred codons. Our analysis also highlights interesting noncoding genomic regions, such as regulatory regions in the gene gooseberry-neuro and a putative novel miRNA.
Collapse
Affiliation(s)
- Alisha K Holloway
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95691, USA.
| | | | | | | |
Collapse
|
58
|
Llopart A, Comeron JM. Recurrent events of positive selection in independent Drosophila lineages at the spermatogenesis gene roughex. Genetics 2008; 179:1009-20. [PMID: 18505872 PMCID: PMC2429854 DOI: 10.1534/genetics.107.086231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/08/2008] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the role of positive selection in the evolution of genes with male-biased expression can be hindered by two observations. First, male-biased genes tend to be overrepresented among lineage-specific genes. Second, novel genes are prone to experience bursts of adaptive evolution shortly after their formation. A thorough study of the forces acting on male-biased genes therefore would benefit from phylogenywide analyses that could distinguish evolutionary trends associated with gene formation and later events, while at the same time tackling the interesting question of whether adaptive evolution is indeed idiosyncratic. Here we investigate the roughex (rux) gene, a dose-dependent regulator of Drosophila spermatogenesis with a C-terminal domain responsible for nuclear localization that shows a distinct amino acid sequence in the melanogaster subgroup. We collected polymorphism and divergence data in eight populations of six Drosophila species, for a total of 99 rux sequences, to study rates and patterns of evolution at this male-biased gene. Our results from two phylogeny-based methods (PAML and HyPhy) as well as from population genetics analyses (McDonald-Kreitman-based tests) indicate that amino acid replacements have contributed disproportionately to divergence, consistent with adaptive evolution at the Rux protein. Analyses based on extant variation show also the signature of recent selective sweeps in several of the populations surveyed. Most important, we detect the significant and consistent signature of positive selection in several independent Drosophila lineages, which evidences recurrent and concurrent events of adaptive evolution after rux formation.
Collapse
Affiliation(s)
- Ana Llopart
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
59
|
Kahali B, Basak S, Ghosh TC. Delving Deeper into the Unexpected Correlation Between Gene Expressivity and Codon Usage Bias ofEscherichia coliGenome. J Biomol Struct Dyn 2008; 25:655-61. [DOI: 10.1080/07391102.2008.10507212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
60
|
Haddrill PR, Bachtrog D, Andolfatto P. Positive and negative selection on noncoding DNA in Drosophila simulans. Mol Biol Evol 2008; 25:1825-34. [PMID: 18515263 DOI: 10.1093/molbev/msn125] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is now a wealth of evidence that some of the most important regions of the genome are found outside those that encode proteins, and noncoding regions of the genome have been shown to be subject to substantial levels of selective constraint, particularly in Drosophila. Recent work has suggested that these regions may also have been subject to the action of positive selection, with large fractions of noncoding divergence having been driven to fixation by adaptive evolution. However, this work has focused on Drosophila melanogaster, which is thought to have experienced a reduction in effective population size (N(e)), and thus a reduction in the efficacy of selection, compared with its closest relative Drosophila simulans. Here, we examine patterns of evolution at several classes of noncoding DNA in D. simulans and find that all noncoding DNA is subject to the action of negative selection, indicated by reduced levels of polymorphism and divergence and a skew in the frequency spectrum toward rare variants. We find that the signature of negative selection on noncoding DNA and nonsynonymous sites is obscured to some extent by purifying selection acting on preferred to unpreferred synonymous codon mutations. We investigate the extent to which divergence in noncoding DNA is inferred to be the product of positive selection and to what extent these inferences depend on selection on synonymous sites and demography. Based on patterns of polymorphism and divergence for different classes of synonymous substitution, we find the divergence excess inferred in noncoding DNA and nonsynonymous sites in the D. simulans lineage difficult to reconcile with demographic explanations.
Collapse
Affiliation(s)
- Penelope R Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
61
|
African Drosophila melanogaster and D. simulans populations have similar levels of sequence variability, suggesting comparable effective population sizes. Genetics 2008; 178:405-12. [PMID: 18202383 DOI: 10.1534/genetics.107.080200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster and D. simulans are two closely related species with a similar distribution range. Many studies suggested that D. melanogaster has a smaller effective population size than D. simulans. As most evidence was derived from non-African populations, we readdressed this question by sequencing 10 X-linked loci in five African D. simulans and six African D. melanogaster populations. Contrary to previous results, we found no evidence for higher variability, and thus larger effective population size, in D. simulans. Our observation of similar levels of variability of both species will have important implications for the interpretation of patterns of molecular evolution.
Collapse
|
62
|
Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 2008; 177:2251-61. [PMID: 18073430 DOI: 10.1534/genetics.107.080663] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution of fitness effects of new mutations (DFE) is important for addressing several questions in genetics, including the nature of quantitative variation and the evolutionary fate of small populations. Properties of the DFE can be inferred by comparing the distributions of the frequencies of segregating nucleotide polymorphisms at selected and neutral sites in a population sample, but demographic changes alter the spectrum of allele frequencies at both neutral and selected sites, so can bias estimates of the DFE if not accounted for. We have developed a maximum-likelihood approach, based on the expected allele-frequency distribution generated by transition matrix methods, to estimate parameters of the DFE while simultaneously estimating parameters of a demographic model that allows a population size change at some time in the past. We tested the method using simulations and found that it accurately recovers simulated parameter values, even if the simulated demography differs substantially from that assumed in our analysis. We use our method to estimate parameters of the DFE for amino acid-changing mutations in humans and Drosophila melanogaster. For a model of unconditionally deleterious mutations, with effects sampled from a gamma distribution, the mean estimate for the distribution shape parameter is approximately 0.2 for human populations, which implies that the DFE is strongly leptokurtic. For Drosophila populations, we estimate that the shape parameter is approximately 0.35. Differences in the shape of the distribution and the mean selection coefficient between humans and Drosophila result in significantly more strongly deleterious mutations in Drosophila than in humans, and, conversely, nearly neutral mutations are significantly less frequent.
Collapse
|
63
|
Evolution of genes and genomes on the Drosophila phylogeny. Nature 2008; 450:203-18. [PMID: 17994087 DOI: 10.1038/nature06341] [Citation(s) in RCA: 1520] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/05/2007] [Indexed: 12/11/2022]
Abstract
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
Collapse
|
64
|
Vicario S, Moriyama EN, Powell JR. Codon usage in twelve species of Drosophila. BMC Evol Biol 2007; 7:226. [PMID: 18005411 PMCID: PMC2213667 DOI: 10.1186/1471-2148-7-226] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/15/2007] [Indexed: 11/25/2022] Open
Abstract
Background Codon usage bias (CUB), the uneven use of synonymous codons, is a ubiquitous observation in virtually all organisms examined. The pattern of codon usage is generally similar among closely related species, but differs significantly among distantly related organisms, e.g., bacteria, yeast, and Drosophila. Several explanations for CUB have been offered and some have been supported by observations and experiments, although a thorough understanding of the evolutionary forces (random drift, mutation bias, and selection) and their relative importance remains to be determined. The recently available complete genome DNA sequences of twelve phylogenetically defined species of Drosophila offer a hitherto unprecedented opportunity to examine these problems. We report here the patterns of codon usage in the twelve species and offer insights on possible evolutionary forces involved. Results (1) Codon usage is quite stable across 11/12 of the species: G- and especially C-ending codons are used most frequently, thus defining the preferred codons. (2) The only amino acid that changes in preferred codon is Serine with six species of the melanogaster group favoring TCC while the other species, particularly subgenus Drosophila species, favor AGC. (3) D. willistoni is an exception to these generalizations in having a shifted codon usage for seven amino acids toward A/T in the wobble position. (4) Amino acids differ in their contribution to overall CUB, Leu having the greatest and Asp the least. (5) Among two-fold degenerate amino acids, A/G ending amino acids have more selection on codon usage than T/C ending amino acids. (6) Among the different chromosome arms or elements, genes on the non-recombining element F (dot chromosome) have the least CUB, while genes on the element A (X chromosome) have the most. (7) Introns indicate that mutation bias in all species is approximately 2:1, AT:GC, the opposite of codon usage bias. (8) There is also evidence for some overall regional bias in base composition that may influence codon usage. Conclusion Overall, these results suggest that natural selection has acted on codon usage in the genus Drosophila, at least often enough to leave a footprint of selection in modern genomes. However, there is evidence in the data that random forces (drift and mutation) have also left patterns in the data, especially in genes under weak selection for codon usage for example genes in regions of low recombination. The documentation of codon usage patterns in each of these twelve genomes also aids in ongoing annotation efforts.
Collapse
Affiliation(s)
- Saverio Vicario
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8105, USA.
| | | | | |
Collapse
|
65
|
Heger A, Ponting CP. Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. Genome Res 2007; 17:1837-49. [PMID: 17989258 DOI: 10.1101/gr.6249707] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins.
Collapse
Affiliation(s)
- Andreas Heger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom.
| | | |
Collapse
|
66
|
Heger A, Ponting CP. Variable strength of translational selection among 12 Drosophila species. Genetics 2007; 177:1337-48. [PMID: 18039870 PMCID: PMC2147958 DOI: 10.1534/genetics.107.070466] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 09/05/2007] [Indexed: 01/06/2023] Open
Abstract
Codon usage bias in Drosophila melanogaster genes has been attributed to negative selection of those codons whose cellular tRNA abundance restricts rates of mRNA translation. Previous studies, which involved limited numbers of genes, can now be compared against analyses of the entire gene complements of 12 Drosophila species whose genome sequences have become available. Using large numbers (6138) of orthologs represented in all 12 species, we establish that the codon preferences of more closely related species are better correlated. Differences between codon usage biases are attributed, in part, to changes in mutational biases. These biases are apparent from the strong correlation (r = 0.92, P < 0.001) among these genomes' intronic G + C contents and exonic G + C contents at degenerate third codon positions. To perform a cross-species comparison of selection on codon usage, while accounting for changes in mutational biases, we calibrated each genome in turn using the codon usage bias indices of highly expressed ribosomal protein genes. The strength of translational selection was predicted to have varied between species largely according to their phylogeny, with the D. melanogaster group species exhibiting the strongest degree of selection.
Collapse
Affiliation(s)
- Andreas Heger
- MRC Functional Genetics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom.
| | | |
Collapse
|
67
|
Akashi H, Goel P, John A. Ancestral inference and the study of codon bias evolution: implications for molecular evolutionary analyses of the Drosophila melanogaster subgroup. PLoS One 2007; 2:e1065. [PMID: 17957249 PMCID: PMC2020436 DOI: 10.1371/journal.pone.0001065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/21/2007] [Indexed: 11/18/2022] Open
Abstract
Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution. Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree. Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of molecular evolution in lineages ancestral to those of interest.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Institute of Molecular Evolutionary Genetics, Department of Biology, Pennsylvania State University, State College, Pennsylvania, United States of America.
| | | | | |
Collapse
|
68
|
Rispe C, Legeai F, Gauthier JP, Tagu D. Strong heterogeneity in nucleotidic composition and codon bias in the pea aphid (Acyrthosiphon pisum) shown by EST-based coding genome reconstruction. J Mol Evol 2007; 65:413-24. [PMID: 17928936 DOI: 10.1007/s00239-007-9023-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 06/08/2007] [Accepted: 07/02/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study was to analyze patterns of nucleotidic composition and codon usage in the pea aphid genome (Acyrthosiphon pisum). A collection of 60,000 expressed sequence tags (ESTs) in the pea aphid has been used to automatically reconstruct 5809 coding sequences (CDSs), based on similarity with known proteins and on coding style recognition. Reconstructions were manually checked for ribosomal proteins, leading to tentatively reconstruct the nea-complete set of this category. Pea aphid coding sequences showed a shift toward AT (especially at the third codon position) compared to drosophila homologues. Genes with a putative high level of expression (ribosomal and other genes with high EST support) remained more GC3-rich and had a distinct codon usage from bulk sequences: they exhibited a preference for C-ending codons and CGT (for arginine), which thus appeared optimal for translation. However, the discrimination was not as strong as in drosophila, suggesting a reduced degree of translational selection. The space of variation in codon usage for A. pisum appeared to be larger than in drosophila, with a substantial fraction of genes that remained GC3-rich. Some of those (in particular some structural proteins) also showed high levels of codon bias and a very strong preference for C-ending codons, which could be explained either by strong translational selection or by other mechanisms. Finally, genomic traces were analyzed to build 206 fragments containing a full CDS, which allowed studying the correlations between GC contents of coding and those of noncoding (flanking and introns) sequences.
Collapse
Affiliation(s)
- Claude Rispe
- Institut National de la Recherche Agronomique, Domaine de la Motte, Unité Mixte de Recherche 1099 BIO3P, Le Rheu, France.
| | | | | | | |
Collapse
|
69
|
Comeron JM, Williford A, Kliman RM. The Hill–Robertson effect: evolutionary consequences of weak selection and linkage in finite populations. Heredity (Edinb) 2007; 100:19-31. [PMID: 17878920 DOI: 10.1038/sj.hdy.6801059] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The 'Hill-Robertson (HR) effect' describes that linkage between sites under selection will reduce the overall effectiveness of selection in finite populations. Here we discuss the major concepts associated with the HR effect and present results of computer simulations focusing on the linkage effects generated by multiple sites under weak selection. Most models of linkage and selection forecast differences in effectiveness of selection between chromosomes or chromosomal regions involving a number of genes. The abundance and physical clustering of weakly selected mutations across genomes, however, justify the investigation of HR effects at a very local level and we pay particular attention to linkage effects among selected sites of the same gene. Overall, HR effects caused by weakly selected mutations predict differences in effectiveness of selection between genes that differ in exon-intron structures and across genes. Under this scenario, introns might play an advantageous role reducing intragenic HR effects. Finally, we summarize observations that are consistent with local HR effects in Drosophila, discuss potential consequences on population genetic studies and suggest future lines of research.
Collapse
Affiliation(s)
- J M Comeron
- Department of Biological Sciences, University of Iowa, IA, USA.
| | | | | |
Collapse
|
70
|
Díaz-Castillo C, Golic KG. Evolution of gene sequence in response to chromosomal location. Genetics 2007; 177:359-74. [PMID: 17890366 PMCID: PMC2013720 DOI: 10.1534/genetics.107.077081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/06/2007] [Indexed: 12/26/2022] Open
Abstract
Evolutionary forces acting on the repetitive DNA of heterochromatin are not constrained by the same considerations that apply to protein-coding genes. Consequently, such sequences are subject to rapid evolutionary change. By examining the Troponin C gene family of Drosophila melanogaster, which has euchromatic and heterochromatic members, we find that protein-coding genes also evolve in response to their chromosomal location. The heterochromatic members of the family show a reduced CG content and increased variation in DNA sequence. We show that the CG reduction applies broadly to the protein-coding sequences of genes located at the heterochromatin:euchromatin interface, with a very strong correlation between CG content and the distance from centric heterochromatin. We also observe a similar trend in the transition from telomeric heterochromatin to euchromatin. We propose that the methylation of DNA is one of the forces driving this sequence evolution.
Collapse
|
71
|
Faure B, Bierne N, Tanguy A, Bonhomme F, Jollivet D. Evidence for a slightly deleterious effect of intron polymorphisms at the EF1alpha gene in the deep-sea hydrothermal vent bivalve Bathymodiolus. Gene 2007; 406:99-107. [PMID: 17707599 DOI: 10.1016/j.gene.2007.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/26/2007] [Accepted: 06/28/2007] [Indexed: 11/25/2022]
Abstract
A multilocus analysis was initiated in order to infer the general effect of demography and the indirect effect of positive selection on some chromosome segments in Bathymodiolus. Mussels of the genus Bathymodiolus inhabit the very hostile, fragmented and variable environment of deep-sea hydrothermal vents which is thought to cause recurrent population bottlenecks via extinction/colonisation processes and adaptation to new environmental conditions. In the course of this work we discovered that the assumption of neutrality of non-coding polymorphisms usually made in genome scan experiments was likely to be violated at one of the loci we analysed. The direct effect of slight purifying selection on non-coding polymorphisms shares many resemblances with the indirect effect of positive selection through genetic hitchhiking. Combining polymorphism with divergence data for several closely related species allowed us to obtain different expectations for the direct effect of negative selection and the indirect effect of positive selection. We observed a strong excess of rare non-coding polymorphisms at the second intron of the EF1alpha gene in the two species Bathymodiolus azoricus and Bathymodiolus thermophilus, while two other loci, the mitochondrial COI gene and an intron of the Lysozyme gene, did not exhibit such a deviation. In addition, the divergence rate of the EF1alpha intron was estimated to be unexpectedly low when calibrated using the closure of the Panama Isthmus that interrupted gene flow between the two species. The polymorphism to divergence ratio was similar to the one observed for the other two loci, in accordance to the hypothesis of purifying selection. We conclude that slight purifying selection is likely to act on polymorphic intronic mutations of the EF1alpha second intron and discuss the possible relationship with the specific biology of Bathymodiolus mussels.
Collapse
Affiliation(s)
- B Faure
- Evolution et Génétique des Populations Marines, UMR 7144, CNRS-UPMC, Station Biologique de Roscoff, Place Georges Teissier, 29682Roscoff, France.
| | | | | | | | | |
Collapse
|
72
|
Maside X, Charlesworth B. Patterns of molecular variation and evolution in Drosophila americana and its relatives. Genetics 2007; 176:2293-305. [PMID: 17507679 PMCID: PMC1950632 DOI: 10.1534/genetics.107.071191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the results of a survey of DNA sequence variability at X-linked and autosomal loci in Drosophila americana and of patterns of DNA sequence evolution among D. americana and four other related species in the virilis group of Drosophila. D. americana shows a typical level of silent polymorphism for a Drosophila species, but has an unusually low ratio of nonsynonymous to silent variation. Both D. virilis and D. americana also show a low ratio of nonsynonymous to synonymous substitutions along their respective lineages since the split from their common ancestor. The proportion of amino acid substitutions between D. americana and its relatives that are caused by positive selection, as estimated by extensions of the McDonald-Kreitman test, appears to be unusually high. We cannot, however, exclude the possibility that this reflects a recent increase in the intensity of selection on nonsynonymous mutations in D. americana and D. virilis. We also find that base composition at neutral sites appears to be in overall equilibrium among these species, but there is evidence for departure from equilibrium for codon usage in some lineages.
Collapse
Affiliation(s)
- Xulio Maside
- Grupo de Medicina Xenómica, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Rúa de San Francisco s/n, 15782 Santiago de Compostela, Spain.
| | | |
Collapse
|
73
|
Bachtrog D. Reduced selection for codon usage bias in Drosophila miranda. J Mol Evol 2007; 64:586-90. [PMID: 17457633 DOI: 10.1007/s00239-006-0257-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 01/22/2007] [Indexed: 01/17/2023]
Abstract
Biased codon usage in many species results from a balance among mutation, weak selection, and genetic drift. Here I show that selection to maintain biased codon usage is reduced in Drosophila miranda relative to its ancestor. Analyses of mutation patterns in noncoding DNA suggest that the extent of this reduction cannot be explained by changes in mutation bias or by biased gene conversion. Low levels of variability in D. miranda relative to its sibling species, D. pseudoobscura, suggest that it has a much smaller effective population size. Reduced codon usage bias in D. miranda may thus result from the reduced efficacy of selection against newly arising mutations to unpreferred codons.
Collapse
Affiliation(s)
- Doris Bachtrog
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0116, La Jolla, CA 92093, USA.
| |
Collapse
|
74
|
Sawyer SA, Parsch J, Zhang Z, Hartl DL. Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc Natl Acad Sci U S A 2007; 104:6504-10. [PMID: 17409186 PMCID: PMC1871816 DOI: 10.1073/pnas.0701572104] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have estimated the selective effects of amino acid replacements in natural populations by comparing levels of polymorphism in 91 genes in African populations of Drosophila melanogaster with their divergence from Drosophila simulans. The genes include about equal numbers whose level of expression in adults is greater in males, greater in females, or approximately equal in the sexes. Markov chain Monte Carlo methods were used to sample key parameters in the stationary distribution of polymorphism and divergence in a model in which the selective effect of each nonsynonymous mutation is regarded as a random sample from some underlying normal distribution whose mean may differ from one gene to the next. Our analysis suggests that approximately 95% of all nonsynonymous mutations that could contribute to polymorphism or divergence are deleterious, and that the average proportion of deleterious amino acid polymorphisms in samples is approximately 70%. On the other hand, approximately 95% of fixed differences between species are positively selected, although the scaled selection coefficient (N(e)s) is very small. We estimate that approximately 46% of amino acid replacements have N(e)s < 2, approximately 84% have N(e)s < 4, and approximately 99% have N(e)s < 7. Although positive selection among amino acid differences between species seems pervasive, most of the selective effects could be regarded as nearly neutral. There are significant differences in selection between sex-biased and unbiased genes, which relate primarily to the mean of the distributions of mutational effects and the fraction of slightly deleterious and weakly beneficial mutations that are fixed.
Collapse
Affiliation(s)
- Stanley A. Sawyer
- *Department of Mathematics, Washington University, St. Louis, MO 63130
| | - John Parsch
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Munich, Germany; and
| | - Zhi Zhang
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Munich, Germany; and
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
75
|
Haddrill PR, Halligan DL, Tomaras D, Charlesworth B. Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol 2007; 8:R18. [PMID: 17284312 PMCID: PMC1852418 DOI: 10.1186/gb-2007-8-2-r18] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/18/2006] [Accepted: 02/06/2007] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The recombinational environment is predicted to influence patterns of protein sequence evolution through the effects of Hill-Robertson interference among linked sites subject to selection. In freely recombining regions of the genome, selection should more effectively incorporate new beneficial mutations, and eliminate deleterious ones, than in regions with low rates of genetic recombination. RESULTS We examined the effects of recombinational environment on patterns of evolution using a genome-wide comparison of Drosophila melanogaster and D. yakuba. In regions of the genome with no crossing over, we find elevated divergence at nonsynonymous sites and in long introns, a virtual absence of codon usage bias, and an increase in gene length. However, we find little evidence for differences in patterns of evolution between regions with high, intermediate, and low crossover frequencies. In addition, genes on the fourth chromosome exhibit more extreme deviations from regions with crossing over than do other, no crossover genes outside the fourth chromosome. CONCLUSION All of the patterns observed are consistent with a severe reduction in the efficacy of selection in the absence of crossing over, resulting in the accumulation of deleterious mutations in these regions. Our results also suggest that even a very low frequency of crossing over may be enough to maintain the efficacy of selection.
Collapse
Affiliation(s)
- Penelope R Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Daniel L Halligan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Dimitris Tomaras
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
- 15 Smirnis St, 15669, Papagou, Athens, Greece
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
76
|
Bachtrog D, Andolfatto P. Selection, recombination and demographic history in Drosophila miranda. Genetics 2006; 174:2045-59. [PMID: 17028331 PMCID: PMC1698658 DOI: 10.1534/genetics.106.062760] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 09/14/2006] [Indexed: 12/30/2022] Open
Abstract
Selection, recombination, and the demographic history of a species can all have profound effects on genomewide patterns of variability. To assess the impact of these forces in the genome of Drosophila miranda, we examine polymorphism and divergence patterns at 62 loci scattered across the genome. In accordance with recent findings in D. melanogaster, we find that noncoding DNA generally evolves more slowly than synonymous sites, that the distribution of polymorphism frequencies in noncoding DNA is significantly skewed toward rare variants relative to synonymous sites, and that long introns evolve significantly slower than short introns or synonymous sites. These observations suggest that most noncoding DNA is functionally constrained and evolving under purifying selection. However, in contrast to findings in the D. melanogaster species group, we find little evidence of adaptive evolution acting on either coding or noncoding sequences in D. miranda. Levels of linkage disequilibrium (LD) in D. miranda are comparable to those observed in D. melanogaster, but vary considerably among chromosomes. These patterns suggest a significantly lower rate of recombination on autosomes, possibly due to the presence of polymorphic autosomal inversions and/or differences in chromosome sizes. All chromosomes show significant departures from the standard neutral model, including too much heterogeneity in synonymous site polymorphism relative to divergence among loci and a general excess of rare synonymous polymorphisms. These departures from neutral equilibrium expectations are discussed in the context of nonequilibrium models of demography and selection.
Collapse
Affiliation(s)
- Doris Bachtrog
- Division of Biological Sciences, University of California, San Diego, California 92093, USA.
| | | |
Collapse
|
77
|
Presgraves DC, Stephan W. Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96. Mol Biol Evol 2006; 24:306-14. [PMID: 17056646 DOI: 10.1093/molbev/msl157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nup96 is involved in a lethal hybrid incompatibility between 2 fruit fly species, Drosophila melanogaster and Drosophila simulans. Recurrent adaptive evolution drove the rapid functional divergence of Nup96 in both the D. melanogaster and the D. simulans lineages. Functional divergence of Nup96 between these 2 species is unexpected as Nup96 encodes part of the Nup107 subcomplex, an architectural component of nuclear pore complexes, the macromolecular channels in nuclear envelopes that mediate nucleocytoplasmic traffic in all eukaryotes. Here we study the evolutionary histories of 5 of Nup96's protein interactors--3 stable Nup107 subcomplex proteins (Nup75, Nup107, and Nup133) and 2 mobile nucleoporins (Nup98 and Nup153)--and show that all 5 have experienced recurrent adaptive evolution. These results are consistent with selection-driven coevolution among molecular interactors within species causing the incidental evolution of incompatible interactions seen in hybrids between species. We suggest that genetic conflict-driven processes may have contributed to the rapid molecular evolution of Nup107 subcomplex genes.
Collapse
Affiliation(s)
- Daven C Presgraves
- Section of Evolutionary Biology, Biocenter, University of Munich, Planegg-Martinsried, Germany.
| | | |
Collapse
|
78
|
Singh ND, Arndt PF, Petrov DA. Minor shift in background substitutional patterns in the Drosophila saltans and willistoni lineages is insufficient to explain GC content of coding sequences. BMC Biol 2006; 4:37. [PMID: 17049096 PMCID: PMC1626080 DOI: 10.1186/1741-7007-4-37] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 10/18/2006] [Indexed: 11/10/2022] Open
Abstract
Background Several lines of evidence suggest that codon usage in the Drosophila saltans and D. willistoni lineages has shifted towards a less frequent use of GC-ending codons. Introns in these lineages show a parallel shift toward a lower GC content. These patterns have been alternatively ascribed to either a shift in mutational patterns or changes in the definition of preferred and unpreferred codons in these lineages. Results and discussion To gain additional insight into this question, we quantified background substitutional patterns in the saltans/willistoni group using inactive copies of a novel, Q-like retrotransposable element. We demonstrate that the pattern of background substitutions in the saltans/willistoni lineage has shifted to a significant degree, primarily due to changes in mutational biases. These differences predict a lower equilibrium GC content in the genomes of the saltans/willistoni species compared with that in the D. melanogaster species group. The magnitude of the difference can readily account for changes in intronic GC content, but it appears insufficient to explain changes in codon usage within the saltans/willistoni lineage. Conclusion We suggest that the observed changes in codon usage in the saltans/willistoni clade reflects either lineage-specific changes in the definitions of preferred and unpreferred codons, or a weaker selective pressure on codon bias in this lineage.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Peter F Arndt
- Max Planck for Molecular Genetics, 14195 Berlin, Germany
| | - Dmitri A Petrov
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
79
|
Bierne N, Eyre-Walker A. Variation in synonymous codon use and DNA polymorphism within the Drosophila genome. J Evol Biol 2006; 19:1-11. [PMID: 16405571 DOI: 10.1111/j.1420-9101.2005.00996.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strong negative correlation between the rate of amino-acid substitution and codon usage bias in Drosophila has been attributed to interference between positive selection at nonsynonymous sites and weak selection on codon usage. To further explore this possibility we have investigated polymorphism and divergence at three kinds of sites: synonymous, nonsynonymous and intronic in relation to codon bias in D. melanogaster and D. simulans. We confirmed that protein evolution is one of the main explicative parameters for interlocus codon bias variation (r(2) approximately 40%). However, intron or synonymous diversities, which could have been expected to be good indicators of local interference [here defined as the additional increase of drift due to selection on tightly linked sites, also called 'genetic draft' by Gillespie (2000)] did not covary significantly with codon bias or with protein evolution. Concurrently, levels of polymorphism were reduced in regions of low recombination rates whereas codon bias was not. Finally, while nonsynonymous diversities were very well correlated between species, neither synonymous nor intron diversities observed in D. melanogaster were correlated with those observed in D. simulans. All together, our results suggest that the selective constraint on the protein is a stable component of gene evolution while local interference is not. The pattern of variation in genetic draft along the genome therefore seems to be instable through evolutionary times and should therefore be considered as a minor determinant of codon bias variance. We argue that selective constraints for optimal codon usage are likely to be correlated with selective constraints on the protein, both between codons within a gene, as previously suggested, and also between genes within a genome.
Collapse
Affiliation(s)
- N Bierne
- Centre for the Study of Evolution and School of Biological Sciences, University of Sussex, Brighton, UK.
| | | |
Collapse
|
80
|
Press WH, Robins H. Isochores exhibit evidence of genes interacting with the large-scale genomic environment. Genetics 2006; 174:1029-40. [PMID: 16951086 PMCID: PMC1602094 DOI: 10.1534/genetics.105.054445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genomes of mammals and birds can be partitioned into megabase-long regions, termed isochores, with consistently high, or low, average C + G content. Isochores with high CG contain a mixture of CG-rich and AT-rich genes, while high-AT isochores contain predominantly AT-rich genes. The two gene populations in the high-CG isochores are functionally distinguishable by statistical analysis of their gene ontology categories. However, the aggregate of the two populations in CG isochores is not statistically distinct from AT-rich genes in AT isochores. Genes tend to be located at local extrema of composition within the isochores, indicating that the CG-enriching mechanism acted differently when near to genes. On the other hand, maximum-likelihood reconstruction of molecular phylogenetic trees shows that branch lengths (evolutionary distances) for third codon positions in CG-rich genes are not substantially larger than those for AT-rich genes. In the context of neutral mutation theory this argues against any strong positive selection. Disparate features of isochores might be explained by a model in which about half of all genes functionally require AT richness, while, in warm-blooded organisms, about half the genome (in large coherent blocks) acquired a strong bias for mutations to CG. Using mutations in CG-rich genes as convenient indicators, we show that approximately 20% of amino acids in proteins are broadly substitutable, without regard to chemical similarity.
Collapse
|
81
|
Ko WY, Piao S, Akashi H. Strong regional heterogeneity in base composition evolution on the Drosophila X chromosome. Genetics 2006; 174:349-62. [PMID: 16547109 PMCID: PMC1569809 DOI: 10.1534/genetics.105.054346] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 05/08/2006] [Indexed: 11/18/2022] Open
Abstract
Fluctuations in base composition appear to be prevalent in Drosophila and mammal genome evolution, but their timescale, genomic breadth, and causes remain obscure. Here, we study base composition evolution within the X chromosomes of Drosophila melanogaster and five of its close relatives. Substitutions were inferred on six extant and two ancestral lineages for 14 near-telomeric and 9 nontelomeric genes. GC content evolution is highly variable both within the genome and within the phylogenetic tree. In the lineages leading to D. yakuba and D. orena, GC content at silent sites has increased rapidly near telomeres, but has decreased in more proximal (nontelomeric) regions. D. orena shows a 17-fold excess of GC-increasing vs. AT-increasing synonymous changes within a small (approximately 130-kb) region close to the telomeric end. Base composition changes within introns are consistent with changes in mutation patterns, but stronger GC elevation at synonymous sites suggests contributions of natural selection or biased gene conversion. The Drosophila yakuba lineage shows a less extreme elevation of GC content distributed over a wider genetic region (approximately 1.2 Mb). A lack of change in GC content for most introns within this region suggests a role of natural selection in localized base composition fluctuations.
Collapse
Affiliation(s)
- Wen-Ya Ko
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
82
|
Inagaki Y, Roger AJ. Phylogenetic estimation under codon models can be biased by codon usage heterogeneity. Mol Phylogenet Evol 2006; 40:428-34. [PMID: 16647273 DOI: 10.1016/j.ympev.2006.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 03/10/2006] [Accepted: 03/15/2006] [Indexed: 11/26/2022]
Abstract
In theory, codon models that account for the dependence of nucleotide substitutions between codon positions as well as differences between synonymous and non-synonymous changes best describe the sequence evolution in protein coding genes. However, in practice we know little about the degree to which violations of the assumptions of codon model-based estimates occur, and how significant these artifacts may be. In nucleotide-based phylogenies from first and second codon positions in a concatenated plastid gene data set, two distantly related taxa--dinoflagellate and haptophyte plastids--were robustly grouped together. This artifactual grouping is attributed to the parallel heterogeneity in leucine (Leu) and serine (Ser) codon usages in the data set. Here, by using this data set, we demonstrated that codon-based phylogenetic estimations are seriously biased, robustly uniting the dinoflagellate and haptophyte plastids into a monophyletic clade, when the model assumption of homogeneity of codon composition was violated. Our results suggest that similar phylogenetic artifacts may occur via codon usage heterogeneity in any amino acids in codon model-based estimations. We advise that homogeneity in codon usage across taxa in a data set be confirmed before codon model-based phylogenetic estimation is attempted.
Collapse
Affiliation(s)
- Yuji Inagaki
- Center for Computational Sciences, Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | | |
Collapse
|
83
|
Halligan DL, Keightley PD. Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 2006; 16:875-84. [PMID: 16751341 PMCID: PMC1484454 DOI: 10.1101/gr.5022906] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-coding DNA comprises approximately 80% of the euchromatic portion of the Drosophila melanogaster genome. Non-coding sequences are known to contain functionally important elements controlling gene expression, but the proportion of sites that are selectively constrained is still largely unknown. We have compared the complete D. melanogaster and Drosophila simulans genome sequences to estimate mean selective constraint (the fraction of mutations that are eliminated by selection) in coding and non-coding DNA by standardizing to substitution rates in putatively unconstrained sequences. We show that constraint is positively correlated with intronic and intergenic sequence length and is generally remarkably strong in non-coding DNA, implying that more than half of all point mutations in the Drosophila genome are deleterious. This fraction is also likely to be an underestimate if many substitutions in non-coding DNA are adaptively driven to fixation. We also show that substitutions in long introns and intergenic sequences are clustered, such that there is an excess of substitutions <8 bp apart and a deficit farther apart. These results suggest that there are blocks of constrained nucleotides, presumably involved in gene expression control, that are concentrated in long non-coding sequences. Furthermore, we infer that there is more than three times as much functional non-coding DNA as protein-coding DNA in the Drosophila genome. Most deleterious mutations therefore occur in non-coding DNA, and these may make an important contribution to a wide variety of evolutionary processes.
Collapse
Affiliation(s)
- Daniel L Halligan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
84
|
Chamary JV, Parmley JL, Hurst LD. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 2006; 7:98-108. [PMID: 16418745 DOI: 10.1038/nrg1770] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the assumption of the neutral theory of molecular evolution - that some classes of mutation have too small an effect on fitness to be affected by natural selection - seems intuitively reasonable, over the past few decades the theory has been in retreat. At least in species with large populations, even synonymous mutations in exons are not neutral. By contrast, in mammals, neutrality of these mutations is still commonly assumed. However, new evidence indicates that even some synonymous mutations are subject to constraint, often because they affect splicing and/or mRNA stability. This has implications for understanding disease, optimizing transgene design, detecting positive selection and estimating the mutation rate.
Collapse
Affiliation(s)
- J V Chamary
- Center for Integrative Genomics, University of Lausanne, Switzerland.
| | | | | |
Collapse
|
85
|
Abstract
When polymorphism and divergence data are available for multiple loci, extended forms of the McDonald-Kreitman test can be used to estimate the average proportion of the amino acid divergence due to adaptive evolution--a statistic denoted alpha. But such tests are subject to many biases. Most serious is the possibility that high estimates of alpha reflect demographic changes rather than adaptive substitution. Testing for between-locus variation in alpha is one possible way of distinguishing between demography and selection. However, such tests have yielded contradictory results, and their efficacy is unclear. Estimates of alpha from the same model organisms have also varied widely. This study clarifies the reasons for these discrepancies, identifying several method-specific biases in widely used estimators and assessing the power of the methods. As part of this process, a new maximum-likelihood estimator is introduced. This estimator is applied to a newly compiled data set of 115 genes from Drosophila simulans, each with each orthologs from D. melanogaster and D. yakuba. In this way, it is estimated that alpha approximately 0.4+/-0.1, a value that does not vary substantially between different loci or over different periods of divergence. The implications of these results are discussed.
Collapse
Affiliation(s)
- John J Welch
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
86
|
Akashi H, Ko WY, Piao S, John A, Goel P, Lin CF, Vitins AP. Molecular evolution in the Drosophila melanogaster species subgroup: frequent parameter fluctuations on the timescale of molecular divergence. Genetics 2005; 172:1711-26. [PMID: 16387879 PMCID: PMC1456288 DOI: 10.1534/genetics.105.049676] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although mutation, genetic drift, and natural selection are well established as determinants of genome evolution, the importance (frequency and magnitude) of parameter fluctuations in molecular evolution is less understood. DNA sequence comparisons among closely related species allow specific substitutions to be assigned to lineages on a phylogenetic tree. In this study, we compare patterns of codon usage and protein evolution in 22 genes (>11,000 codons) among Drosophila melanogaster and five relatives within the D. melanogaster subgroup. We assign changes to eight lineages using a maximum-likelihood approach to infer ancestral states. Uncertainty in ancestral reconstructions is taken into account, at least to some extent, by weighting reconstructions by their posterior probabilities. Four of the eight lineages show potentially genomewide departures from equilibrium synonymous codon usage; three are decreasing and one is increasing in major codon usage. Several of these departures are consistent with lineage-specific changes in selection intensity (selection coefficients scaled to effective population size) at silent sites. Intron base composition and rates and patterns of protein evolution are also heterogeneous among these lineages. The magnitude of forces governing silent, intron, and protein evolution appears to have varied frequently, and in a lineage-specific manner, within the D. melanogaster subgroup.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Kondrashov FA, Ogurtsov AY, Kondrashov AS. Selection in favor of nucleotides G and C diversifies evolution rates and levels of polymorphism at mammalian synonymous sites. J Theor Biol 2005; 240:616-26. [PMID: 16343547 DOI: 10.1016/j.jtbi.2005.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 10/26/2005] [Accepted: 10/27/2005] [Indexed: 11/24/2022]
Abstract
The impact of synonymous nucleotide substitutions on fitness in mammals remains controversial. Despite some indications of selective constraint, synonymous sites are often assumed to be neutral, and the rate of their evolution is used as a proxy for mutation rate. We subdivide all sites into four classes in terms of the mutable CpG context, nonCpG, postC, preG, and postCpreG, and compare four-fold synonymous sites and intron sites residing outside transposable elements. The distribution of the rate of evolution across all synonymous sites is trimodal. Rate of evolution at nonCpG synonymous sites, not preceded by C and not followed by G, is approximately 10% below that at such intron sites. In contrast, rate of evolution at postCpreG synonymous sites is approximately 30% above that at such intron sites. Finally, synonymous and intron postC and preG sites evolve at similar rates. The relationship between the levels of polymorphism at the corresponding synonymous and intron sites is very similar to that between their rates of evolution. Within every class, synonymous sites are occupied by G or C much more often than intron sites, whose nucleotide composition is consistent with neutral mutation-drift equilibrium. These patterns suggest that synonymous sites are under weak selection in favor of G and C, with the average coefficient s approximately 0.25/Ne approximately 10(-5), where Ne is the effective population size. Such selection decelerates evolution and reduces variability at sites with symmetric mutation, but has the opposite effects at sites where the favored nucleotides are more mutable. The amino-acid composition of proteins dictates that many synonymous sites are CpGprone, which causes them, on average, to evolve faster and to be more polymorphic than intron sites. An average genotype carries approximately 10(7) suboptimal nucleotides at synonymous sites, implying synergistic epistasis in selection against them.
Collapse
Affiliation(s)
- Fyodor A Kondrashov
- Section of Ecology, Behavior and Evolution, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0346, USA.
| | | | | |
Collapse
|
88
|
|
89
|
Abstract
The study of base composition evolution in Drosophila has been achieved mostly through the analysis of coding sequences. Third codon position GC content, however, is influenced by both neutral forces (e.g., mutation bias) and natural selection for codon usage optimization. In this article, large data sets of noncoding DNA sequence polymorphism in D. melanogaster and D. simulans were gathered from public databases to try to disentangle these two factors-noncoding sequences are not affected by selection for codon usage. Allele frequency analyses revealed an asymmetric pattern of AT vs. GC noncoding polymorphisms: AT --> GC mutations are less numerous, and tend to segregate at a higher frequency, than GC --> AT ones, especially at GC-rich loci. This is indicative of nonstationary evolution of base composition and/or of GC-biased allele transmission. Fitting population genetics models to the allele frequency spectra confirmed this result and favored the hypothesis of a biased transmission. These results, together with previous reports, suggest that GC-biased gene conversion has influenced base composition evolution in Drosophila and explain the correlation between intron and exon GC content.
Collapse
Affiliation(s)
- Nicolas Galtier
- UMR 5171, "Génome, Populations, Interactions, Adaptation," CNRS, Université Montpellier 2, IFREMER, 34095 Montpellier, France.
| | | | | |
Collapse
|
90
|
Presgraves DC. Recombination Enhances Protein Adaptation in Drosophila melanogaster. Curr Biol 2005; 15:1651-6. [PMID: 16169487 DOI: 10.1016/j.cub.2005.07.065] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/10/2005] [Accepted: 07/25/2005] [Indexed: 11/19/2022]
Abstract
Evolutionary theory predicts that the rate and level of adaptation will be enhanced in sexual relative to asexual genomes because sexual recombination facilitates the elimination of deleterious mutations and the fixation of beneficial ones by natural selection. To date, the most compelling evidence for this prediction comes from experimental evolution studies and from loci completely lacking recombination, such as those on Y chromosomes, which often show reduced adaptation and even degeneration. Here, by analyzing replacement and silent DNA polymorphism and divergence at 98 loci, I show that recombination increases the efficacy of protein adaptation throughout the genome of the fruit fly Drosophila melanogaster. Genes residing in genomic regions with reduced recombination rates suffer a greater load of segregating, mildly deleterious mutations and fix fewer beneficial mutations than genes residing in regions with higher recombination rates. These findings suggest that the capacity to respond to natural selection varies with recombination rate across the genome, consistent with theory on the evolutionary advantages of sex and recombination.
Collapse
Affiliation(s)
- Daven C Presgraves
- Department of Biology II, Ludwig-Maximilians-Universität BioCenter, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
91
|
Haddrill PR, Charlesworth B, Halligan DL, Andolfatto P. Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol 2005; 6:R67. [PMID: 16086849 PMCID: PMC1273634 DOI: 10.1186/gb-2005-6-8-r67] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/25/2005] [Accepted: 06/29/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Introns comprise a large fraction of eukaryotic genomes, yet little is known about their functional significance. Regulatory elements have been mapped to some introns, though these are believed to account for only a small fraction of genome wide intronic DNA. No consistent patterns have emerged from studies that have investigated general levels of evolutionary constraint in introns. RESULTS We examine the relationship between intron length and levels of evolutionary constraint by analyzing inter-specific divergence at 225 intron fragments in Drosophila melanogaster and Drosophila simulans, sampled from a broad distribution of intron lengths. We document a strongly negative correlation between intron length and divergence. Interestingly, we also find that divergence in introns is negatively correlated with GC content. This relationship does not account for the correlation between intron length and divergence, however, and may simply reflect local variation in mutational rates or biases. CONCLUSION Short introns make up only a small fraction of total intronic DNA in the genome. Our finding that long introns evolve more slowly than average implies that, while the majority of introns in the Drosophila genome may experience little or no selective constraint, most intronic DNA in the genome is likely to be evolving under considerable constraint. Our results suggest that functional elements may be ubiquitous within longer introns and that these introns may have a more general role in regulating gene expression than previously appreciated. Our finding that GC content and divergence are negatively correlated in introns has important implications for the interpretation of the correlation between divergence and levels of codon bias observed in Drosophila.
Collapse
Affiliation(s)
- Penelope R Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Daniel L Halligan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Peter Andolfatto
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
92
|
Singh ND, Davis JC, Petrov DA. Codon Bias and Noncoding GC Content Correlate Negatively with Recombination Rate on the Drosophila X Chromosome. J Mol Evol 2005; 61:315-24. [PMID: 16044248 DOI: 10.1007/s00239-004-0287-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 03/10/2005] [Indexed: 11/28/2022]
Abstract
The patterns and processes of molecular evolution may differ between the X chromosome and the autosomes in Drosophila melanogaster. This may in part be due to differences in the effective population size between the two chromosome sets and in part to the hemizygosity of the X chromosome in Drosophila males. These and other factors may lead to differences both in the gene complements of the X and the autosomes and in the properties of the genes residing on those chromosomes. Here we show that codon bias and recombination rate are correlated strongly and negatively on the X chromosome, and that this correlation cannot be explained by indirect relationships with other known determinants of codon bias. This is in dramatic contrast to the weak positive correlation found on the autosomes. We explored possible explanations for these patterns, which required a comprehensive analysis of the relationships among multiple genetic properties such as protein length and expression level. This analysis highlights conserved features of coding sequence evolution on the X and the autosomes and illuminates interesting differences between these two chromosome sets.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, California, 90305-5020, USA.
| | | | | |
Collapse
|
93
|
Kryukov GV, Schmidt S, Sunyaev S. Small fitness effect of mutations in highly conserved non-coding regions. Hum Mol Genet 2005; 14:2221-9. [PMID: 15994173 DOI: 10.1093/hmg/ddi226] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparison of human and mouse genomes has revealed that many non-coding regions have levels of sequence conservation similar to protein-coding genes. These regions have attracted a lot of attention as potentially functional genomic sequences. However, little is known about the effect mutations in these conserved non-coding regions have on fitness and how many of them are present in the human genome as deleterious polymorphisms. To gain insight into the selective constraints imposed on conserved non-coding and protein-coding regions, we compared substitution rates in primate and rodent lineages and analyzed the density and allele frequencies of human polymorphism. Genomic regions conserved between primate and rodent groups show higher relative conservation within rodents than within primates. Thus, our analysis indicates a genome-wide relaxation of selective constraint in the primate lineage, which most likely resulted from a smaller effective population size. We found that this relaxation is much more profound in conserved non-coding regions than in protein-coding regions, and that mutations at a large proportion of sites in conserved non-coding regions are associated with very small fitness effect. Data on human polymorphism are also consistent with very weak selection in conserved non-coding regions. This staggering enrichment in sites at the borderline of neutrality can be explained by assuming an important role for synergistic epistasis in the evolution of non-coding regions. Our results suggest that most individual mutations in conserved non-coding regions are only slightly deleterious but are numerous and may have a significant cumulative impact on fitness.
Collapse
Affiliation(s)
- Gregory V Kryukov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
94
|
Singh ND, Davis JC, Petrov DA. X-linked genes evolve higher codon bias in Drosophila and Caenorhabditis. Genetics 2005; 171:145-55. [PMID: 15965246 PMCID: PMC1456507 DOI: 10.1534/genetics.105.043497] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparing patterns of molecular evolution between autosomes and sex chromosomes (such as X and W chromosomes) can provide insight into the forces underlying genome evolution. Here we investigate patterns of codon bias evolution on the X chromosome and autosomes in Drosophila and Caenorhabditis. We demonstrate that X-linked genes have significantly higher codon bias compared to autosomal genes in both Drosophila and Caenorhabditis. Furthermore, genes that become X-linked evolve higher codon bias gradually, over tens of millions of years. We provide several lines of evidence that this elevation in codon bias is due exclusively to their chromosomal location and not to any other property of X-linked genes. We present two possible explanations for these observations. One possibility is that natural selection is more efficient on the X chromosome due to effective haploidy of the X chromosomes in males and persistently low effective numbers of reproducing males compared to that of females. Alternatively, X-linked genes might experience stronger natural selection for higher codon bias as a result of maladaptive reduction of their dosage engendered by the loss of the Y-linked homologs.
Collapse
Affiliation(s)
- Nadia D Singh
- Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
95
|
Abstract
Compared to protein-coding sequences, the evolution of noncoding sequences and the selective constraints placed on these sequences is not well characterized. To compare the evolution of coding and noncoding sequences, we have conducted a survey for DNA polymorphism at five randomly chosen loci among a diverse collection of 81 strains of Saccharomyces cerevisiae. Average rates of both polymorphism and divergence are 40% lower at noncoding sites and 90% lower at nonsynonymous sites in comparison to synonymous sites. Although noncoding and coding sequences show substantial variability in ratios of polymorphism to divergence, two of the loci, MLS1 and PDR10, show a higher rate of polymorphism at noncoding compared to synonymous sites. The high rate of polymorphism is not accompanied by a high rate of divergence and is limited to a few small regions. These hypervariable regions include sites with three segregating bases at a single site and adjacent polymorphic sites. We show that this clustering of polymorphic sites is significantly greater than one would expect on the basis of the spacing between polymorphic fourfold degenerate sites. Although hypervariable noncoding sequences could result from selection on regulatory mutations, they could also result from transient mutational hotspots.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63108, USA.
| | | |
Collapse
|
96
|
Hambuch TM, Parsch J. Patterns of synonymous codon usage in Drosophila melanogaster genes with sex-biased expression. Genetics 2005; 170:1691-700. [PMID: 15937136 PMCID: PMC1449783 DOI: 10.1534/genetics.104.038109] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nonrandom use of synonymous codons (codon bias) is a well-established phenomenon in Drosophila. Recent reports suggest that levels of codon bias differ among genes that are differentially expressed between the sexes, with male-expressed genes showing less codon bias than female-expressed genes. To examine the relationship between sex-biased gene expression and level of codon bias on a genomic scale, we surveyed synonymous codon usage in 7276 D. melanogaster genes that were classified as male-, female-, or non-sex-biased in their expression in microarray experiments. We found that male-biased genes have significantly less codon bias than both female- and non-sex-biased genes. This pattern holds for both germline and somatically expressed genes. Furthermore, we find a significantly negative correlation between level of codon bias and degree of sex-biased expression for male-biased genes. In contrast, female-biased genes do not differ from non-sex-biased genes in their level of codon bias and show a significantly positive correlation between codon bias and degree of sex-biased expression. These observations cannot be explained by differences in chromosomal distribution, mutational processes, recombinational environment, gene length, or absolute expression level among genes of the different expression classes. We propose that the observed codon bias differences result from differences in selection at synonymous and/or linked nonsynonymous sites between genes with male- and female-biased expression.
Collapse
Affiliation(s)
- Tina M Hambuch
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), 82152 Munich, Germany
| | | |
Collapse
|
97
|
Marais G, Domazet-Loso T, Tautz D, Charlesworth B. Correlated evolution of synonymous and nonsynonymous sites in Drosophila. J Mol Evol 2005; 59:771-9. [PMID: 15599509 DOI: 10.1007/s00239-004-2671-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 06/30/2004] [Indexed: 11/28/2022]
Abstract
Recent work has shown that Drosophila melanogaster genes with fast-evolving nonsynonymous sites have lower codon usage bias. This pattern has been attributed to interference between positive selection at nonsynonymous sites and weak selection on codon usage. Here we have looked for this correlation in a much larger and less biased dataset, comprising 630 gene pairs from D. melanogaster and D. yakuba. We confirmed that there is a negative correlation between the rate of nonsynonymous substitutions (d(N)) and codon bias in D. melanogaster. We then tested the interference hypothesis and other alternative explanations, including one involving gene expression. We found that d(N) indeed correlates with the level of gene expression. Given that gene expression is a strong determinant of codon bias, the relationship between d(N) and codon bias might be a by-product of gene expression. However, our tests show that none of the hypotheses we consider seem to explain the data fully.
Collapse
Affiliation(s)
- Gabriel Marais
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, EH9 3JT, Scotland, UK
| | | | | | | |
Collapse
|
98
|
Wernegreen JJ, Funk DJ. Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome. J Mol Evol 2005; 59:849-58. [PMID: 15599516 DOI: 10.1007/s00239-003-0192-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
The influence of neutral mutation pressure versus selection on base composition evolution is a subject of considerable controversy. Yet the present study represents the first explicit population genetic analysis of this issue in prokaryotes, the group in which base composition variation is most dramatic. Here, we explore the impact of mutation and selection on the dynamics of synonymous changes in Buchnera aphidicola, the AT-rich bacterial endosymbiont of aphids. Specifically, we evaluated three forms of evidence. (i) We compared the frequencies of directional base changes (AT-->GC vs. GC-->AT) at synonymous sites within and between Buchnera species, to test for selective preference versus effective neutrality of these mutational categories. Reconstructed mutational changes across a robust intraspecific phylogeny showed a nearly 1:1 AT-->GC:GC-->AT ratio. Likewise, stationarity of base composition among Buchnera species indicated equal rates of AT-->GC and GC-->AT substitutions. The similarity of these patterns within and between species supported the neutral model. (ii) We observed an equivalence of relative per-site AT mutation rate and current AT content at synonymous sites, indicating that base composition is at mutational equilibrium. (iii) We demonstrated statistically greater equality in the frequency of mutational categories in Buchnera than in parallel mammalian studies that documented selection on synonymous sites. Our results indicate that effectively neutral mutational pressure, rather than selection, represents the major force driving base composition evolution in Buchnera. Thus they further corroborate recent evidence for the critical role of reduced N(e) in the molecular evolution of bacterial endosymbionts.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Josephine Bay Paul Center for Comparative Molecular Biology & Evolution, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
99
|
Comeron JM. Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence. Genetics 2005; 167:1293-304. [PMID: 15280243 PMCID: PMC1470943 DOI: 10.1534/genetics.104.026351] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report the results of a comprehensive study of the influence of gene expression on synonymous codons, amino acid composition, and intron presence and size in human protein-coding genes. First, in addition to a strong effect of isochores, we have detected the influence of transcription-associated mutational biases (TAMB) on gene composition. Genes expressed in different tissues show diverse degrees of TAMB, with genes expressed in testis showing the greatest influence. Second, the study of tissues with no evidence of TAMB reveals a consistent set of optimal synonymous codons favored in highly expressed genes. This result exposes the consequences of natural selection on synonymous composition to increase efficiency of translation in the human lineage. Third, overall amino acid composition of proteins closely resembles tRNA abundance but there is no difference in amino acid composition in differentially expressed genes. Fourth, there is a negative relationship between expression and CDS length. Significantly, this is observed only among genes with introns, suggesting that the cause for this relationship in humans cannot be associated only with costs of amino acid biosynthesis. Fifth, we show that broadly and highly expressed genes have more, although shorter, introns. The selective advantage for having more introns in highly expressed genes is likely counterbalanced by containment of transcriptional costs and a minimum exon size for proper splicing.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
100
|
Lu J, Wu CI. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proc Natl Acad Sci U S A 2005; 102:4063-7. [PMID: 15728731 PMCID: PMC554819 DOI: 10.1073/pnas.0500436102] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of weak selection driving genome evolution has attracted much attention in the last decade, but the task of measuring the strength of such selection is particularly difficult. A useful approach is to contrast the evolution of X-linked and autosomal genes in two closely related species in a whole-genome analysis. If the fitness effect of mutations is recessive, X-linked genes should evolve more rapidly than autosomal genes when the mutations are advantageous, and they should evolve more slowly than autosomal genes when the mutations are deleterious. We found synonymous substitutions on the X chromosome of human and chimpanzee to be less frequent than those on the autosomes. When calibrated against substitutions in the intergenic regions and pseudogenes to filter out the differences in the mutation rate and ancestral population size between X chromosomes and autosomes, X-linked synonymous substitutions are still 10% less frequent. At least 90% of the synonymous substitutions in human and chimpanzee are estimated to be deleterious, but the fitness effect is weaker than the effect of genetic drift. However, X-linked nonsynonymous substitutions are approximately 30% more frequent than autosomal ones, suggesting the fixation of advantageous mutations that are recessive.
Collapse
Affiliation(s)
- Jian Lu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|