51
|
Axelsson E, Albrechtsen A, van AP, Li L, Megens HJ, Vereijken ALJ, Crooijmans RPMA, Groenen MAM, Ellegren H, Willerslev E, Nielsen R. Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds. Heredity (Edinb) 2010; 105:290-8. [DOI: 10.1038/hdy.2009.193] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
52
|
Ferree PM, Barbash DA. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 2009; 7:e1000234. [PMID: 19859525 PMCID: PMC2760206 DOI: 10.1371/journal.pbio.1000234] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/21/2009] [Indexed: 12/24/2022] Open
Abstract
Postzygotic reproductive barriers such as sterility and lethality of hybrids are important for establishing and maintaining reproductive isolation between species. Identifying the causal loci and discerning how they interfere with the development of hybrids is essential for understanding how hybrid incompatibilities (HIs) evolve, but little is known about the mechanisms of how HI genes cause hybrid dysfunctions. A previously discovered Drosophila melanogaster locus called Zhr causes lethality in F1 daughters from crosses between Drosophila simulans females and D. melanogaster males. Zhr maps to a heterochromatic region of the D. melanogaster X that contains 359-bp satellite repeats, suggesting either that Zhr is a rare protein-coding gene embedded within heterochromatin, or is a locus consisting of the noncoding repetitive DNA that forms heterochromatin. The latter possibility raises the question of how heterochromatic DNA can induce lethality in hybrids. Here we show that hybrid females die because of widespread mitotic defects induced by lagging chromatin at the time during early embryogenesis when heterochromatin is first established. The lagging chromatin is confined solely to the paternally inherited D. melanogaster X chromatids, and consists predominantly of DNA from the 359-bp satellite block. We further found that a rearranged X chromosome carrying a deletion of the entire 359-bp satellite block segregated normally, while a translocation of the 359-bp satellite block to the Y chromosome resulted in defective Y segregation in males, strongly suggesting that the 359-bp satellite block specifically and directly inhibits chromatid separation. In hybrids produced from wild-type parents, the 359-bp satellite block was highly stretched and abnormally enriched with Topoisomerase II throughout mitosis. The 359-bp satellite block is not present in D. simulans, suggesting that lethality is caused by the absence or divergence of factors in the D. simulans maternal cytoplasm that are required for heterochromatin formation of this species-specific satellite block. These findings demonstrate how divergence of noncoding repetitive sequences between species can directly cause reproductive isolation by altering chromosome segregation.
Collapse
Affiliation(s)
- Patrick M. Ferree
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
53
|
Fledel-Alon A, Wilson DJ, Broman K, Wen X, Ober C, Coop G, Przeworski M. Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genet 2009; 5:e1000658. [PMID: 19763175 PMCID: PMC2734982 DOI: 10.1371/journal.pgen.1000658] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022] Open
Abstract
Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans. In humans, as in most sexually reproducing organisms, recombination plays a fundamental role in meiosis, helping to align chromosomes and to ensure their proper segregation. Recombination events are tightly regulated both in terms of their minimum number (the rule of “crossover assurance”) and placement (due to “crossover interference”). Accumulating evidence, however, suggests that recombination patterns are highly variable among humans, raising numerous questions about the nature and stringency of crossover assurance and interference. We took a first step towards answering these questions by examining patterns of recombination in gametes inherited by viable, non-trisomic offspring. We found that the minimum number of crossovers is tightly regulated at the level of a chromosome (rather than chromosome arm), but with a notable exception: in females, chromosome 21 appears to frequently segregate properly in the absence of a crossover. We also found a set of double recombination events in surprisingly close proximity, consistent with a pathway not subject to crossover interference. These findings suggest that there are multiple mechanisms of recombination in human meiosis, which may buffer the effects of inter-individual variation in rates.
Collapse
Affiliation(s)
- Adi Fledel-Alon
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Daniel J. Wilson
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Karl Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaoquan Wen
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Graham Coop
- Evolution and Ecology Section, University of California Davis, Davis, California, United States of America
| | - Molly Przeworski
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
54
|
Vermaak D, Bayes JJ, Malik HS. A surrogate approach to study the evolution of noncoding DNA elements that organize eukaryotic genomes. J Hered 2009; 100:624-36. [PMID: 19635763 DOI: 10.1093/jhered/esp063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comparative genomics provides a facile way to address issues of evolutionary constraint acting on different elements of the genome. However, several important DNA elements have not reaped the benefits of this new approach. Some have proved intractable to current day sequencing technology. These include centromeric and heterochromatic DNA, which are essential for chromosome segregation as well as gene regulation, but the highly repetitive nature of the DNA sequences in these regions make them difficult to assemble into longer contigs. Other sequences, like dosage compensation X chromosomal sites, origins of DNA replication, or heterochromatic sequences that encode piwi-associated RNAs, have proved difficult to study because they do not have recognizable DNA features that allow them to be described functionally or computationally. We have employed an alternate approach to the direct study of these DNA elements. By using proteins that specifically bind these noncoding DNAs as surrogates, we can indirectly assay the evolutionary constraints acting on these important DNA elements. We review the impact that such "surrogate strategies" have had on our understanding of the evolutionary constraints shaping centromeres, origins of DNA replication, and dosage compensation X chromosomal sites. These have begun to reveal that in contrast to the view that such structural DNA elements are either highly constrained (under purifying selection) or free to drift (under neutral evolution), some of them may instead be shaped by adaptive evolution and genetic conflicts (these are not mutually exclusive). These insights also help to explain why the same elements (e.g., centromeres and replication origins), which are so complex in some eukaryotic genomes, can be simple and well defined in other where similar conflicts do not exist.
Collapse
Affiliation(s)
- Danielle Vermaak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
55
|
The centromere-drive hypothesis: a simple basis for centromere complexity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:33-52. [PMID: 19521811 DOI: 10.1007/978-3-642-00182-6_2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are far more complex and evolutionarily labile than expected based on their conserved, essential function. The rapid evolution of both centromeric DNA and proteins strongly argue that centromeres are locked in an evolutionary conflict to increase their odds of transmission during asymmetric (female) meiosis. Evolutionary success for "cheating" centromeres can result in highly deleterious consequences for the species, either in terms of skewed sex ratios or male sterility. Centromeric proteins evolve rapidly to suppress the deleterious effects of "centromere-drive." This chapter summarizes the mounting evidence in favor of the centromere-drive model, and its implications for centromere evolution in taxa with variations in meiosis.
Collapse
|
56
|
Anderson JA, Gilliland WD, Langley CH. Molecular population genetics and evolution of Drosophila meiosis genes. Genetics 2009; 181:177-85. [PMID: 18984573 PMCID: PMC2621166 DOI: 10.1534/genetics.108.093807] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022] Open
Abstract
While many functional elements of the meiotic process are well characterized in model organisms, the genetic basis of most of the natural phenotypic variation observed in meiotic pathways has not been determined. To begin to address this issue, we characterized patterns of polymorphism and divergence in the protein-coding regions of 33 genes across 31 lines of Drosophila melanogaster and 6 lines of Drosophila simulans. We sequenced genes known to be involved in chromosome segregation, recombination, DNA repair, and related heterochromatin binding. As expected, we found several of the genes to be highly conserved, consistent with purifying selection. However, a subset of genes showed patterns of polymorphism and divergence typical of other types of natural selection. Moreover, several intriguing differences between the two Drosophila lineages were evident: along the D. simulans lineage we consistently found evidence of adaptive protein evolution, whereas along the D. melanogaster lineage several loci exhibited patterns consistent with the maintenance of protein variation.
Collapse
|
57
|
Fishman L, Saunders A. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 2008; 322:1559-62. [PMID: 19056989 DOI: 10.1126/science.1161406] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Female meiotic drive, in which paired chromosomes compete for access to the egg, is a potentially powerful but rarely documented evolutionary force. In interspecific monkeyflower (Mimulus) hybrids, a driving M. guttatus allele (D) exhibits a 98:2 transmission advantage via female meiosis. We show that extreme interspecific drive is most likely caused by divergence in centromere-associated repeat domains and document cytogenetic and functional polymorphism for drive within a population of M. guttatus. In conspecific crosses, D had a 58:42 transmission advantage over nondriving alternative alleles. However, individuals homozygous for the driving allele suffered reduced pollen viability. These fitness effects and molecular population genetic data suggest that balancing selection prevents the fixation or loss of D and that selfish chromosomal transmission may affect both individual fitness and population genetic load.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
58
|
Rutkowska J, Badyaev AV. Review. Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Philos Trans R Soc Lond B Biol Sci 2008; 363:1675-86. [PMID: 18048292 PMCID: PMC2606724 DOI: 10.1098/rstb.2007.0006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Differences in relative fitness of male and female offspring across ecological and social environments should favour the evolution of sex-determining mechanisms that enable adjustment of brood sex ratio to the context of breeding. Despite the expectation that genetic sex determination should not produce consistent bias in primary sex ratios, extensive and adaptive modifications of offspring sex ratio in relation to social and physiological conditions during reproduction are often documented. Such discordance emphasizes the need for empirical investigation of the proximate mechanisms for modifying primary sex ratios, and suggests epigenetic effects on sex-determining mechanisms as the most likely candidates. Birds, in particular, are thought to have an unusually direct opportunity to modify offspring sex ratio because avian females are heterogametic and because the sex-determining division in avian meiosis occurs prior to ovulation and fertilization. However, despite evidence of strong epigenetic effects on sex determination in pre-ovulatory avian oocytes, the mechanisms behind such effects remain elusive. Our review of molecular and cytological mechanisms of avian meiosis uncovers a multitude of potential targets for selection on biased segregation of sex chromosomes, which may reflect the diversity of mechanisms and levels on which such selection operates in birds. Our findings indicate that pronounced differences between sex chromosomes in size, shape, size of protein bodies, alignment at the meiotic plate, microtubule attachment and epigenetic markings should commonly produce biased segregation of sex chromosomes as the default state, with secondary evolution of compensatory mechanisms necessary to maintain unbiased meiosis. We suggest that it is the epigenetic effects that modify such compensatory mechanisms that enable context-dependent and precise adjustment of primary sex ratio in birds. Furthermore, we highlight the features of avian meiosis that can be influenced by maternal hormones in response to environmental stimuli and may account for the precise and adaptive patterns of offspring sex ratio adjustment observed in some species.
Collapse
Affiliation(s)
| | - Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of ArizonaTucson, AZ 85721, USA
| |
Collapse
|
59
|
Abstract
DNA sequence surveys in yeast and humans suggest that the forces shaping telomeric polymorphism and divergence are distinctly more dynamic than those in the euchromatic, gene-rich regions of the chromosomes. However, the generality of this pattern across outbreeding, multicellular eukaryotes has not been determined. To characterize the structure and evolution of Drosophila telomeres, we collected and analyzed molecular population genetics data from the X chromosome subtelomere in 58 lines of North American Drosophila melanogaster and 29 lines of African D. melanogaster. We found that Drosophila subtelomeres exhibit high levels of both structural and substitutional polymorphism relative to linked euchromatic regions. We also observed strikingly different patterns of variation in the North American and African samples. Moreover, our analyses of the polymorphism data identify a localized hotspot of recombination in the most-distal portion of the X subtelomere. While the levels of polymorphism decline sharply and in parallel with rates of crossing over per physical length over the distal first euchromatic megabase pairs of the X chromosome, our data suggest that they rise again sharply in the subtelomeric region (approximately 80 kbp). These patterns of historical recombination and geographic differentiation indicate that, similar to yeast and humans, Drosophila subtelomeric DNA is evolving very differently from euchromatic DNA.
Collapse
|
60
|
Pelikan HMP, Bijlsma EK, van Wijngaarden WJ. A rare occurrence of trisomy 18 and trisomy 21 in a dizygotic twin pregnancy. Arch Gynecol Obstet 2007; 276:533-5. [PMID: 17593380 DOI: 10.1007/s00404-007-0378-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Case report of a rare combination of a trisomy 18 and 21 in a dizygotic twin pregnancy in a woman with a history of recurrent miscarriage, a neonatal death, no living offspring and Graves disease. METHODS Case report and literature search. RESULTS Only one other report in the literature of a combined trisomy 18 and 21 twin pregnancy was found. CONCLUSION The combination of a trisomy 18 and 21 in a dizygotic twin pregnancy is very rare. Despite the high frequency and clinical importance of aneuploidy, very little is known about the factors that may modulate meiotic non-disjunction.
Collapse
Affiliation(s)
- Harold M P Pelikan
- Department of Obstetrics and Gynaecology, University Hospital Maastricht (AZM), P. O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | |
Collapse
|
61
|
Casacuberta E, Marín FA, Pardue ML. Intracellular targeting of telomeric retrotransposon Gag proteins of distantly related Drosophila species. Proc Natl Acad Sci U S A 2007; 104:8391-6. [PMID: 17483480 PMCID: PMC1895960 DOI: 10.1073/pnas.0702566104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The retrotransposons that maintain telomeres in Drosophila melanogaster have unique features that are shared across all Drosophila species but are not found in other retrotransposons. Comparative analysis of these features provides insight into their importance for telomere maintenance in Drosophila. Gag proteins encoded by HeT-A(mel) and TART(mel) are efficiently and cooperatively targeted to telomeres in interphase nuclei, a behavior that may facilitate telomere-specific transposition. Drosophila virilis, separated from D. melanogaster by 60 MY, has telomeres maintained by HeT-A(vir) and TART(vir). The Gag proteins from HeT-A(mel) and HeT-A(vir) have only 16% amino acid identity, yet several of their functional features are conserved. Using transient transfection of cultured cells from both species, we show that the telomere association of HeT-A(vir) Gag is indistinguishable from that of HeT-A(mel) Gag. Deletion derivatives show that organization of localization signals within the two proteins is strikingly similar. Gag proteins of TART(mel) and TART(vir) are only 13% identical. In contrast to HeT-A, surprisingly, TART(vir) Gag does not localize to the nucleus, although TART(vir) is a major component of D. virilis telomeres, and localization signals in the protein have much the same organization as in TART(mel) Gag. Thus, the mechanism of telomere targeting of TART(vir) differs, at least in a minor way, from that of TART(mel). Our findings suggest that, despite dramatic rates of protein evolution, protein and cellular determinants that correctly localize these Gag proteins have been conserved throughout the 60 MY separating these species.
Collapse
Affiliation(s)
- Elena Casacuberta
- *Institute of Molecular Biology of Barcelona, Consejo Superior de Investigaciones Científicas and Institute for Research on Biomedicine of Barcelona (IRB), 08028 Barcelona, Spain; and
| | - Fernando Azorín Marín
- *Institute of Molecular Biology of Barcelona, Consejo Superior de Investigaciones Científicas and Institute for Research on Biomedicine of Barcelona (IRB), 08028 Barcelona, Spain; and
| | - Mary-Lou Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed at: Biology Department, 68–670, Massachusetts Institute of Technology, Cambridge, MA 02139. E-mail:
| |
Collapse
|
62
|
Abstract
Recombination has essential functions in mammalian meiosis, which impose several constraints on the recombination process. However, recent studies have shown that, in spite of these roles, recombination rates vary tremendously among humans, and show marked differences between humans and closely related species. These findings provide important insights into the determinants of recombination rates and raise new questions about the selective pressures that affect recombination over different genomic scales, with implications for human genetics and evolutionary biology.
Collapse
Affiliation(s)
- Graham Coop
- Department of Human Genetics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
63
|
Presgraves DC, Stephan W. Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96. Mol Biol Evol 2006; 24:306-14. [PMID: 17056646 DOI: 10.1093/molbev/msl157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nup96 is involved in a lethal hybrid incompatibility between 2 fruit fly species, Drosophila melanogaster and Drosophila simulans. Recurrent adaptive evolution drove the rapid functional divergence of Nup96 in both the D. melanogaster and the D. simulans lineages. Functional divergence of Nup96 between these 2 species is unexpected as Nup96 encodes part of the Nup107 subcomplex, an architectural component of nuclear pore complexes, the macromolecular channels in nuclear envelopes that mediate nucleocytoplasmic traffic in all eukaryotes. Here we study the evolutionary histories of 5 of Nup96's protein interactors--3 stable Nup107 subcomplex proteins (Nup75, Nup107, and Nup133) and 2 mobile nucleoporins (Nup98 and Nup153)--and show that all 5 have experienced recurrent adaptive evolution. These results are consistent with selection-driven coevolution among molecular interactors within species causing the incidental evolution of incompatible interactions seen in hybrids between species. We suggest that genetic conflict-driven processes may have contributed to the rapid molecular evolution of Nup107 subcomplex genes.
Collapse
Affiliation(s)
- Daven C Presgraves
- Section of Evolutionary Biology, Biocenter, University of Munich, Planegg-Martinsried, Germany.
| | | |
Collapse
|
64
|
Malik HS, Bayes JJ. Genetic conflicts during meiosis and the evolutionary origins of centromere complexity. Biochem Soc Trans 2006; 34:569-73. [PMID: 16856863 DOI: 10.1042/bst0340569] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Centromeric DNA evolves rapidly, ranging in size and complexity over several orders of magnitude. Traditional attempts at studying centromeres have left unexplained the causes underlying this complexity and rapid evolution. Instead of directly studying centromeric DNA sequence, our approach has been to study the proteins that epigenetically determine centromere identity. We have discovered that centromeric histones (CenH3s) have evolved under positive selection in multiple lineages, suggesting an involvement in recurrent genetic conflict. Our hypothesis is that 'centromere-drive' is the source of this conflict. Under this model, centromeres compete via microtubule attachments for preferential transmission in female meioses occurring in animals and plants. Since only one of four meiotic products will become the egg, this competition confers a selfish advantage to chromosomes that can make more microtubule attachments, resulting in runaway expansions of centromeric satellites. While beneficial to the 'driving' chromosome, these expansions can have deleterious effects on the fitness of an organism and of the species. CenH3s as well as other heterochromatin proteins have evolved under positive selection to suppress the deleterious consequences of 'centromere-drive' by restoring meiotic parity.
Collapse
Affiliation(s)
- H S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, A1-162, Seattle, WA 98109, USA.
| | | |
Collapse
|
65
|
Warburton D. Biological aging and the etiology of aneuploidy. Cytogenet Genome Res 2005; 111:266-72. [PMID: 16192704 DOI: 10.1159/000086899] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/22/2005] [Indexed: 11/19/2022] Open
Abstract
A prevalent hypothesis concerning the cause of the rise in aneuploid conceptions with maternal age is that the changes that accompany normal ovarian aging increase the rate of meiotic errors in the oocyte. Biological aging of the ovary is accompanied by a decline in both the total oocyte pool and the number of antral follicles maturing per cycle, as well as changes in the levels of circulating reproductive hormones. The biological aging hypothesis predicts that aneuploidy rates should be higher in women with a prematurely reduced oocyte pool, and that women with trisomic conceptions should show signs of earlier ovarian aging than women of the same chronological age without trisomic conceptions. Comprehensive studies of aneuploidy in groups of women with known causes of premature ovarian failure remain to be done, though anecdotal evidence does suggest increased rates of pregnancy loss and aneuploidy. Smoking, which is a well-documented cause of earlier ovarian aging, is not associated with an increase in aneuploid conceptions. Evidence from women with unilateral ovariectomies is inconsistent. Support for the biological aging hypothesis was provided by one study showing that menopause occurred about a year earlier in women with a trisomic spontaneous abortion compared to women with chromosomally normal conceptions. Associations between high FSH and pregnancies with Down syndrome and chromosomally abnormal spontaneous abortions have also been reported. However, the most direct test of the hypothesis, which compared antral follicle counts and hormonal levels in women with trisomic pregnancies and those with chromosomally normal pregnancies, failed to find a difference in the expected direction. A prospective study of FSH levels in women with subfertility also failed to find an association with the rate of pregnancy loss. The bulk of evidence thus suggests that, if the processes of biological aging are indeed related to aneuploidy, they probably involve factors other than those measured by oocyte or antral follicle pool size and reproductive hormone levels.
Collapse
Affiliation(s)
- D Warburton
- Department of Genetics and Development, Columbia University, New York, NY, USA.
| |
Collapse
|
66
|
Cui W, Hawley RS. The HhH2/NDD domain of the Drosophila Nod chromokinesin-like protein is required for binding to chromosomes in the oocyte nucleus. Genetics 2005; 171:1823-35. [PMID: 16143607 PMCID: PMC1456107 DOI: 10.1534/genetics.105.047464] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nod is a chromokinesin-like protein that plays a critical role in segregating achiasmate chromosomes during female meiosis. The C-terminal half of the Nod protein contains two putative DNA-binding domains. The first of these domains, known as the HMGN domain, consists of three tandemly repeated high-mobility group N motifs. This domain was previously shown to be both necessary and sufficient for binding of the C-terminal half of Nod to mitotic chromosomes in embryos. The second putative DNA-binding domain, denoted HhH(2)/NDD, is a helix-hairpin-helix(2)/Nod-like DNA-binding domain. Although the HhH(2)/NDD domain is not required or sufficient for chromosome binding in embryos, several well-characterized nod mutations have been mapped in this domain. To characterize the role of the HhH(2)/NDD domain in mediating Nod function, we created a series of UAS-driven transgene constructs capable of expressing either a wild-type Nod-GFP fusion protein or proteins in which the HhH(2)/NDD domain had been altered by site-directed mutagenesis. Although wild-type Nod-GFP localizes to the oocyte chromosomes and rescues the segregation defect in nod mutant oocytes, two of three proteins carrying mutants in the HhH(2)/NDD domain fail to either rescue the nod mutant phenotype or bind to oocyte chromosomes. However, these mutant proteins do bind to the polytene chromosomes in nurse-cell nuclei and enter the oocyte nucleus. Thus, even though the HhH(2)/NDD domain is not essential for chromosome binding in other cell types, it is required for chromosome binding in the oocyte. These HhH(2)/NDD mutants also block the localization of Nod to the posterior pole of stage 9-10A oocytes, a process that is thought to facilitate the interaction of Nod with the plus ends of microtubules (Cui et al. 2005). This observation suggests that the Nod HhH2/NDD domain may play other roles in addition to binding Nod to meiotic chromosomes.
Collapse
Affiliation(s)
- Wei Cui
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
67
|
Vermaak D, Henikoff S, Malik HS. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet 2005; 1:96-108. [PMID: 16103923 PMCID: PMC1183528 DOI: 10.1371/journal.pgen.0010009] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 05/13/2005] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1), which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of “junk DNA” in eukaryotic genomes. Eukaryotic genomes are organized into good and bad neighborhoods. In fruit fly genomes, most genes are found in euchromatin—good neighborhoods that tend to be amenable to gene expression and deficient in selfish mobile elements. Conversely, heterochromatic regions are deficient in genes but chock full of mobile genetic elements, both dead and alive. Cells expend considerable effort to maintain this organization, to prevent bad neighborhoods from exerting their negative influence on the rest of the genome. At the forefront of this organization are the HP1 proteins, which are involved in the compaction and silencing of heterochromatic sequences. First discovered in Drosophila, HP1 proteins have been subsequently found in virtually all fungi, plants, and animals. Most HP1 proteins evolve under stringent evolutionary pressures, suggesting that they lack any discriminatory power in their action. However, a recent paper by Vermaak finds that one of the five HP1 encoding genes in Drosophila genomes, rhino, bucks the trend and evolves rapidly. rhino is predominantly expressed in ovaries, which is where many mobile elements are also active. Their results suggest that rhino has been constantly evolving to police a particularly dynamic, novel compartment in heterochromatin with exquisite specificity. Thus, instead of a genomic wasteyard that genes shun and where transposons go to die, heterochromatin now appears to have been shaped by a constant struggle for evolutionary dominance.
Collapse
Affiliation(s)
- Danielle Vermaak
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven Henikoff
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Harmit S Malik
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
68
|
Reed FA, Reeves RG, Aquadro CF. EVIDENCE OF SUSCEPTIBILITY AND RESISTANCE TO CRYPTIC X-LINKED MEIOTIC DRIVE IN NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01778.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
69
|
Reed FA, Reeves RG, Aquadro CF. EVIDENCE OF SUSCEPTIBILITY AND RESISTANCE TO CRYPTIC X-LINKED MEIOTIC DRIVE IN NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. Evolution 2005. [DOI: 10.1554/05-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
70
|
Fishman L, Willis JH. A novel meiotic drive locus almost completely distorts segregation in mimulus (monkeyflower) hybrids. Genetics 2005; 169:347-53. [PMID: 15466426 PMCID: PMC1448871 DOI: 10.1534/genetics.104.032789] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Accepted: 09/25/2004] [Indexed: 11/18/2022] Open
Abstract
We report the discovery, mapping, and characterization of a meiotic drive locus (D) exhibiting nearly 100% nonrandom transmission in hybrids between two species of yellow monkeyflowers, outcrossing Mimulus guttatus and selfing M. nasutus. Only 1% of F(2) hybrids were M. nasutus homozygotes at the marker most tightly linked to D. We used a set of reciprocal backcrosses to distinguish among male-specific, female-specific, and zygote-specific sources of transmission ratio distortion. Transmission was severely distorted only when the heterozygous F(1) acted as the female parent in crosses to either parental species, ruling out pollen competition and zygote mortality as potential sources of drive. After four generations of backcrossing to M. nasutus, nearly isogenic lines were still >90% heterozygous at markers linked to D, suggesting that heterozygosity at the drive locus alone is sufficient for nonrandom transmission. A lack of dramatic female fitness costs in these lines rules out alternatives involving ovule or seed mortality and points to a truly meiotic mechanism of drive. The strength and direction of drive in this system is consistent with population genetic theory of selfish element evolution under different mating systems. These results are the first empirical demonstration of the strong female-specific drive predicted by new models of selfish centromere turnover.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA.
| | | |
Collapse
|
71
|
Warburton D, Dallaire L, Thangavelu M, Ross L, Levin B, Kline J. Trisomy recurrence: a reconsideration based on North American data. Am J Hum Genet 2004; 75:376-85. [PMID: 15248154 PMCID: PMC1182017 DOI: 10.1086/423331] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 06/15/2004] [Indexed: 01/14/2023] Open
Abstract
Few reliable data exist concerning the recurrence risk for individual trisomies or the risk for recurrence of trisomy for a different chromosome. We collected records from two sources: (1) prenatal diagnoses performed at the Hopital Sainte-Justine in Montreal and (2) karyotype analyses performed at Genzyme. Using the standardized morbidity ratio (SMR), we compared the observed number of trisomies at prenatal diagnosis with the expected numbers, given maternal age-specific rates (by single year). SMRs were calculated both for recurrence of the same trisomy (homotrisomy) and of a different trisomy (heterotrisomy). After all cases with an index trisomy 21 were combined, the SMR for homotrisomy was 2.4 (90% CI 1.6-3.4; P=.0005). For women with both the index trisomy and subsequent prenatal diagnosis at age <30 years, the SMR was 8.0; it was 2.1 for women with both pregnancies at age >/=30 years. For the other index viable trisomies (13, 18, XXX, and XXY) combined, the SMR for homotrisomy was 2.5 (90% CI 0.7-8.0). For heterotrisomy, the SMR after an index trisomy 21 was 2.3 (90% CI 1.5-3.8, P=.0007); the SMR did not vary with maternal age at the first trisomy. When all cases with index viable trisomies were combined, the SMR for heterotrisomy was 1.6 (90% CI 1.1-2.4; P=.04). For prenatal diagnoses following a nonviable trisomy diagnosed in a spontaneous abortion (from Genzyme data only), the SMR for a viable trisomy was 1.8 (90% CI 1.1-3.0; P=.04). The significantly increased risk for heterotrisomy supports the hypothesis that some women have a risk for nondisjunction higher than do others of the same age.
Collapse
|
72
|
Shi Q, Spriggs E, Field LL, Rademaker A, Ko E, Barclay L, Martin RH. Absence of age effect on meiotic recombination between human X and Y chromosomes. Am J Hum Genet 2002; 71:254-61. [PMID: 12046006 PMCID: PMC379158 DOI: 10.1086/341559] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 05/01/2002] [Indexed: 11/03/2022] Open
Abstract
Recombination between the X and Y chromosomes is limited to the pseudoautosomal region and is necessary for proper segregation of the sex chromosomes during spermatogenesis. Failure of the sex chromosomes to disjoin properly during meiosis can result in individuals with a 47,XXY constitution, and approximately one-half of these result from paternal nondisjunction at meiosis I. Analysis of individuals with paternally derived 47,XXY has shown that the majority are the result of meiosis in which the X and Y chromosomes have failed to recombine. Our studies of sperm have demonstrated that aneuploid 24,XY sperm have a decreased recombination frequency, compared with that of normal sperm. Some studies have indicated a relationship of increased paternal age with 47,XXY offspring and with the production of XY disomic sperm, whereas others have failed to find such relationships. To determine whether there is a relationship between paternal age and recombination in the pseudoautosomal region, single-sperm genotyping was performed to measure the frequency of recombination between a sex-specific locus, STS/STS pseudogene, and a pseudoautosomal locus, DXYS15, in younger men (age < or =30 years) compared with older men (age > or =50 years). A total of 2,329 sperm cells were typed by single-sperm PCR in 20 men who were heterozygous for the DXYS15 locus (1,014 sperm from 10 younger men and 1,315 sperm from 10 older men). The mean recombination frequency was 39.2% in the younger men and 37.8% in the older men. There was no heterogeneity in the frequency of recombination rates. There was no significant difference between the recombination frequencies among the younger men and those among the older men, when analyzed by the clustered binomial Z test (Z=.69, P=.49). This result suggests that paternal age has no effect on the recombination frequency in the pseudoautosomal region.
Collapse
Affiliation(s)
- Qinghua Shi
- Department of Medical Genetics, Faculty of Medicine, Alberta Children's Hospital, University of Calgary, 1820 Richmond Road SW, Calgary, Alberta, Canada T2T 5C7
| | | | | | | | | | | | | |
Collapse
|
73
|
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. THE PLANT CELL 2002; 14:1053-66. [PMID: 12034896 PMCID: PMC150606 DOI: 10.1105/tpc.010425] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Accepted: 02/24/2002] [Indexed: 05/18/2023]
Abstract
Centromeric H3-like histones, which replace histone H3 in the centromeric chromatin of animals and fungi, have not been reported in plants. We identified a histone H3 variant from Arabidopsis thaliana that encodes a centromere-identifying protein designated HTR12. By immunological detection, HTR12 localized at centromeres in both mitotic and meiotic cells. HTR12 signal revealed tissue- and stage-specific differences in centromere morphology, including a distended bead-like structure in interphase root tip cells. The anti-HTR12 antibody also detected spherical organelles in meiotic cells. Although the antibody does not label centromeres in the closely related species Arabidopsis arenosa, HTR12 signal was found on all centromeres in allopolyploids of these two species. Comparison of the HTR12 genes of A. thaliana and A. arenosa revealed striking adaptive evolution in the N-terminal tail of the protein, similar to the pattern seen in its counterpart in Drosophila. This finding suggests that the same evolutionary forces shape centromeric chromatin in both animals and plants.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, Washington 98109-1024, USA
| | | | | | | | | |
Collapse
|
74
|
Malik HS, Vermaak D, Henikoff S. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc Natl Acad Sci U S A 2002; 99:1449-54. [PMID: 11805302 PMCID: PMC122211 DOI: 10.1073/pnas.032664299] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 12/12/2001] [Indexed: 11/18/2022] Open
Abstract
All eukaryotes contain centromere-specific histone H3 variants (CenH3s), which replace H3 in centromeric chromatin. We have previously documented the adaptive evolution of the Drosophila CenH3 (Cid) in comparisons of Drosophila melanogaster and Drosophila simulans, a divergence of approximately 2.5 million years. We have proposed that rapidly changing centromeric DNA may be driving CenH3's altered DNA-binding specificity. Here, we compare Cid sequences from a phylogenetically broader group of Drosophila species to suggest that Cid has been evolving adaptively for at least 25 million years. Our analysis also reveals conserved blocks not only in the histone-fold domain but also in the N-terminal tail. In several lineages, the N-terminal tail of Cid is characterized by subgroup-specific oligopeptide expansions. These expansions resemble minor groove DNA binding motifs found in various histone tails. Remarkably, similar oligopeptides are also found in N-terminal tails of human and mouse CenH3 (Cenp-A). The recurrent evolution of these motifs in CenH3 suggests a packaging function for the N-terminal tail, which results in a unique chromatin organization at the primary constriction, the cytological marker of centromeres.
Collapse
Affiliation(s)
- Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
75
|
Hiatt EN, Kentner EK, Dawe RK. Independently regulated neocentromere activity of two classes of tandem repeat arrays. THE PLANT CELL 2002; 14:407-20. [PMID: 11884683 PMCID: PMC152921 DOI: 10.1105/tpc.010373] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2001] [Accepted: 10/23/2001] [Indexed: 05/19/2023]
Abstract
Tandem repeat arrays often are found in interstitial (i.e., normally gene-rich) regions on chromosomes. In maize, genes on abnormal chromosome 10 induce the tandem repeats that make up knobs to move poleward on the meiotic spindle. This so-called neocentromere activity results in the preferential recovery, or meiotic drive, of the knobs in progeny. Here we show that two classes of repeats differ in their capacity to form neocentromeres and that their motility is controlled in trans by at least two repeat-specific activators. Microtubule dynamics appear to contribute little to the movement of neocentromeres (they are active in the presence of taxol), suggesting that the mechanism of motility involves microtubule-based motors. These data suggest that maize knob repeats and their binding proteins have coevolved to ensure their preferential recovery in progeny. Neocentromere-mediated drive provides a plausible mechanism for the evolution and maintenance of repeat arrays that occur in interstitial positions.
Collapse
Affiliation(s)
- Evelyn N Hiatt
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
76
|
Abstract
Speciation is often accompanied by changes in chromosomal number or form even though such changes significantly reduce the fertility of hybrid intermediates. We have addressed this evolutionary paradox by expanding the principle that nonrandom segregation of chromosomes takes place whenever human or mouse females are heterozygous carriers of Robertsonian translocations, a common form of chromosome rearrangement in mammals. Our analysis of 1170 mammalian karyotypes provides strong evidence that karyotypic evolution is driven by nonrandom segregation during female meiosis. The pertinent variable in this form of meiotic drive is the presence of differing numbers of centromeres on paired homologous chromosomes. This situation is encountered in all heterozygous carriers of Robertsonian translocations. Whenever paired chromosomes have different numbers of centromeres, the inherent asymmetry of female meiosis and the polarity of the meiotic spindle dictate that the partner with the greater number of centromeres will attach preferentially to the pole that is most efficient at capturing centromeres. This mechanism explains how chromosomal variants become fixed in populations, as well as why closely related species often appear to have evolved by directional adjustment of the karyotype toward or away from a particular chromosome form. If differences in the ability of particular DNA sequences or chromosomal regions to function as centromeres are also considered, nonrandom segregation is likely to affect karyotype evolution across a very broad phylogenetic range.
Collapse
|
77
|
Rand DM, Clark AG, Kann LM. Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster. Genetics 2001; 159:173-87. [PMID: 11560895 PMCID: PMC1461777 DOI: 10.1093/genetics/159.1.173] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Theoretical and empirical studies have shown that selection cannot maintain a joint nuclear-cytoplasmic polymorphism within a population except under restrictive conditions of frequency-dependent or sex-specific selection. These conclusions are based on fitness interactions between a diploid autosomal locus and a haploid cytoplasmic locus. We develop a model of joint transmission of X chromosomes and cytoplasms and through simulation show that nuclear-cytoplasmic polymorphisms can be maintained by selection on X-cytoplasm interactions. We test aspects of the model with a "diallel" experiment analyzing fitness interactions between pairwise combinations of X chromosomes and cytoplasms from wild strains of Drosophila melanogaster. Contrary to earlier autosomal studies, significant fitness interactions between X chromosomes and cytoplasms are detected among strains from within populations. The experiment further demonstrates significant sex-by-genotype interactions for mtDNA haplotype, cytoplasms, and X chromosomes. These interactions are sexually antagonistic--i.e., the "good" cytoplasms in females are "bad" in males--analogous to crossing reaction norms. The presence or absence of Wolbachia did not alter the significance of the fitness effects involving X chromosomes and cytoplasms but tended to reduce the significance of mtDNA fitness effects. The negative fitness correlations between the sexes demonstrated in our empirical study are consistent with the conditions that maintain cytoplasmic polymorphism in simulations. Our results suggest that fitness interactions with the sex chromosomes may account for some proportion of cytoplasmic variation in natural populations. Sexually antagonistic selection or reciprocally matched fitness effects of nuclear-cytoplasmic genotypes may be important components of cytonuclear fitness variation and have implications for mitochondrial disease phenotypes that differ between the sexes.
Collapse
Affiliation(s)
- D M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
78
|
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 2001; 293:1098-102. [PMID: 11498581 DOI: 10.1126/science.1062939] [Citation(s) in RCA: 911] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Every eukaryotic chromosome has a centromere, the locus responsible for poleward movement at mitosis and meiosis. Although conventional loci are specified by their DNA sequences, current evidence favors a chromatin-based inheritance mechanism for centromeres. The chromosome segregation machinery is highly conserved across all eukaryotes, but the DNA and protein components specific to centromeric chromatin are evolving rapidly. Incompatibilities between rapidly evolving centromeric components may be responsible for both the organization of centromeric regions and the reproductive isolation of emerging species.
Collapse
Affiliation(s)
- S Henikoff
- Howard Hughes Medical Institute Research Laboratories, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | |
Collapse
|
79
|
Abstract
Centromeric DNA is generally composed of large blocks of tandem satellite repeats that change rapidly due to loss of old arrays and expansion of new repeat classes. This extreme heterogeneity of centromeric DNA is difficult to reconcile with the conservation of the eukaryotic chromosome segregation machinery. Histone H3-like proteins, including Cid in Drosophila melanogaster, are a unique chromatin component of centromeres. In comparisons between closely related species of Drosophila, we find an excess of replacement changes that have been fixed since the separation of D. melanogaster and D. simulans, suggesting adaptive evolution. The last adaptive changes appear to have occurred recently, as evident from a reduction in polymorphism in the melanogaster lineage. Adaptive evolution has occurred both in the long N-terminal tail as well as in the histone fold of Cid. In the histone fold, the replacement changes have occurred in the region proposed to mediate binding to DNA. We propose that this rapid evolution of Cid is driven by a response to the changing satellite repeats at centromeres. Thus, centromeric H3-like proteins may act as adaptors between evolutionarily labile centromeric DNA and the conserved kinetochore machinery.
Collapse
Affiliation(s)
- H S Malik
- Howard Hughes Medical Institute, Seattle, Washington 98109, USA
| | | |
Collapse
|
80
|
LeMaire-Adkins R, Hunt PA. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics 2000; 156:775-83. [PMID: 11014823 PMCID: PMC1461275 DOI: 10.1093/genetics/156.2.775] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in approximately 60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species.
Collapse
Affiliation(s)
- R LeMaire-Adkins
- Department of Genetics and Center for Human Genetics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-4955, USA
| | | |
Collapse
|
81
|
Zwick ME, Cutler DJ, Langley CH. Classic Weinstein: tetrad analysis, genetic variation and achiasmate segregation in Drosophila and humans. Genetics 1999; 152:1615-29. [PMID: 10430587 PMCID: PMC1460678 DOI: 10.1093/genetics/152.4.1615] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A maximum-likelihood method for the estimation of tetrad frequencies from single-spore data is presented. The multilocus exchange with interference and viability (MEIV) model incorporates a clearly defined model of exchange, interference, and viability whose parameters define a multinomial distribution for single-spore data. Maximum-likelihood analysis of the MEIV model (MEIVLA) allows point estimation of tetrad frequencies and determination of confidence intervals. We employ MEIVLA to determine tetrad frequencies among 15 X chromosomes sampled at random from Drosophila melanogaster natural populations in Africa and North America. Significant variation in the frequency of nonexchange, or E(0) tetrads, is observed within both natural populations. Because most nondisjunction arises from E(0) tetrads, this observation is quite unexpected given both the prevalence and the deleterious consequences of nondisjunction in D. melanogaster. Use of MEIVLA is also demonstrated by reanalyzing a recently published human chromosome 21 dataset. Analysis of simulated datasets demonstrates that MEIVLA is superior to previous methods of tetrad frequency estimation and is particularly well suited to analyze samples where the E(0) tetrad frequency is low and sample sizes are small, conditions likely to be met in most samples from human populations. We discuss the implications of our analysis for determining whether an achiasmate system exists in humans to ensure the proper segregation of E(0) tetrads.
Collapse
Affiliation(s)
- M E Zwick
- Center for Population Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|