51
|
García-González F. Male genetic quality and the inequality between paternity success and fertilization success: consequences for studies of sperm competition and the evolution of polyandry. Evolution 2008; 62:1653-1665. [PMID: 18315573 DOI: 10.1111/j.1558-5646.2008.00362.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Studies of postcopulatory sexual selection typically estimate a male's fertilization success from his paternity success (P2) calculated at hatching or birth. However, P2 may be affected by differential embryo viability, thereby confounding estimations of true fertilization success (F2). This study examines the effects of variation in the ability of males to influence embryo viability upon the inequality between P2 and F2. It also investigates the consequences of this inequality for testing the hypothesis that polyandrous females accrue viability benefits for their offspring through facilitation of sperm competition (good-sperm model). Simulations of competitive mating trials show that although relative measures of male reproductive success tend to underestimate the strength of underlying good-sperm processes, good-sperm processes can be seriously overestimated using P2 values if males influence the viability of the embryos they sire. This study cautions the interpretation of P2 values as a proxy for fertilization success or sperm competitiveness in studies of postcopulatory sexual selection, and highlights that the good-sperm hypothesis needs empirical support from studies able to identify and separate unequivocally the males' ability to win fertilizations from their ability to influence the development of embryos.
Collapse
Affiliation(s)
- Francisco García-González
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
52
|
Prokupek A, Hoffmann F, Eyun SI, Moriyama E, Zhou M, Harshman L. An evolutionary expressed sequence tag analysis of Drosophila spermatheca genes. Evolution 2008; 62:2936-47. [PMID: 18752616 DOI: 10.1111/j.1558-5646.2008.00493.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates genes enriched for expression in the spermatheca, the long-term sperm storage organ (SSO) of female Drosophila. SSO genes are likely to play an important role in processes of sexual selection such as sperm competition and cryptic female choice. Although there is keen interest in the mechanisms of sexual selection at the molecular level, very little is known about the female genes that are involved. In the present study, a high proportion of genes enriched for expression in the spermatheca are evolving rapidly. Most of the rapidly evolving genes are proteases and genes of unknown function that could play a specialized role in the spermatheca. A high percentage of the rapidly evolving genes have secretion signals and thus could encode proteins that directly interact with ejaculate proteins and coevolve with them. In addition to identifying rapidly evolving genes, the present study documents categories of genes that could play a role in spermatheca function such as storing, maintaining, and utilizing sperm. In general, candidate genes discovered in this study could play a key role in sperm competition, cryptic female choice of sperm, and sexually antagonistic coevolution, and ultimately speciation.
Collapse
Affiliation(s)
- Adrianne Prokupek
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Teixeira S, Burkhardt A, Bernasconi G. Genetic variation among females affects paternity in a dioecious plant. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16450.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54
|
|
55
|
Civetta A, Rosing KR, Fisher JH. Differences in sperm competition and sperm competition avoidance in Drosophila melanogaster. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Pai A, Bernasconi G. Polyandry and female control: the red flour beetle Tribolium castaneum as a case study. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:148-59. [PMID: 17358014 DOI: 10.1002/jez.b.21164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Females of many animal species are polyandrous, and there is evidence that they can control pre- and post-mating events. There has been a growing interest in consequences of polyandry for male and female reproductive success and offspring fitness, and its evolutionary significance. In several taxa, females exhibit mate choice both before and after mating and can influence the paternity of their offspring, enhancing offspring number and quality, but potentially countering male interests. Studying female mating biology and in particular post-copulatory female control mechanisms thus promises to yield insights into sexual selection and the potential of male-female coevolution. Here, we highlight the red flour beetle Tribolium castaneum (Herbst), a storage pest, as a model system to study polyandry, and review studies addressing the effects of polyandry on male sperm competitive ability and female control of post-mating events. These studies show that the outcome of sperm competition in the red flour beetle is influenced by both male and female traits. Furthermore, recent advances suggest that sexual conflict may have shaped reproductive traits in this species.
Collapse
Affiliation(s)
- Aditi Pai
- Department of Biology, Spelman College, Atlanta, Georgia, USA.
| | | |
Collapse
|
57
|
Bjork A, Starmer WT, Higginson DM, Rhodes CJ, Pitnick S. Complex interactions with females and rival males limit the evolution of sperm offence and defence. Proc Biol Sci 2008; 274:1779-88. [PMID: 17507332 PMCID: PMC2493577 DOI: 10.1098/rspb.2007.0293] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Postcopulatory sexual selection favours males which are strong offensive and defensive sperm competitors. As a means of identifying component traits comprising each strategy, we used an experimental evolution approach. Separate populations of Drosophila melanogaster were selected for enhanced sperm offence and defence. Despite using a large outbred population and evidence of substantive genetic variation for each strategy, neither trait responded to selection in the two replicates of this experiment. Recent work with fixed chromosome lines of D. melanogaster suggests that complex genotypic interactions between females and competing males contribute to the maintenance of this variation. To determine whether such interactions could explain our lack of response to selection on sperm offence and defence, we quantified sperm precedence across multiple sperm competition bouts using an outbred D. melanogaster population exhibiting continuous genetic variation. Both offensive and defensive sperm competitive abilities were found to be significantly repeatable only across matings involving ejaculates of the same pair of males competing within the same female. These repeatabilities decreased when the rival male stayed the same but the female changed, and they disappeared when both the rival male and the female changed. Our results are discussed with a focus on the complex nature of sperm precedence and the maintenance of genetic variation in ejaculate characteristics.
Collapse
Affiliation(s)
- Adam Bjork
- Department of Biology, Syracuse University, 108 College Place, Syracuse, NY 13244-1270, USA.
| | | | | | | | | |
Collapse
|
58
|
DOWLING DK, FRIBERG U, ARNQVIST G. A comparison of nuclear and cytoplasmic genetic effects on sperm competitiveness and female remating in a seed beetle. J Evol Biol 2007; 20:2113-25. [DOI: 10.1111/j.1420-9101.2007.01433.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
ENGQVIST L. Genetic variance and genotype reaction norms in response to larval food manipulation for a trait important in scorpionfly sperm competition. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01336.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Panhuis TM, Nunney L. Insight into post-mating interactions between the sexes: relatedness suppresses productivity of singly mated female Drosophila melanogaster. J Evol Biol 2007; 20:1988-97. [PMID: 17714315 DOI: 10.1111/j.1420-9101.2007.01363.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Post-mating, prefertilization inbreeding avoidance (PPIA) is well established in plants but not in animals. Support for animal PPIA comes from sperm competition studies showing success of a male's gametes declining with his relatedness to the multiply mated female; however, such studies confound female-male and male-male interaction. To avoid this problem, we investigated offspring productivity of singly mated Drosophila melanogaster females using flies from four different genetic backgrounds. Our experiments established that intrapopulation crosses using highly related parents (within-strain) were significantly less productive than intrapopulation crosses using unrelated individuals from the same population (between-strain). Furthermore, we showed that these effects were not due to inbreeding depression. The average decrease in offspring productivity of within-strain crosses relative to between-strain crosses was 18.3% [nonlaboratory populations: Zimbabwe 20.3%, Riverside 11.4%, neither of which showed inbreeding depression; and temperature-adapted laboratory populations, uncorrected (corrected) for nonsignificant inbreeding depression: 18 degrees C, 26.5% (24.2%) and 29 degrees C, 20.1% (9.5%)]. The significant reduction of within-cross productivity demonstrates PPIA in the absence of multiple mating.
Collapse
Affiliation(s)
- T M Panhuis
- Department of Biology, University of California, Riverside, CA, USA.
| | | |
Collapse
|
61
|
Wagstaff BJ, Begun DJ. Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila. Genetics 2007; 177:1023-30. [PMID: 17720912 PMCID: PMC2034610 DOI: 10.1534/genetics.107.077503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.
Collapse
Affiliation(s)
- Bradley J Wagstaff
- Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
62
|
Evans JP, Simmons LW. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good- and sexy-sperm? Genetica 2007; 134:5-19. [PMID: 17619174 DOI: 10.1007/s10709-007-9162-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/05/2007] [Indexed: 11/28/2022]
Abstract
The good-sperm and sexy-sperm (GS-SS) hypotheses predict that female multiple mating (polyandry) can fuel sexual selection for heritable male traits that promote success in sperm competition. A major prediction generated by these models, therefore, is that polyandry will benefit females indirectly via their sons' enhanced fertilization success. Furthermore, like classic 'good genes' and 'sexy son' models for the evolution of female preferences, GS-SS processes predict a genetic correlation between genes for female mating frequency (analogous to the female preference) and those for traits influencing fertilization success (the sexually selected traits). We examine the premise for these predictions by exploring the genetic basis of traits thought to influence fertilization success and female mating frequency. We also highlight recent debates that stress the possible genetic constraints to evolution of traits influencing fertilization success via GS-SS processes, including sex-linked inheritance, nonadditive effects, interacting parental genotypes, and trade-offs between integrated ejaculate components. Despite these possible constraints, the available data suggest that male traits involved in sperm competition typically exhibit substantial additive genetic variance and rapid evolutionary responses to selection. Nevertheless, the limited data on the genetic variation in female mating frequency implicate strong genetic maternal effects, including X-linkage, which is inconsistent with GS-SS processes. Although the relative paucity of studies on the genetic basis of polyandry does not allow us to draw firm conclusions about the evolutionary origins of this trait, the emerging pattern of sex linkage in genes for polyandry is more consistent with an evolutionary history of antagonistic selection over mating frequency. We advocate further development of GS-SS theory to take account of the complex evolutionary dynamics imposed by sexual conflict over mating frequency.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology M092, The University of Western Australia, Nedlands, WA, Australia.
| | | |
Collapse
|
63
|
Cameron E, Day T, Rowe L. Sperm Competition and the Evolution of Ejaculate Composition. Am Nat 2007; 169:E158-72. [PMID: 17479456 DOI: 10.1086/516718] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 02/02/2007] [Indexed: 11/03/2022]
Abstract
We present a model of sperm competition that incorporates both sperm and nonsperm parts of the ejaculate. Our primary focus is on determining how ejaculate composition and size evolves as a function of the effects of seminal fluid on male reproductive success and as a function of asymmetry in sperm usage by females. The model predicts that different patterns of investment in sperm and seminal products are expected to evolve as a function of the bias in sperm usage by females. It also predicts the evolution of distinct patterns in ejaculate composition depending on the function of seminal fluid. In the discussion, we highlight a number of potential approaches for testing the theory that we develop.
Collapse
Affiliation(s)
- Erin Cameron
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
64
|
Adams EM, Wolfner MF. Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:319-31. [PMID: 17276455 PMCID: PMC2144743 DOI: 10.1016/j.jinsphys.2006.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 05/12/2023]
Abstract
In most insects, sperm transferred by the male to the female during mating are stored within the female reproductive tract for subsequent use in fertilization. In Drosophila melanogaster, male accessory gland proteins (Acps) within the seminal fluid are required for efficient accumulation of sperm in the female's sperm storage organs. To determine the events within the female reproductive tract that occur during sperm storage, and the role that Acps and sperm play in these events, we identified morphological changes that take place during sperm storage in females mated to wild-type, Acp-deficient or sperm-deficient males. A reproducible set of morphological changes occurs in a wild-type mating. These were categorized into 10 stereotypic stages. Sperm are not needed for progression through these stages in females, but receipt of Acps is essential for progression beyond the first few stages of morphological change. Furthermore, females that received small quantities of Acps reached slightly later stages than females that received no Acps. Our results suggest that timely morphological changes in the female reproductive tract, possibly muscular in nature, may be needed for successful sperm storage, and that Acps from the male are needed in order for these changes to occur.
Collapse
Affiliation(s)
- Erika M Adams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
65
|
Fedina TY. Cryptic female choice during spermatophore transfer in Tribolium castaneum (Coleoptera: Tenebrionidae). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:93-8. [PMID: 17161846 DOI: 10.1016/j.jinsphys.2006.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 10/15/2006] [Accepted: 10/26/2006] [Indexed: 05/12/2023]
Abstract
Sexual selection in both males and females promotes traits and behaviors that allow control over paternity when female mates with multiple males. Nonetheless, mechanisms of cryptic female choice have been consistently overlooked, due to traditional focus on sperm competition as well as difficulty in distinguishing male vs. female influence over processes occurring during and after mating. The first part of this study describes morphology and transformation of Tribolium castaneum spermatophores inferred from dissecting females immediately after normal or interrupted copulations. T. castaneum males are found to transfer spermatophores as an invaginated tube that everts inside the female bursa and which is filled with sperm during copulation. This sequence of events makes it feasible for females to control the sperm quantity transferred in each spermatophore. Through manipulation of the male phenotypic quality (by starvation) and manipulation of female control over sperm transfer (by killing a subset of females), the second part of this study examines whether females use control over transferred sperm quantity as a cryptic choice mechanism. Fed males transferred significantly more sperm per spermatophore than starved males but only when mating with live females. These results suggest an active differentiation by live females against starved males and provide an evidence for the proposed cryptic female choice mechanism.
Collapse
Affiliation(s)
- Tatyana Y Fedina
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
66
|
Dean MD, Ardlie KG, Nachman MW. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol Ecol 2006; 15:4141-51. [PMID: 17054508 PMCID: PMC2904556 DOI: 10.1111/j.1365-294x.2006.03068.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sexual selection is an important force driving the evolution of morphological and genetic traits. To determine the importance of male-male, postcopulatory sexual selection in natural populations of house mice, we estimated the frequency of multiple paternity, defined as the frequency with which a pregnant female carried a litter fertilized by more than one male. By genotyping eight microsatellite markers from 1095 mice, we found evidence of multiple paternity from 33 of 143. Evidence for multiple paternity was especially strong for 29 of these litters. Multiple paternity was significantly more common in higher-density vs. lower-density populations. Any estimate of multiple paternity will be an underestimate of the frequency of multiple mating, defined as the frequency with which a female mates with more than a single male during a single oestrus cycle. We used computer simulations to estimate the frequency of multiple mating, incorporating observed reductions in heterozygosity and levels of allele sharing among mother and father. These simulations indicated that multiple mating is common, occurring in at least 20% of all oestrus cycles. The exact estimate depends on the competitive skew among males, a parameter for which we currently have no data from natural populations. This study suggests that sperm competition is an important aspect of postcopulatory sexual selection in house mice.
Collapse
Affiliation(s)
- M D Dean
- University of Arizona, Ecology and Evolution, 333 Biosciences West, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
67
|
Hughes KA, Leips J. QUANTITATIVE TRAIT LOCUS ANALYSIS OF MALE MATING SUCCESS AND SPERM COMPETITION INDROSOPHILA MELANOGASTER. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01221.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
68
|
Panhuis TM, Swanson WJ. Molecular evolution and population genetic analysis of candidate female reproductive genes in Drosophila. Genetics 2006; 173:2039-47. [PMID: 16783023 PMCID: PMC1569687 DOI: 10.1534/genetics.105.053611] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Molecular analyses in several taxa have consistently shown that genes involved in reproduction are rapidly evolving and subjected to positive selection. The mechanism behind this evolution is not clear, but several proposed hypotheses involve the coevolution between males and females. In Drosophila, several male reproductive proteins (Acps) involved in male-male and male-female interactions show evidence of rapid adaptive evolution. What has been missing from the Drosophila literature is the identification and analysis of female reproductive genes. Recently, an evolutionary expressed sequence tag analysis of Drosophila female reproductive tract genes identified 169 candidate female reproductive genes. Many of these candidate genes still await further molecular analysis and independent verification of positive selection. Our goal was to expand our understanding of the molecular evolution of Drosophila female reproductive genes with a detailed polymorphism and divergence study on seven additional candidate female reproductive genes and a reanalysis of two genes from the above study. We demonstrate that 6 candidate female genes of the 9 genes surveyed show evidence of positive selection using both polymorphism and divergence data. One of these proteins (CG17012) is modeled to reveal that the sites under selection fall around and within the active site of this protease, suggesting potential differences between species. We discuss our results in light of potential function as well as interaction with male reproductive proteins.
Collapse
Affiliation(s)
- Tami M Panhuis
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
69
|
Long TAF, Montgomerie R, Chippindale AK. Quantifying the gender load: can population crosses reveal interlocus sexual conflict? Philos Trans R Soc Lond B Biol Sci 2006; 361:363-74. [PMID: 16612894 PMCID: PMC1569607 DOI: 10.1098/rstb.2005.1786] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Six sister populations of Drosophila melanogaster kept under identical environmental conditions for greater than 600 generations were reciprocally crossed to investigate the incidence of population divergence in allopatry. Population crosses directly influenced fitness, mating frequency, and sperm competition patterns. Changes in both female remating rate and the outcome of male sperm competition (P1, P2) in response to foreign males were consistent with intersexual coevolution. Moreover, seven of the 30 crosses between foreign mates resulted in significant reductions in female fitness, whereas two resulted in significant increases, compared to local matings. This tendency for foreign males to reduce female fitness may be interpreted as evidence for either sexually antagonistic coevolution or the disruption of mutualistic interactions. However, instances in which female fitness improved via cohabitation with foreign males may better reveal sexual conflict, signalling release from the cost of interacting with locally adapted males. By this metric, female reproduction in D. melanogaster is strongly constrained by local adaptation by males, a situation that would promote antagonistic coevolution between the sexes. We conclude that sexual selection can promote population differentiation in allopatry and that sexual conflict is likely to have played a role in population differentiation in this study system.
Collapse
Affiliation(s)
- Tristan A F Long
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | |
Collapse
|
70
|
Long TAF, Pischedda A. Do female Drosophila melanogaster adaptively bias offspring sex ratios in relation to the age of their mate? Proc Biol Sci 2006; 272:1781-7. [PMID: 16096089 PMCID: PMC1559865 DOI: 10.1098/rspb.2005.3165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of offspring sex ratios in response to parental quality is predicted when the long-term fitness returns of sons and daughters differ. One factor that may influence a mother's sex allocation decision is the quality (or attractiveness) of her mate. We investigated whether the sex ratios of offspring produced by female Drosophila melanogaster are biased with respect to the age of the males to which they are mated, and whether there is an adaptive basis for this phenomenon. We found that females mated to old males (13 d post-eclosion) initially produced a greater proportion of daughters than did females mated to young males (1 d post-eclosion). This pattern does not appear to be due to a systematic difference in the numbers or mortality of the X- and Y-bearing sperm originating from old and young fathers, as the overall sex ratios of all offspring produced from a single copulation did not differ between broods fathered by the two types of males. The sons of older males fared worse in competitive mating assays than did the sons of younger males, while daughters of old and young males were of comparable fitness. These results suggest that there is an adaptive basis for the observed sex ratio modification.
Collapse
Affiliation(s)
- Tristan A F Long
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | |
Collapse
|
71
|
Lew TA, Morrow EH, Rice WR. STANDING GENETIC VARIANCE FOR FEMALE RESISTANCE TO HARM FROM MALES AND ITS RELATIONSHIP TO INTRALOCUS SEXUAL CONFLICT. Evolution 2006. [DOI: 10.1554/05-531.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
72
|
Lew TA, Morrow EH, Rice WR. STANDING GENETIC VARIANCE FOR FEMALE RESISTANCE TO HARM FROM MALES AND ITS RELATIONSHIP TO INTRALOCUS SEXUAL CONFLICT. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01085.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
73
|
Hughes KA, Leips J. QUANTITATIVE TRAIT LOCUS ANALYSIS OF MALE MATING SUCCESS AND SPERM COMPETITION IN DROSOPHILA MELANOGASTER. Evolution 2006. [DOI: 10.1554/05-706.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
Konior M, Keller L, Radwan J. Effect of inbreeding and heritability of sperm competition success in the bulb mite Rhizoglyphus robini. Heredity (Edinb) 2005; 94:577-81. [PMID: 15742000 DOI: 10.1038/sj.hdy.6800649] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Sperm competition is a potent evolutionary force shaping the reproductive biology of most animal species. Here, we estimated the heritability of sperm competition success in the promiscuous bulb mite Rhizoglyphus robini. Sperm competition success was measured with the sterile male technique as the proportion of eggs fertilised by the second of three males mated with a single female. Sperm competition success responded significantly to selection. The heritability estimated from the response to five generations of selection was 0.13. We also estimated the effect of inbreeding on sperm competition success. Males produced by sib-mating (F=0.25) had a significantly lower sperm competition success than outbred males. The estimated coefficient of inbreeding depression was 0.53. Such high inbreeding depression together with moderately low heritability is consistent with the view that sperm competitive ability is under strong directional selection and strongly influences the reproductive success of males.
Collapse
Affiliation(s)
- M Konior
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | | | | |
Collapse
|
75
|
Mueller JL, Ravi Ram K, McGraw LA, Bloch Qazi MC, Siggia ED, Clark AG, Aquadro CF, Wolfner MF. Cross-species comparison of Drosophila male accessory gland protein genes. Genetics 2005; 171:131-43. [PMID: 15944345 PMCID: PMC1456506 DOI: 10.1534/genetics.105.043844] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 05/19/2005] [Indexed: 12/23/2022] Open
Abstract
Drosophila melanogaster males transfer seminal fluid proteins along with sperm during mating. Among these proteins, ACPs (Accessory gland proteins) from the male's accessory gland induce behavioral, physiological, and life span reduction in mated females and mediate sperm storage and utilization. A previous evolutionary EST screen in D. simulans identified partial cDNAs for 57 new candidate ACPs. Here we report the annotation and confirmation of the corresponding Acp genes in D. melanogaster. Of 57 new candidate Acp genes previously reported in D. melanogaster, 34 conform to our more stringent criteria for encoding putative male accessory gland extracellular proteins, thus bringing the total number of ACPs identified to 52 (34 plus 18 previously identified). This comprehensive set of Acp genes allows us to dissect the patterns of evolutionary change in a suite of proteins from a single male-specific reproductive tissue. We used sequence-based analysis to examine codon bias, gene duplications, and levels of divergence (via dN/dS values and ortholog detection) of the 52 D. melanogaster ACPs in D. simulans, D. yakuba, and D. pseudoobscura. We show that 58% of the 52 D. melanogaster Acp genes are detectable in D. pseudoobscura. Sequence comparisons of ACPs shared and not shared between D. melanogaster and D. pseudoobscura show that there are separate classes undergoing distinctly dissimilar evolutionary dynamics.
Collapse
Affiliation(s)
- J L Mueller
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Swanson WJ, Wong A, Wolfner MF, Aquadro CF. Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 2005; 168:1457-65. [PMID: 15579698 PMCID: PMC1448773 DOI: 10.1534/genetics.104.030478] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genes whose products are involved in reproduction include some of the fastest-evolving genes found within the genomes of several organisms. Drosophila has long been used to study the function and evolutionary dynamics of genes thought to be involved in sperm competition and sexual conflict, two processes that have been hypothesized to drive the adaptive evolution of reproductive molecules. Several seminal fluid proteins (Acps) made in the Drosophila male reproductive tract show evidence of rapid adaptive evolution. To identify candidate genes in the female reproductive tract that may be involved in female-male interactions and that may thus have been subjected to adaptive evolution, we used an evolutionary bioinformatics approach to analyze sequences from a cDNA library that we have generated from Drosophila female reproductive tracts. We further demonstrate that several of these genes have been subjected to positive selection. Their expression in female reproductive tracts, presence of signal sequences/transmembrane domains, and rapid adaptive evolution indicate that they are prime candidates to encode female reproductive molecules that interact with rapidly evolving male Acps.
Collapse
Affiliation(s)
- Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA.
| | | | | | | |
Collapse
|
77
|
Lacey Knowles L, Brodie Hernandez B, Markow TA. Nonantagonistic interactions between the sexes revealed by the ecological consequences of reproductive traits. J Evol Biol 2005; 18:156-61. [PMID: 15669972 DOI: 10.1111/j.1420-9101.2004.00779.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In addition to the obvious role reproductive traits play in mating-system evolution, reproductive characters can also have critical ecological or life history consequences. In this study we examine the ecological consequences of mating for female cactophilic Drosophila to test different hypotheses about the processes driving divergence in reproductive characters. Comparisons between intra- and interpopulation matings suggest that population differences in mating benefits, namely increased desiccation resistance in mated females, is not solely attributable to either a male or female-specific reproductive trait. Instead, the results indicate that increased desiccation resistance is a product of a male-female postmating-prezygotic interactions. The results underscore that postmating-prezygotic interactions can serve as an arena for the evolution of male characters that confer substantial benefits to females, not just costs arising from sexual conflict. Variation in the relative benefits conferred by mating between intra- and interpopulation matings also suggests that the relationship between speciation and divergence in reproductive characters via male-female interaction will be difficult to predict.
Collapse
Affiliation(s)
- L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079, USA.
| | | | | |
Collapse
|
78
|
Lawniczak MKN, Begun DJ. A genome-wide analysis of courting and mating responses in Drosophila melanogaster females. Genome 2005; 47:900-10. [PMID: 15499404 DOI: 10.1139/g04-050] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila melanogaster, seminal fluid proteins influence several components of female physiology and behavior, including re-mating rates, ovulation and oviposition, and sperm use. It is well-known that female flies are not simply passive vessels and that female-mediated interactions with male products are important to female (and thus male) reproductive success. While the population genetics, molecular evolution and physiological effects of seminal fluid proteins have been examined, the genetics and evolution of the female side of these post-mating interactions is unexplored in spite of work showing that female genotype and female-by-male genotype interactions are important determinants of sperm competition outcomes. Here we use microarrays to identify candidate genes involved in the female side of post-mating sexual interactions. We report the results of a whole-genome oligonucleotide chip experiment that reveals 23 genes differentially expressed between virgin females exposed and unexposed to courting males, and 38 genes differentially expressed between virgin and recently mated females. Immune related genes are overrepresented among the mating-influenced candidates. We use quantitative reverse-transcriptase PCR to independently assess gene expression changes for roughly half of the mating-affected candidate genes.
Collapse
Affiliation(s)
- Mara K N Lawniczak
- Center for Population Biology, Section of Evolution and Ecology, University of California at Davis, One Shields Avenue, CA 95616, USA.
| | | |
Collapse
|
79
|
Abstract
The sexual conflict hypothesis predicts that males evolve traits that exploit the higher parental investment of females, which generates selection for females to counter-evolve resistance. In Drosophila melanogaster it is now established that males harm females and that there is genetic variation among males for the degree of this harm. Genetic variation among females for resistance to harm from males, and the corresponding strength of selection on this variation, however, have not been quantified previously. Here we carryout a genome-wide screen for female resistance to harm from males. We estimate that the cost of interactions with males depresses lifetime fecundity of females by 15% (95% CI: 8.2-22.0), that genetic variation for female resistance constitutes 17% of total genetic variation for female adult fitness, and that propensity to remate in response to persistent male courtship is a major factor contributing to genetic variation for female resistance.
Collapse
Affiliation(s)
- J E Linder
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
80
|
Fiumera AC, Dumont BL, Clark AG. Sperm competitive ability in Drosophila melanogaster associated with variation in male reproductive proteins. Genetics 2005; 169:243-57. [PMID: 15466425 PMCID: PMC1448872 DOI: 10.1534/genetics.104.032870] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 10/08/2004] [Indexed: 11/18/2022] Open
Abstract
Multiple mating by females establishes the opportunity for postcopulatory sexual selection favoring males whose sperm is preferentially employed in fertilizations. Here we use natural variation in a wild population of Drosophila melanogaster to investigate the genetic basis of sperm competitive ability. Approximately 101 chromosome 2 substitution lines were scored for components of sperm competitive ability (P1', P2', fecundity, remating rate, and refractoriness), genotyped at 70 polymorphic markers in 10 male reproductive genes, and measured for transcript abundance of those genes. Permutation tests were applied to quantify the statistical significance of associations between genotype and phenotype. Nine significant associations were identified between polymorphisms in the male reproductive genes and sperm competitive ability and 13 were identified between genotype and transcript abundance, but no significant associations were found between transcript abundance and sperm competitive ability. Pleiotropy was evident in two genes: a polymorphism in Acp33A associated with both P1' and P2' and a polymorphism in CG17331 associated with both elevated P2' and reduced refractoriness. The latter case is consistent with antagonistic pleiotropy and may serve as a mechanism maintaining genetic variation.
Collapse
Affiliation(s)
- Anthony C Fiumera
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
81
|
Khazaeli AA, Van Voorhies W, Curtsinger JW. Longevity and metabolism in Drosophila melanogaster: genetic correlations between life span and age-specific metabolic rate in populations artificially selected for long life. Genetics 2004; 169:231-42. [PMID: 15466435 PMCID: PMC1448881 DOI: 10.1534/genetics.104.030403] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We measured age-specific metabolic rates in 2861 individual Drosophila melanogaster adult males to determine how genetic variation in metabolism is related to life span. Using recombinant inbred (RI) lines derived from populations artificially selected for long life, resting metabolic rates were measured at 5, 16, 29, and 47 days posteclosion, while life spans were measured in the same genotypes in mixed-sex population cages and in single-sex vials. We observed much heritable variation between lines in age-specific metabolic rates, evidence for genotype x age interaction, and moderate to large heritabilities at all ages except the youngest. Four traits exhibit evidence of coordinate genetic control: day 16 and day 29 metabolic rates, life span in population cages, and life span in vials. Quantitative trait loci (QTL) for those traits map to the same locations on three major chromosomes, and additive genetic effects are all positively correlated. In contrast, metabolic rates at the youngest and oldest ages are unrelated to metabolic rates at other ages and to survival. We suggest that artificial selection for long life via delayed reproduction also selects for increased metabolism at intermediate ages. Contrary to predictions of the "rate of living" theory, we find no evidence that metabolic rate varies inversely with survival, at the level of either line means or additive effects of QTL.
Collapse
Affiliation(s)
- Aziz A Khazaeli
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
82
|
Fedina TY, Lewis SM. Female influence over offspring paternity in the red flour beetle Tribolium castaneum. Proc Biol Sci 2004; 271:1393-9. [PMID: 15306338 PMCID: PMC1691742 DOI: 10.1098/rspb.2004.2731] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In animals having internal fertilization, both sexes can potentially influence the post-copulatory processes of sperm transfer, sperm storage and sperm use for fertilization. In this experiment, we investigated whether Tribolium castaneum females can influence male paternity success following consecutive matings with two different males. We compared second male paternity success (P2) between females exposed to carbon dioxide (CO2) and control females kept in air, in both cases for 30 min between two matings. CO2 exposure inhibits muscular activity and has previously been shown to decrease sperm storage by T. castaneum females. Females exposed to CO2 after their first mating showed significantly higher P2 than control females during the later portion of a one-month oviposition period. These results are consistent with reduced storage of first male sperm by CO2-exposed females. Also, T. castaneum females showed considerable variation in spermathecal morphology, and P2 decreased with increasing spermathecal tubule volume. These results demonstrate that T. castaneum females can influence male paternity success, and suggest that differential sperm storage may be an important mechanism of post-copulatory female choice.
Collapse
|
83
|
|
84
|
Bernasconi G, Ashman TL, Birkhead TR, Bishop JDD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, Taylor D, Till-Bottraud I, Ward PI, Zeh DW, Hellriegel B. Evolutionary ecology of the prezygotic stage. Science 2004; 303:971-5. [PMID: 14963320 DOI: 10.1126/science.1092180] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The life cycles of sexually reproducing animals and flowering plants begin with male and female gametes and their fusion to form a zygote. Selection at this earliest stage is crucial for offspring quality and raises similar evolutionary issues, yet zoology and botany use dissimilar approaches. There are striking parallels in the role of prezygotic competition for sexual selection on males, cryptic female choice, sexual conflict, and against selfish genetic elements and genetic incompatibility. In both groups, understanding the evolution of sex-specific and reproductive traits will require an appreciation of the effects of prezygotic competition on fitness.
Collapse
Affiliation(s)
- G Bernasconi
- Institute of Environmental Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Tao Y, Hartl DL. Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. III. Heterogeneous accumulation of hybrid incompatibilities, degree of dominance, and implications for Haldane's rule. Evolution 2004; 57:2580-98. [PMID: 14686533 DOI: 10.1111/j.0014-3820.2003.tb01501.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The genetic basis of Haldane's rule was investigated through estimating the accumulation of hybrid incompatibilities between Drosophila simulans and D. mauritiana by means of introgression. The accumulation of hybrid male sterility (HMS) is at least 10 times greater than that of hybrid female sterility (HFS) or hybrid lethality (HL). The degree of dominance for HMS and HL in a pure D. simulans background is estimated as 0.23-0.29 and 0.33-0.39, respectively; that for HL in an F1 background is unlikely to be very small. Evidence obtained here was used to test the Turelli-Orr model of Haldane's rule. Composite causes, especially, faster-male evolution and recessive hybrid incompatibilities, underlie Haldane's rule in heterogametic male taxa such as Drosophila (XY male and XX female). However, if faster-male evolution is driven by sexual selection, it contradicts Haldane's rule for sterility in heterogametic-female taxa such as Lepidoptera (ZW female and ZZ male). The hypothesis of a faster-heterogametic-sex evolution seems to fit the current data best. This hypothesis states that gametogenesis in the heterogametic sex, instead of in males per se, evolves much faster than in the homogametic sex, in part because of sex-ratio selection. This hypothesis not only explains Haldane's rule in a simple way, but also suggests that genomic conflicts play a major role in evolution and speciation.
Collapse
Affiliation(s)
- Yun Tao
- Developmental, Cell and Molecular Biology Group, Department of Zoology, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
86
|
Bundgaard J, Barker JSF, Frydenberg J, Clark AG. Remating and sperm displacement in a natural population of Drosophila buzzatii inferred from mother-offspring analysis of microsatellite loci. J Evol Biol 2004; 17:376-81. [PMID: 15009271 DOI: 10.1046/j.1420-9101.2003.00670.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prospects for estimation of parameters of models of sperm competition from field data have improved recently with the development of methods that employ multilocus genotype data from brood-structured samples. Sperm competition in Drosophila buzzatii is of special interest because it is possible to directly observe the breeding behaviour of this species in its natural habitat of rotting cactus. Previous laboratory experiments showed that this species exhibits an unusual pattern of frequent remating and sperm partitioning. This paper reports the first attempt to estimate the frequency of female remating and sperm competition in natural populations of D. buzzatii. For the Australian population studied, the mean remating frequency was lower (alpha = 2.12-2.20) than previously estimated in laboratory experiments with the same population, whereas mean sperm displacement (beta = 0.69-0.71) fell within the limits of previous laboratory results. The evolution of the D. buzzatii mating system is discussed.
Collapse
Affiliation(s)
- J Bundgaard
- Department of Ecology and Genetics, University of Aarhus, Ny Munkegade, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
87
|
Bloch Qazi MC, Heifetz Y, Wolfner MF. The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster. Dev Biol 2003; 256:195-211. [PMID: 12679097 DOI: 10.1016/s0012-1606(02)00125-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In animals with internal fertilization, ovulation and female sperm storage are essential steps in reproduction. While these events are often required for successful fertilization, they remain poorly understood at the developmental and molecular levels in many species. Ovulation involves the regulated release of oocytes from the ovary. Female sperm storage consists of the movement of sperm into, maintenance within, and release from specific regions of the female reproductive tract. Both ovulation and sperm storage elicit important changes in gametes: in oocytes, ovulation can trigger changes in the egg envelopes and the resumption of meiosis; for sperm, storage is a step in their transition from being "movers" to "fertilizers." Ovulation and sperm storage both consist of timed and directed cell movements within a morphologically and chemically complex environment (the female reproductive tract), culminating with gamete fusion. We review the processes of ovulation and sperm storage for Drosophila melanogaster, whose requirements for gamete maturation and sperm storage as well as powerful molecular genetics make it an excellent model organism for study of these processes. Within the female D. melanogaster, both processes are triggered by male factors during and after mating, including sperm and seminal fluid proteins. Therefore, an interplay of male and female factors coordinates the gametes for fertilization.
Collapse
Affiliation(s)
- Margaret C Bloch Qazi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
88
|
Bangham J, Chapman T, Smith HK, Partridge L. Influence of female reproductive anatomy on the outcome of sperm competition in Drosophila melanogaster. Proc Biol Sci 2003; 270:523-30. [PMID: 12641908 PMCID: PMC1691273 DOI: 10.1098/rspb.2002.2237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Females as well as males can influence the outcome of sperm competition, and may do so through the anatomy of their reproductive tracts. Female Drosophila melanogaster store sperm in two morphologically distinct organs: a single seminal receptacle and, normally, two spermathecae. These organs have different temporal roles in sperm storage. To examine the association between sperm storage organ morphology and sperm competition, we used a mutant type of female with three spermathecae. Although the common measure of sperm competition, P(2), did not differ between females with two and three spermathecae, the pattern of sperm use over time indicated that female morphology did affect male reproductive success. The rate of offspring production by females with three spermathecae rose and fell more rapidly than by females with two spermathecae. If females remate or die before using up second male sperm, then second male reproductive success will be higher when they mate with females with three spermathecae. The results indicate that temporal patterns of sperm use as well as P(2) should be taken into account when measuring the outcome of sperm competition.
Collapse
Affiliation(s)
- J Bangham
- Department of Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
89
|
Abstract
We introduce a Bayesian method for estimating parameters for a model of multiple mating and sperm displacement from genotype counts of brood-structured data. The model is initially targeted for Drosophila melanogaster, but is easily adapted to other organisms. The method is appropriate for use with field studies where the number of mates and the genotypes of the mates cannot be controlled, but where unlinked markers have been collected for a set of females and a sample of their offspring. Advantages over previous approaches include full use of multilocus information and the ability to cope appropriately with missing data and ambiguities about which alleles are maternally vs. paternally inherited. The advantages of including X-linked markers are also demonstrated.
Collapse
Affiliation(s)
- Beatrix Jones
- Department of Statistics, Penn State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
90
|
Mack PD, Priest NK, Promislow DEL. Female age and sperm competition: last-male precedence declines as female age increases. Proc Biol Sci 2003; 270:159-65. [PMID: 12590754 PMCID: PMC1691224 DOI: 10.1098/rspb.2002.2214] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Until very recently, most studies of sperm competition have focused on variation in male competitive ability. However, we now know that a number of reproductive traits, including oviposition rate, use of stored sperm and receptivity to mating, vary with female condition. Because females can play an active part in the movement of sperm within their reproductive tract, sperm competition may be influenced by female condition. Existing studies of sperm competition in fruitflies ignore the effects of female condition, using females that are 3-4 days old and in their reproductive prime. But condition will decline as a female senesces. Here, we examine the effect of female age on the outcome of sperm competition in three strains of the fruitfly, Drosophila melanogaster. Previous studies have shown that female age influences preference for mates and male ejaculation strategies. In this study, we find that when males are mated to females that are older than 17 days, last-male sperm precedence decreases significantly. These results could lead to a greater understanding of the physiological mechanisms that regulate the outcome of sperm competition.
Collapse
Affiliation(s)
- Paul D Mack
- Department of Genetics, University of Georgia, Athens, GA 30602-7223, USA.
| | | | | |
Collapse
|
91
|
Abstract
Despite its central role in post-copulatory sexual selection, the female reproductive tract is poorly understood. Here we provide the first experimental study of the adaptive significance of variation in female sperm-storage organ morphology. Using populations of Drosophila melanogaster artificially selected for longer or shorter seminal receptacles, we identify relationships between the length of this primary sperm-storage organ and the number of sperm stored, pattern of progeny production, rate of egg fertilization, remating interval, and pattern of sperm precedence. Costs and benefits of relatively short or long organs were identified. Benefits of longer receptacles include increased sperm-storage capacity and thus progeny production from a single insemination. Results suggest that longer receptacles have not naturally evolved because of developmental time costs and a correlated reduction in longevity of mated females. This latter cost may be a consequence of sexual conflict mediated by ejaculate toxicity. Receptacle length did not alter the pattern of sperm precedence, which is consistent with data on the co-evolution of sperm and female receptacle length, and a pattern of differential male fertilization success being principally determined by the interaction between these male and female traits.
Collapse
Affiliation(s)
- G T Miller
- Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA
| | | |
Collapse
|
92
|
Tao Y, Hartl DL. GENETIC DISSECTION OF HYBRID INCOMPATIBILITIES BETWEEN DROSOPHILA SIMULANS AND D. MAURITIANA. III. HETEROGENEOUS ACCUMULATION OF HYBRID INCOMPATIBILITIES, DEGREE OF DOMINANCE, AND IMPLICATIONS FOR HALDANE'S RULE. Evolution 2003. [DOI: 10.1554/03-094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
93
|
|
94
|
Affiliation(s)
- Willie J. Swanson
- Department of Biology, University of California, Riverside, California 92521;
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, Washington 98195-7730
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093;
| | - Victor D. Vacquier
- Department of Biology, University of California, Riverside, California 92521;
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, Washington 98195-7730
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
95
|
Billeter JC, Goodwin SF, O'Dell KMC. Genes mediating sex-specific behaviors in Drosophila. ADVANCES IN GENETICS 2002; 47:87-116. [PMID: 12000098 DOI: 10.1016/s0065-2660(02)47003-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
96
|
Mack PD, Hammock BA, Promislow DEL. Sperm competitive ability and genetic relatedness in Drosophila melanogaster: similarity breeds contempt. Evolution 2002; 56:1789-95. [PMID: 12389723 DOI: 10.1111/j.0014-3820.2002.tb00192.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Offspring of close relatives often suffer severe fitness consequences. Previous studies have demonstrated that females, when given a choice, will choose to avoid mating with closely related males. But where opportunities for mate choice are limited or kin recognition is absent, precopulatory mechanisms may not work. In this case, either sex could reduce the risks of inbreeding through mechanisms that occur during or after copulation. During mating, males or females could commit fewer gametes when mating with a close relative. After mating, females could offset the effects of mating with a closely related male through cryptic choice. Few prior studies of sperm competition have examined the effect of genetic similarity, however, and what studies do exist have yielded equivocal results. In an effort to resolve this issue, we measured the outcome of sperm competition when female Drosophila melanogaster were mated to males of four different degrees of genetic relatedness and then to a standardized competitor. We provide the strongest evidence to date that sperm competitive ability is negatively correlated with relatedness, even after controlling for inbreeding depression.
Collapse
Affiliation(s)
- Paul D Mack
- Department of Genetics, University of Georgia, Athens 30602-7223, USA.
| | | | | |
Collapse
|
97
|
Taylor JE, Jaenike J. Sperm competition and the dynamics of X chromosome drive: stability and extinction. Genetics 2002; 160:1721-31. [PMID: 11973324 PMCID: PMC1462075 DOI: 10.1093/genetics/160.4.1721] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several empirical studies of sperm competition in populations polymorphic for a driving X chromosome have revealed that Sex-ratio males (those carrying a driving X) are at a disadvantage relative to Standard males. Because the frequency of the driving X chromosome determines the population-level sex ratio and thus alters male and female mating rates, the evolutionary consequences of sperm competition for sex chromosome meiotic drive are subtle. As the SR allele increases in frequency, the ratio of females to males also increases, causing an increase in the male mating rate and a decrease in the female mating rate. While the former change may exacerbate the disadvantage of Sex-ratio males during sperm competition, the latter change decreases the incidence of sperm competition within the population. We analyze a model of the effects of sperm competition on a driving X chromosome and show that these opposing trends in male and female mating rates can result in two coexisting locally stable equilibria, one corresponding to a balanced polymorphism of the SR and ST alleles and the second to fixation of the ST allele. Stochastic fluctuations of either the population sex ratio or the SR frequency can then drive the population away from the balanced polymorphism and into the basin of attraction for the second equilibrium, resulting in fixation of the SR allele and extinction of the population.
Collapse
Affiliation(s)
- Jesse E Taylor
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
98
|
Abstract
Sperm competition may occur whenever sperm from more than one male are present in the reproductive tract of the female. Studies of field-caught Drosophila reveal that a substantial fraction (80%) of females clearly have sperm from more than one male, and the figure is probably higher because only a small number of progeny are typically surveyed, so a strong skew in paternity can make multiply-mated females appear as singly mated unless appropriate models are applied. Examination of genetic variation in aspects of sperm competition has revealed some striking patterns, particularly in the implications for the maintenance of polymorphism. The magnitude of variation in sperm competitive ability is as great as that for other fitness components, and the males with the strongest displacement also appear to be the ones with the greatest positive effect on fertility. Why then does not the most competitive allele simply go to fixation? Such synergistic pleiotropy makes the polymorphism even more unexpected. Examination of patterns of competitive success of pairs of male genotypes, and of female-male interactions, demonstrate clearly that the outcome of sperm competition is not a simple property of each male. That is, sperm competitive ability of male genotypes cannot simply be ranked from best to worst. Rather, the outcome of each competitive bout depends on the particular pair of males. These results have intriguing implications for the molecular biology of genes involved in the determination of sperm competitive success, and on the opportunity for maintenance of polymorphism in those genes.
Collapse
Affiliation(s)
- A G Clark
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
99
|
Wolfner MF. The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity (Edinb) 2002; 88:85-93. [PMID: 11932766 DOI: 10.1038/sj.hdy.6800017] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During mating, males transfer seminal proteins and peptides, along with sperm, to their mates. In Drosophila melanogaster, seminal proteins made in the male's accessory gland stimulate females' egg production and ovulation, reduce their receptivity to mating, mediate sperm storage, cause part of the survival cost of mating to females, and may protect reproductive tracts or gametes from microbial attack. The physiological functions of these proteins indicate that males provide their mates with molecules that initiate important reproductive responses in females. A new comprehensive EST screen, in conjunction with earlier screens, has identified approximately 90% of the predicted secreted accessory gland proteins (Acps). Most Acps are novel proteins and many appear to be secreted peptides or prohormones. Acps also include modification enzymes such as proteases and their inhibitors, and lipases. An apparent prohormonal Acp, ovulin (Acp26Aa) stimulates ovulation in mated Drosophila females. Another male-derived protein, the large glycoprotein Acp36DE, is needed for sperm storage in the mated female and through this action can also affect sperm precedence, indirectly. A third seminal protein, the protease inhibitor Acp62F, is a candidate for contributing to the survival cost of mating, given its toxicity in ectopic expression assays. That male-derived molecules manipulate females in these ways can result in a molecular conflict between the sexes that can drive the rapid evolution of Acps. Supporting this hypothesis, an unusually high fraction of Acps show signs consistent with their being targets of positive Darwinian selection.
Collapse
Affiliation(s)
- M F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA.
| |
Collapse
|
100
|
Mack PD, Hammock BA, Promislow DEL. SPERM COMPETITIVE ABILITY AND GENETIC RELATEDNESS IN DROSOPHILA MELANOGASTER: SIMILARITY BREEDS CONTEMPT. Evolution 2002. [DOI: 10.1554/0014-3820(2002)056[1789:scaagr]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|