51
|
Foot NJ, Orgeig S, Donnellan S, Bertozzi T, Daniels CB. Positive selection in the N-terminal extramembrane domain of lung surfactant protein C (SP-C) in marine mammals. J Mol Evol 2007; 65:12-22. [PMID: 17568982 DOI: 10.1007/s00239-006-0083-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C (SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection. Site models used the nonsynonymous/synonymous rate ratio (omega) as an indicator of selection pressure. Mechanistic models used physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites 2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site 10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving.
Collapse
Affiliation(s)
- Natalie J Foot
- Discipline of Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
52
|
Kistler AL, Webster DR, Rouskin S, Magrini V, Credle JJ, Schnurr DP, Boushey HA, Mardis ER, Li H, DeRisi JL. Genome-wide diversity and selective pressure in the human rhinovirus. Virol J 2007; 4:40. [PMID: 17477878 PMCID: PMC1892812 DOI: 10.1186/1743-422x-4-40] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 05/03/2007] [Indexed: 01/19/2023] Open
Abstract
Background The human rhinoviruses (HRV) are one of the most common and diverse respiratory pathogens of humans. Over 100 distinct HRV serotypes are known, yet only 6 genomes are available. Due to the paucity of HRV genome sequence, little is known about the genetic diversity within HRV or the forces driving this diversity. Previous comparative genome sequence analyses indicate that recombination drives diversification in multiple genera of the picornavirus family, yet it remains unclear if this holds for HRV. Results To resolve this and gain insight into the forces driving diversification in HRV, we generated a representative set of 34 fully sequenced HRVs. Analysis of these genomes shows consistent phylogenies across the genome, conserved non-coding elements, and only limited recombination. However, spikes of genetic diversity at both the nucleotide and amino acid level are detectable within every locus of the genome. Despite this, the HRV genome as a whole is under purifying selective pressure, with islands of diversifying pressure in the VP1, VP2, and VP3 structural genes and two non-structural genes, the 3C protease and 3D polymerase. Mapping diversifying residues in these factors onto available 3-dimensional structures revealed the diversifying capsid residues partition to the external surface of the viral particle in statistically significant proximity to antigenic sites. Diversifying pressure in the pleconaril binding site is confined to a single residue known to confer drug resistance (VP1 191). In contrast, diversifying pressure in the non-structural genes is less clear, mapping both nearby and beyond characterized functional domains of these factors. Conclusion This work provides a foundation for understanding HRV genetic diversity and insight into the underlying biology driving evolution in HRV. It expands our knowledge of the genome sequence space that HRV reference serotypes occupy and how the pattern of genetic diversity across HRV genomes differs from other picornaviruses. It also reveals evidence of diversifying selective pressure in both structural genes known to interact with the host immune system and in domains of unassigned function in the non-structural 3C and 3D genes, raising the possibility that diversification of undiscovered functions in these essential factors may influence HRV fitness and evolution.
Collapse
Affiliation(s)
- Amy L Kistler
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, University of California, California, USA
| | - Dale R Webster
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Biological and Medical Informatics Program, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, University of California, California, USA
| | - Silvi Rouskin
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, University of California, California, USA
| | - Vince Magrini
- Department of Genetics, Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel J Credle
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, University of California, California, USA
| | - David P Schnurr
- California Department of Health Services, Richmond, California, USA
| | - Homer A Boushey
- Department of Medicine, University of California, San Francisco, California, USA
| | - Elaine R Mardis
- Department of Genetics, Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, University of California, California, USA
| |
Collapse
|
53
|
Cristina J, Costa-Mattioli M. Genetic variability and molecular evolution of hepatitis A virus. Virus Res 2007; 127:151-7. [PMID: 17328982 DOI: 10.1016/j.virusres.2007.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 01/08/2007] [Indexed: 02/08/2023]
Abstract
Hepatitis A virus (HAV), the causative agent of type A viral hepatitis, was first identified about three decades ago. Recent findings have shown that HAV possess several characteristics that make it unique among the family Picornaviridae, particularly in terms of its mechanisms of polyprotein processing and virion morphogenesis. HAV circulates in vivo as distributions of closely genetically related variants referred to as quasispecies. HAV exploits all known mechanisms of genetic variation to ensure its survival, including mutation and recombination. Only one serotype and six different genetic groups (three humans and three simian) have been described. HAV mutation rate is significantly lower as compared to other members of the family Picornaviridae. The mode of evolution appears, at least in part, to contribute to the presence of only one known serotype.
Collapse
Affiliation(s)
- Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay.
| | | |
Collapse
|
54
|
Tully DC, Fares MA. Unravelling selection shifts among foot-and-mouth disease virus (FMDV) serotypes. Evol Bioinform Online 2007; 2:211-25. [PMID: 19455214 PMCID: PMC2674665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
FMDV virus has been increasingly recognised as the most economically severe animal virus with a remarkable degree of antigenic diversity. Using an integrative evolutionary and computational approach we have compelling evidence for heterogeneity in the selection forces shaping the evolution of the seven different FMDV serotypes. Our results show that positive Darwinian selection has governed the evolution of the major antigenic regions of serotypes A, Asia1, O, SAT1 and SAT2, but not C or SAT3. Co-evolution between sites from antigenic regions under positive selection pinpoints their functional communication to generate immune-escape mutants while maintaining their ability to recognise the host-cell receptors. Neural network and functional divergence analyses strongly point to selection shifts between the different serotypes. Our results suggest that, unlike African FMDV serotypes, serotypes with wide geographical distribution have accumulated compensatory mutations as a strategy to ameliorate the effect of slightly deleterious mutations fixed by genetic drift. This strategy may have provided the virus by a flexibility to generate immune-escape mutants and yet recognise host-cell receptors. African serotypes presented no evidence for compensatory mutations. Our results support heterogeneous selective constraints affecting the different serotypes. This points to the possible accelerated rates of evolution diverging serotypes sharing geographical locations as to ameliorate the competition for the host.
Collapse
Affiliation(s)
- Damien C. Tully
- Molecular Evolution and Bioinformatics Laboratory, Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Mario A. Fares
- Molecular Evolution and Bioinformatics Laboratory, Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland,Correspondence: Dr. Mario A. Fares, Tel: 353 01 6081064; Fax: 353 01 6714968;
| |
Collapse
|
55
|
Heath L, van der Walt E, Varsani A, Martin DP. Recombination patterns in aphthoviruses mirror those found in other picornaviruses. J Virol 2006; 80:11827-32. [PMID: 16971423 PMCID: PMC1642601 DOI: 10.1128/jvi.01100-06] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is thought to evolve largely through genetic drift driven by the inherently error-prone nature of its RNA polymerase. There is, however, increasing evidence that recombination is an important mechanism in the evolution of these and other related picornoviruses. Here, we use an extensive set of recombination detection methods to identify 86 unique potential recombination events among 125 publicly available FMDV complete genome sequences. The large number of events detected between members of different serotypes suggests that horizontal flow of sequences among the serotypes is relatively common and does not incur severe fitness costs. Interestingly, the distribution of recombination breakpoints was found to be largely nonrandom. Whereas there are clear breakpoint cold spots within the structural genes, two statistically significant hot spots precisely separate these from the nonstructural genes. Very similar breakpoint distributions were found for other picornovirus species in the genera Enterovirus and Teschovirus. Our results suggest that genome regions encoding the structural proteins of both FMDV and other picornaviruses are functionally interchangeable modules, supporting recent proposals that the structural and nonstructural coding regions of the picornaviruses are evolving largely independently of one another.
Collapse
Affiliation(s)
- Livio Heath
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| | | | | | | |
Collapse
|
56
|
Simmonds P. Recombination and selection in the evolution of picornaviruses and other Mammalian positive-stranded RNA viruses. J Virol 2006; 80:11124-40. [PMID: 16956935 PMCID: PMC1642140 DOI: 10.1128/jvi.01076-06] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Picornaviridae are a large virus family causing widespread, often pathogenic infections in humans and other mammals. Picornaviruses are genetically and antigenically highly diverse, with evidence for complex evolutionary histories in which recombination plays a major part. To investigate the nature of recombination and selection processes underlying the evolution of serotypes within different picornavirus genera, large-scale analysis of recombination frequencies and sites, segregation by serotype within each genus, and sequence selection and composition was performed, and results were compared with those for other nonenveloped positive-stranded viruses (astroviruses and human noroviruses) and with flavivirus and alphavirus control groups. Enteroviruses, aphthoviruses, and teschoviruses showed phylogenetic segregation by serotype only in the structural region; lack of segregation elsewhere was attributable to extensive interserotype recombination. Nonsegregating viruses also showed several characteristic sequence divergence and composition differences between genome regions that were absent from segregating virus control groups, such as much greater amino acid sequence divergence in the structural region, markedly elevated ratios of nonsynonymous-to-synonymous substitutions, and differences in codon usage. These properties were shared with other picornavirus genera, such as the parechoviruses and erboviruses. The nonenveloped astroviruses and noroviruses similarly showed high frequencies of recombination, evidence for positive selection, and differential codon use in the capsid region, implying similar underlying evolutionary mechanisms and pressures driving serotype differentiation. This process was distinct from more-recent sequence evolution generating diversity within picornavirus serotypes, in which neutral or purifying selection was prominent. Overall, this study identifies common themes in the diversification process generating picornavirus serotypes that contribute to understanding of their evolution and pathogenicity.
Collapse
Affiliation(s)
- Peter Simmonds
- Virus Evolution Group, Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom.
| |
Collapse
|
57
|
Pérez-Losada M, Browne EB, Madsen A, Wirth T, Viscidi RP, Crandall KA. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2006; 6:97-112. [PMID: 16503511 PMCID: PMC1983445 DOI: 10.1016/j.meegid.2005.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 11/18/2004] [Accepted: 02/14/2005] [Indexed: 11/25/2022]
Abstract
The inference of population recombination (rho), population mutation (Theta), and adaptive selection is of great interest in microbial population genetics. These parameters can be efficiently estimated using explicit statistical frameworks (evolutionary models) that describe their effect on gene sequences. Within this framework, we estimated rho and Theta using a coalescent approach, and adaptive (or destabilizing) selection under heterogeneous codon-based and amino acid property models in microbial sequences from MLST databases. We analyzed a total of 91 different housekeeping gene regions (loci) corresponding to one fungal and sixteen bacterial pathogens. Our results show that these three population parameters vary extensively across species and loci, but they do not seem to be correlated. For the most part, estimated recombination rates among species agree well with previous studies. Over all taxa, the rho/Theta ratio suggests that each factor contributes similarly to the emergence of variant alleles. Comparisons of Theta estimated under finite- and infinite-site models indicate that recurrent mutation (i.e., multiple mutations at some sites) can increase Theta by up to 39%. Significant evidence of molecular adaptation was detected in 28 loci from 13 pathogens. Three of these loci showed concordant patterns of adaptive selection in two to four different species.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Department of Integrative Biology, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating to the analysis of large-scale genomic data sets.
Collapse
Affiliation(s)
- Rasmus Nielsen
- Center for Bioinformatics and Department of Evolutionary Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
59
|
Shi P, Bielawski JP, Yang H, Zhang YP. Adaptive Diversification of Vomeronasal Receptor 1 Genes in Rodents. J Mol Evol 2005; 60:566-76. [PMID: 15983866 DOI: 10.1007/s00239-004-0172-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 11/19/2004] [Indexed: 01/22/2023]
Abstract
The vomeronasal receptor 1 (V1R) are believed to be pheromone receptors in rodents. Here we used computational methods to identify 95 and 62 new putative V1R genes from the draft rat and mouse genome sequence, respectively. The rat V1R repertoire consists of 11 subfamilies, 10 of which are shared with the mouse, while rat appears to lack the H and I subfamilies found in mouse and possesses one unique subfamily (M). The estimations of the relative divergence times suggest that many subfamilies originated after the split of rodents and primates. The analysis also reveals that these clusters underwent an expansion very close to the split of mouse and rat. In addition, maximum likelihood analysis showed that the nonsynonymous and synonymous rate ratio for most of these clusters was much higher than one, suggesting the role of positive selection in the diversification of these duplicated V1R genes. Because V1R are thought to mediate the process of signal transduction in response to pheromone detection, we speculate that the V1R genes have evolved under positive Darwinian selection to maintain the ability to discriminate between large and complex pheromonal mixtures.
Collapse
Affiliation(s)
- Peng Shi
- Laboratory of Molecular Biology of Domestic Animals and Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology Chinese Academy of Sciences
| | | | | | | |
Collapse
|
60
|
Anisimova M, Yang Z. Molecular evolution of the hepatitis delta virus antigen gene: recombination or positive selection? J Mol Evol 2005; 59:815-26. [PMID: 15599513 DOI: 10.1007/s00239-004-0112-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 06/29/2004] [Indexed: 02/08/2023]
Abstract
We present the statistical analysis of diversifying selective pressures on the hepatitis D antigen gene (HDAg). Thirty-three distinct HDAg sequences from subtypes I, II, and III were tested for positive selection using maximum likelihood methods based on models of codon substitution that allow variable selective pressures across sites. Such methods have been shown to be sufficiently accurate and successful in detecting positive selection in a variety of viral and nonviral protein-coding genes. About 11% of codon sites in HDAg were estimated to be under diversifying selection. Remarkably, most of the residues predicted to evolve under positive selection were located in the immunogenic domain and the N-terminus region with reported antigenic activity. These sites are potential targets of the host's immune response. Identification of residues mutating to escape immune recognition may help to distinguish the most virulent strains and aid vaccine design. Possible interplay between positive selection and recombination on the gene is discussed but no significant evidence for recombination was found.
Collapse
Affiliation(s)
- Maria Anisimova
- Department of Biology, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
61
|
Yang Z. The power of phylogenetic comparison in revealing protein function. Proc Natl Acad Sci U S A 2005; 102:3179-80. [PMID: 15728394 PMCID: PMC552944 DOI: 10.1073/pnas.0500371102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ziheng Yang
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, England.
| |
Collapse
|
62
|
Jobson RW, Nielsen R, Laakkonen L, Wikström M, Albert VA. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. Proc Natl Acad Sci U S A 2004; 101:18064-8. [PMID: 15596720 PMCID: PMC539784 DOI: 10.1073/pnas.0408092101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Indexed: 12/19/2022] Open
Abstract
Much recent attention in the study of adaptation of organismal form has centered on developmental regulation. As such, the highly conserved respiratory machinery of eukaryotic cells might seem an unlikely target for selection supporting novel morphologies. We demonstrate that a dramatic molecular evolutionary rate increase in subunit I of cytochrome c oxidase (COX) from an active-trapping lineage of carnivorous plants is caused by positive Darwinian selection. Bladderworts (Utricularia) trap plankton when water-immersed, negatively pressured suction bladders are triggered. The resetting of traps involves active ion transport, requiring considerable energy expenditure. As judged from the quaternary structure of bovine COX, the most profound adaptive substitutions are two contiguous cysteines absent in approximately 99.9% of databased COX I sequences from Eukaryota, Archaea, and Bacteria. This motif lies directly at the docking point of COX I helix 3 and cytochrome c, and modeling of bovine COX I suggests the possibility of an unprecedented helix-terminating disulfide bridge that could alter COX/cytochrome c dissociation kinetics. Thus, the key adaptation in Utricularia likely lies in molecular energetic changes that buttressed the mechanisms responsible for the bladderworts' radical morphological evolution. Along with evidence for COX evolution underlying expansion of the anthropoid neocortex, our findings underscore that important morphological and physiological innovations must often be accompanied by specific adaptations in proteins with basic cellular functions.
Collapse
Affiliation(s)
- Richard W Jobson
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
63
|
Bielawski JP, Dunn KA, Sabehi G, Béjà O. Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. Proc Natl Acad Sci U S A 2004; 101:14824-9. [PMID: 15466697 PMCID: PMC522022 DOI: 10.1073/pnas.0403999101] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 11/18/2022] Open
Abstract
Proteorhodopsin, a retinal-binding protein, represents a potentially significant source of light-driven energy production in the world's oceans. The distribution of photochemically divergent proteorhodopsins is stratified according to depth. Here, we present evidence that such photochemical diversity was tuned by Darwinian selection. By using a Bayesian method, we identified sites targeted by Darwinian selection and mapped them to three-dimensional models of proteorhodopsins. We suggest that spectral fine-tuning results from the combined effect of amino acids that directly interact with retinal and those that influence the confirmation of the retinal-binding pocket.
Collapse
Affiliation(s)
- Joseph P Bielawski
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4J1, Canada.
| | | | | | | |
Collapse
|
64
|
Bronsvoort BMDC, Radford AD, Tanya VN, Nfon C, Kitching RP, Morgan KL. Molecular epidemiology of foot-and-mouth disease viruses in the Adamawa province of Cameroon. J Clin Microbiol 2004; 42:2186-96. [PMID: 15131187 PMCID: PMC404612 DOI: 10.1128/jcm.42.5.2186-2196.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious viral disease of even-toed ungulates and is one of the most important economic diseases of livestock. Most studies of FMDV are done in countries where control measures are being implemented. In contrast, in areas such as sub-Saharan Africa, where FMDV is endemic and new strains are likely to emerge, there are only sporadic submissions to the World Reference Laboratory, Pirbright, United Kingdom. This paper describes the molecular epidemiology of FMDV in the Adamawa province of Cameroon based on a population sample of cattle herds. Serotypes SAT2 and A were isolated in the cross-sectional study. SAT2 isolates were all similar, with phylogenetic distances of <6%, and were most closely related to published sequences of isolates from Eritrea and Saudi Arabia. Serotype A isolates were more variable, with phylogenetic distances of 0 to 11%, and were most closely related to historic isolates from Cameroon. Use of a population-based sample gives a representative sample of virus diversity and will improve our understanding of the evolution of FMDV and its epidemiology. A supplementary study of pigs passing through the railhead collection yard at Ngaoundere detected a serotype O virus. A third pilot longitudinal study monitored viral persistence in three cattle herds over 12 months, and serotype O and A viruses were recovered from a herd 12 months after it was first recorded as being infected with SAT2 virus. The pig type O isolate was not closely related to that recovered from the cattle, suggesting that the pigs had not introduced the O virus into the cattle herds.
Collapse
Affiliation(s)
- B M de C Bronsvoort
- Department of Veterinary Clinical Sciences, Leahurst Veterinary Teaching Hospital, University of Liverpool, Neston, Cheshire CH64 7TE, United Kingdom.
| | | | | | | | | | | |
Collapse
|
65
|
Heath L, Martin DP, Warburton L, Perrin M, Horsfield W, Kingsley C, Rybicki EP, Williamson AL. Evidence of unique genotypes of beak and feather disease virus in southern Africa. J Virol 2004; 78:9277-84. [PMID: 15308722 PMCID: PMC506959 DOI: 10.1128/jvi.78.17.9277-9284.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 04/01/2004] [Indexed: 11/20/2022] Open
Abstract
Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), is the most significant infectious disease in psittacines. PBFD is thought to have originated in Australia but is now found worldwide; in Africa, it threatens the survival of the indigenous endangered Cape parrot and the vulnerable black-cheeked lovebird. We investigated the genetic diversity of putative BFDVs from southern Africa. Feathers and heparinized blood samples were collected from 27 birds representing 9 psittacine species, all showing clinical signs of PBFD. DNA extracted from these samples was used for PCR amplification of the putative BFDV coat protein (CP) gene. The nucleotide sequences of the CP genes of 19 unique BFDV isolates were determined and compared with the 24 previously described sequences of BFDV isolates from Australasia and America. Phylogenetic analysis revealed eight BFDV lineages, with the southern African isolates representing at least three distinctly unique genotypes; 10 complete genome sequences were determined, representing at least one of every distinct lineage. The nucleotide diversity of the southern African isolates was calculated to be 6.4% and is comparable to that found in Australia and New Zealand. BFDVs in southern Africa have, however, diverged substantially from viruses found in other parts of the world, as the average distance between the southern African isolates and BFDV isolates from Australia ranged from 8.3 to 10.8%. In addition to point mutations, recombination was found to contribute substantially to the level of genetic variation among BFDVs, with evidence of recombination in all but one of the genomes analyzed.
Collapse
Affiliation(s)
- Livio Heath
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Guindon S, Rodrigo AG, Dyer KA, Huelsenbeck JP. Modeling the site-specific variation of selection patterns along lineages. Proc Natl Acad Sci U S A 2004; 101:12957-62. [PMID: 15326304 PMCID: PMC516501 DOI: 10.1073/pnas.0402177101] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unambiguous footprint of positive Darwinian selection in protein-coding DNA sequences is revealed by an excess of nonsynonymous substitutions over synonymous substitutions compared with the neutral expectation. Methods for analyzing the patterns of nonsynonymous and synonymous substitutions usually rely on stochastic models in which the selection regime may vary across the sequence but remains constant across lineages for any amino acid position. Despite some work that has relaxed the constraint that selection patterns remain constant over time, no model provides a strong statistical framework to deal with switches between selection processes at individual sites during the course of evolution. This paper describes an approach that allows the site-specific selection process to vary along lineages of a phylogenetic tree. The parameters of the switching model of codon substitution are estimated by using maximum likelihood. The analysis of eight HIV-1 env homologous sequence data sets shows that this model provides a significantly better fit to the data than one that does not take into account switches between selection patterns in the phylogeny at individual sites. We also provide strong evidence that the strength and the frequency of occurrence of selection might not be estimated accurately when the site-specific variation of selection regimes is ignored.
Collapse
Affiliation(s)
- Stéphane Guindon
- Bioinformatics Institute, Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
67
|
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease was initially described in the 16th century and was the first animal pathogen identified as a virus. Recent FMD outbreaks in developed countries and their significant economic impact have increased the concern of governments worldwide. This review describes the reemergence of FMD in developed countries that had been disease free for many years and the effect that this has had on disease control strategies. The etiologic agent, FMD virus (FMDV), a member of the Picornaviridae family, is examined in detail at the genetic, structural, and biochemical levels and in terms of its antigenic diversity. The virus replication cycle, including virus-receptor interactions as well as unique aspects of virus translation and shutoff of host macromolecular synthesis, is discussed. This information has been the basis for the development of improved protocols to rapidly identify disease outbreaks, to differentiate vaccinated from infected animals, and to begin to identify and test novel vaccine candidates. Furthermore, this knowledge, coupled with the ability to manipulate FMDV genomes at the molecular level, has provided the framework for examination of disease pathogenesis and the development of a more complete understanding of the virus and host factors involved.
Collapse
Affiliation(s)
- Marvin J Grubman
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, North Atlantic Area, Greenport, New York 11944, USA.
| | | |
Collapse
|
68
|
Yang W, Bielawski JP, Yang Z. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J Mol Evol 2004; 57:212-21. [PMID: 14562964 DOI: 10.1007/s00239-003-2467-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigated variable selective pressures among amino acid sites in HIV-1 genes. Selective pressure at the amino acid level was measured by using the nonsynonymous/synonymous substitution rate ratio (omega = dN/dS). To identify amino acid sites under positive selection with omega > 1, we applied maximum likelihood models that allow variable omega ratios among sites to analyze genomic sequences of 26 HIV-1 lineages including subtypes A, B, and C. Likelihood ratio tests detected sites under positive selection in each of the major genes in the genome: env, gag, pol, vif, and vpr. Positive selection was also detected in nef, tat, and vpu, although those genes are very small. The majority of positive selection sites is located in gp160. Positive selection was not detected if omega was estimated as an average across all sites, indicating the lack of power of the averaging approach. Candidate positive selection sites were mapped onto the available protein tertiary structures and immunogenic epitopes. We measured the physiochemical properties of amino acids and found that those at positive selection sites were more diverse than those at variable sites. Furthermore, amino acid residues at exposed positive selection sites were more physiochemically diverse than at buried positive selection sites. Our results demonstrate genomewide diversifying selection acting on the HIV-1.
Collapse
Affiliation(s)
- Wa Yang
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
69
|
Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, Holmes EC. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 2004; 303:327-32. [PMID: 14726583 DOI: 10.1126/science.1090727] [Citation(s) in RCA: 915] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A key priority for infectious disease research is to clarify how pathogen genetic variation, modulated by host immunity, transmission bottlenecks, and epidemic dynamics, determines the wide variety of pathogen phylogenies observed at scales that range from individual host to population. We call the melding of immunodynamics, epidemiology, and evolutionary biology required to achieve this synthesis pathogen "phylodynamics." We introduce a phylodynamic framework for the dissection of dynamic forces that determine the diversity of epidemiological and phylogenetic patterns observed in RNA viruses of vertebrates. A central pillar of this model is the Evolutionary Infectivity Profile, which captures the relationship between immune selection and pathogen transmission.
Collapse
Affiliation(s)
- Bryan T Grenfell
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | | | | | | | | | | | | |
Collapse
|
70
|
Costa-Mattioli M, Napoli AD, Ferré V, Billaudel S, Perez-Bercoff R, Cristina J. Genetic variability of hepatitis A virus. J Gen Virol 2004; 84:3191-3201. [PMID: 14645901 DOI: 10.1099/vir.0.19532-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the molecular biology of hepatitis A virus (HAV) has increased exponentially since its identification. HAV exploits all known mechanisms of genetic variation to ensure survival, including mutation and genetic recombination. HAV has been characterized by the emergence of different genotypes, three human antigenic variants and only one major serotype. This paper reviews the genetic variability and molecular epidemiology of HAV. Its evolutionary mechanisms are described with particular emphasis on genetic recombination and HAV mutation rate. Genotypic classification methods are also discussed.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry, McGill University, McIntyre Medical Building, Montreal, Quebec, Canada H3G 1Y6
| | - Anna Di Napoli
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Virginie Ferré
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu 9, 44093 Nantes, France
| | - Sylviane Billaudel
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu 9, 44093 Nantes, France
| | - Raul Perez-Bercoff
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Juan Cristina
- Departamento de Técnicas Nucleares Aplicadas, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
71
|
Dhar AK, Cowley JA, Hasson KW, Walker PJ. Genomic organization, biology, and diagnosis of Taura syndrome virus and yellowhead virus of penaeid shrimp. Adv Virus Res 2004; 63:353-421. [PMID: 15530565 PMCID: PMC7127055 DOI: 10.1016/s0065-3527(04)63006-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arun K Dhar
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | |
Collapse
|
72
|
Summers K, McKeon S, Sellars J, Keusenkothen M, Morris J, Gloeckner D, Pressley C, Price B, Snow H. Parasitic exploitation as an engine of diversity. Biol Rev Camb Philos Soc 2003; 78:639-75. [PMID: 14700394 DOI: 10.1017/s146479310300616x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parasitic exploitation occurs within and between a wide variety of taxa in a plethora of diverse contexts. Theoretical and empirical analyses indicate that parasitic exploitation can generate substantial genetic and phenotypic polymorphism within species. Under some circumstances, parasitic exploitation may also be an important factor causing reproductive isolation and promoting speciation. Here we review research relevant to the relationship between parasitic exploitation, within species-polymorphism, and speciation in some of the major arenas in which such exploitation has been studied. This includes research on the vertebrate major histocompatibility loci, plant-pathogen interactions, the evolution of sexual reproduction, intragenomic conflict, sexual conflict, kin mimicry and social parasitism, tropical forest diversity and the evolution of language. We conclude by discussing some of the issues raised by comparing the effect of parasitic exploitation on polymorphism and speciation in different contexts.
Collapse
Affiliation(s)
- Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Anisimova M, Nielsen R, Yang Z. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 2003; 164:1229-36. [PMID: 12871927 PMCID: PMC1462615 DOI: 10.1093/genetics/164.3.1229] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maximum-likelihood methods based on models of codon substitution accounting for heterogeneous selective pressures across sites have proved to be powerful in detecting positive selection in protein-coding DNA sequences. Those methods are phylogeny based and do not account for the effects of recombination. When recombination occurs, such as in population data, no unique tree topology can describe the evolutionary history of the whole sequence. This violation of assumptions raises serious concerns about the likelihood method for detecting positive selection. Here we use computer simulation to evaluate the reliability of the likelihood-ratio test (LRT) for positive selection in the presence of recombination. We examine three tests based on different models of variable selective pressures among sites. Sequences are simulated using a coalescent model with recombination and analyzed using codon-based likelihood models ignoring recombination. We find that the LRT is robust to low levels of recombination (with fewer than three recombination events in the history of a sample of 10 sequences). However, at higher levels of recombination, the type I error rate can be as high as 90%, especially when the null model in the LRT is unrealistic, and the test often mistakes recombination as evidence for positive selection. The test that compares the more realistic models M7 (beta) against M8 (beta and omega) is more robust to recombination, where the null model M7 allows the positive selection pressure to vary between 0 and 1 (and so does not account for positive selection), and the alternative model M8 allows an additional discrete class with omega = d(N)/d(S) that could be estimated to be >1 (and thus accounts for positive selection). Identification of sites under positive selection by the empirical Bayes method appears to be less affected than the LRT by recombination.
Collapse
Affiliation(s)
- Maria Anisimova
- Department of Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | |
Collapse
|
74
|
Costa-Mattioli M, Ferré V, Casane D, Perez-Bercoff R, Coste-Burel M, Imbert-Marcille BM, Andre ECM, Bressollette-Bodin C, Billaudel S, Cristina J. Evidence of recombination in natural populations of hepatitis A virus. Virology 2003; 311:51-9. [PMID: 12832202 DOI: 10.1016/s0042-6822(03)00109-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic analysis of selected genome regions of hepatitis A virus (HAV) suggested that distinct genotypes of HAV could be found in different geographical regions. At least seven HAV genotypes have been identified all over the world, including four human genotypes (I, II, III, and VII) and three simian strains (IV, V, and VI). Phylogenetic analysis using full-length VP1 sequences revealed that human strain 9F94 has a close genetic relation with strain SLF-88 (sub-genotype VII). Nevertheless, the same analysis using full-length VP2 or VP3 sequences revealed that strain 9F94 has a close genetic relation with strain MBB (sub-genotype IB). To test the possibility of genetic recombination, phylogenetic studies were carried out, revealing that a crossing over had taken place in the VP1 capsid protein. These findings indicate that capsid-recombination can play a significant role in shaping the genetic diversity of HAV and, as such, can have important implications for its evolution, biology, and control.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu, 9, 44093, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Bastos ADS, Haydon DT, Sangaré O, Boshoff CI, Edrich JL, Thomson GR. The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa. J Gen Virol 2003; 84:1595-1606. [PMID: 12771430 DOI: 10.1099/vir.0.18859-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SAT 2 is the serotype most often associated with outbreaks of foot-and-mouth disease (FMD) in livestock in southern and western Africa and is the only SAT type to have been recorded outside the African continent in the last decade. Its epidemiology is complicated by the presence of African buffalo (Syncerus caffer), which play an important role in virus maintenance and transmission. To assess the level of genetic complexity of this serotype among viruses associated with both domestic livestock and wildlife, complete VP1 gene sequences of 53 viruses from 17 countries and three different host species were analysed. Phylogenetic analysis revealed eleven virus lineages, differing from each other by at least 20 % in pairwise nucleotide comparisons, four of which fall within the southern African region, two in West Africa and the remaining five in central and East Africa. No evidence of recombination between these lineages was detected, and thus we conclude that these are independently evolving virus lineages which occur primarily in discrete geographical localities in accordance with the FMD virus topotype concept. Applied to the whole phylogeny, rates of nucleotide substitution are significantly different between topotypes, but most individual topotypes evolve in accordance with a molecular clock at an average rate of approximately 0.002 substitutions per site per year. This study provides an indication of the intratypic complexity of the SAT 2 serotype at the continental level and emphasizes the value of molecular characterization of diverse FMD field strains for tracing the origin of outbreaks.
Collapse
Affiliation(s)
- A D S Bastos
- ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Private Bag X5, Onderstepoort 0110, South Africa
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - D T Haydon
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - O Sangaré
- Laboratoire Central Veterinaire, BP 2295, Bamako, Mali
- ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Private Bag X5, Onderstepoort 0110, South Africa
| | - C I Boshoff
- ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Private Bag X5, Onderstepoort 0110, South Africa
| | - J L Edrich
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - G R Thomson
- Organization of African Unity/Inter-African Bureau for Animal Resources (OAU-IBR), PO Box 30786, Nairobi, Kenya
- ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Private Bag X5, Onderstepoort 0110, South Africa
| |
Collapse
|
76
|
Hemadri D, Tosh C, Sanyal A, Venkataramanan R. Emergence of a new strain of type O foot-and-mouth disease virus: its phylogenetic and evolutionary relationship with the PanAsia pandemic strain. Virus Genes 2003; 25:23-34. [PMID: 12206305 DOI: 10.1023/a:1020165923805] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In India, Foot-and-mouth disease virus (FMDV) serotype O has been associated with more than 75% of the outbreaks. Previous studies with this serotype have indicated that the viruses circulating in India belong to a single genotype. Recent (February 2001) FMD epidemics in Europe have focussed global attention on the source of the virus and have been traced to a strain, PanAsia (serotype O), which is present in India since 1990. In this study, to further characterize the isolates belonging to the PanAsian strain, we sequenced the complete VP1-encoding (1 D) gene for 71 FMDV serotype O isolates from India recovered from the field outbreaks during the last 4 decades (1962-2001). All the isolates in the tree were distributed in to three major branches (designated as A, B and C); the branch C is further divided into four groups (I-IV), of which the group IV belongs to the PanAsia strain. Furthermore, we show that the PanAsia strain has been circulating endemically since 1982 (not 1990 as reported earlier) and has been the most dominant outbreak strain in the recent years and distributed at least in 17 states of the country. During the year 2001, another new group (group III) of virus with genetic divergence of 5.4-11.1% at nucleotide level from the PanAsia strain is found to co-circulate endemically, and is slowly replacing it. At amino acid level this strain differed from PanAsia strain at five amino acid positions in the VP1. Although these strains are divergent at nucleotide level, they maintained a good antigenic relationship with one of the vaccine strains (IND R2/75) widely used in the country. Given the ability of the PanAsia virus to persist, spread and to outcompete other strains, the present trend could be of serious concern as the newly emerging virus is replacing it. If this is true, then there is another equally divergent strain as PanAsia that may pose a serious threat to the global dairy and meat industries.
Collapse
Affiliation(s)
- Divakar Hemadri
- Project Directorate on Foot-and-Mouth Disease, Indian Veterinary Research Institute, Nainital, Uttaranchal, India.
| | | | | | | |
Collapse
|
77
|
Abstract
Changes in technology in the past decade have had such an impact on the way that molecular evolution research is done that it is difficult now to imagine working in a world without genomics or the Internet. In 1992, GenBank was less than a hundredth of its current size and was updated every three months on a huge spool of tape. Homology searches took 30 minutes and rarely found a hit. Now it is difficult to find sequences with only a few homologs to use as examples for teaching bioinformatics. For molecular evolution researchers, the genomics revolution has showered us with raw data and the information revolution has given us the wherewithal to analyze it. In broad terms, the most significant outcome from these changes has been our newfound ability to examine the evolution of genomes as a whole, enabling us to infer genome-wide evolutionary patterns and to identify subsets of genes whose evolution has been in some way atypical.
Collapse
Affiliation(s)
- Kenneth H Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
78
|
Bielawski JP, Yang Z. Maximum likelihood methods for detecting adaptive evolution after gene duplication. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003. [PMID: 12836699 DOI: 10.1023/a:1022642807731] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The rapid accumulation of genomic sequences in public databases will finally allow large scale studies of gene family evolution, including evaluation of the role of positive Darwinian selection following a duplication event. This will be possible because recent statistical methods of comparing synonymous and nonsynonymous substitution rates permit reliable detection of positive selection at individual amino acid sites and along evolutionary lineages. Here, we summarize maximum-likelihood based methods, and present a framework for their application to analysis of gene families. Using these methods, we investigated the role of positive Darwinian selection in the ECP-EDN gene family of primates and the Troponin C gene family of vertebrates. We also comment on the limitations of these methods and discuss directions for further improvements.
Collapse
Affiliation(s)
- Joseph P Bielawski
- Department of Biology, University College London, Darwin Building, Gower Street, London WCIE 6BT, United Kingdom.
| | | |
Collapse
|
79
|
Abstract
A pressing problem in studying the evolution of microbial pathogens is to determine the extent to which these genomes recombine. This information is essential for locating pathogenicity loci by using association studies or population genetic approaches. Recombination also complicates the use of phylogenetic approaches to estimate evolutionary parameters such as selection pressures. Reliable methods that detect and estimate the rate of recombination are, therefore, vital. This article reviews the approaches that are available for detecting and estimating recombination in microbial pathogens and how they can be used to understand pathogen evolution and to identify medically relevant loci.
Collapse
Affiliation(s)
- Philip Awadalla
- Section of Evolution and Ecology, University of California at Davis, California 95616, USA.
| |
Collapse
|
80
|
Robles-Sikisaka R, Hasson KW, Garcia DK, Brovont KE, Cleveland KD, Klimpel KR, Dhar AK. Genetic variation and immunohistochemical differences among geographic isolates of Taura syndrome virus of penaeid shrimp. J Gen Virol 2002; 83:3123-3130. [PMID: 12466489 DOI: 10.1099/0022-1317-83-12-3123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Taura syndrome virus (TSV) is an important virus infecting penaeid shrimp in the western hemisphere. Genetic variation and immunohistochemical differences of 20 TSV isolates collected from the USA, Taiwan, Mexico and Nicaragua were compared. Capsid protein genes CP1 (546 bp) and CP2 (584 bp) were amplified by RT-PCR and the cDNAs were sequenced. Pairwise comparison of nucleotide sequences showed a 0-2.4% difference in CP1 and a 0-3.5% difference in CP2. Phylogenetic analyses clustered the TSV isolates into two groups: one contained USA, Taiwan and some Mexican isolates, the other contained Mexican isolates only. Immunohistochemical analysis using a TSV-specific monoclonal antibody produced positive results for the USA and Taiwan isolates but negative results for the Mexican and Nicaraguan isolates. Molecular and immunohistochemical data suggest the existence of at least two TSV strains, one of which might have evolved following contact with a new penaeid host, Penaeus stylirostris.
Collapse
Affiliation(s)
- Refugio Robles-Sikisaka
- Department of Biological Sciences, California State University, 333 South Twin Oaks Valley Road, San Marcos, California 92096, USA1
| | - Kenneth W Hasson
- Super Shrimp Inc., 1545 Tidelands Avenue, Suite J, National City, California 91950, USA2
| | - Denise K Garcia
- Department of Biological Sciences, California State University, 333 South Twin Oaks Valley Road, San Marcos, California 92096, USA1
| | - Katherine E Brovont
- Super Shrimp Inc., 1545 Tidelands Avenue, Suite J, National City, California 91950, USA2
| | - Karyn D Cleveland
- Super Shrimp Inc., 1545 Tidelands Avenue, Suite J, National City, California 91950, USA2
| | - Kurt R Klimpel
- Super Shrimp Inc., 1545 Tidelands Avenue, Suite J, National City, California 91950, USA2
| | - Arun K Dhar
- Super Shrimp Inc., 1545 Tidelands Avenue, Suite J, National City, California 91950, USA2
| |
Collapse
|
81
|
Goncalvez AP, Escalante AA, Pujol FH, Ludert JE, Tovar D, Salas RA, Liprandi F. Diversity and evolution of the envelope gene of dengue virus type 1. Virology 2002; 303:110-9. [PMID: 12482662 DOI: 10.1006/viro.2002.1686] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic diversity and phylogenetic relationships of a collection of strains of dengue virus type 1 (DV-1), isolated from different parts of the world, were investigated. Phylogenetic trees derived from the complete sequence of the E gene of 44 strains suggested the existence of five genetic types defined by a maximum nucleotide divergence within each group of 6%. The 22 strains from America were classified into a single genetic type that included strains associated either with classical dengue or hemorrhagic dengue episodes. Using a maximum likelihood procedure based on a single rate with dated tips model and substitution rates calculated at the third codon position, evolution of the five DV-1 genotypes was shown to conform to a molecular clock. The average rate of evolution was estimated to be approximately 16.2 x 10(-4) substitutions/third codon position site/year. Using this estimate, divergence among the DV-1 genotypes was calculated to have occurred approximately 100 years ago. Very low average value of the ratio of nonsynonymous-to-synonymous nucleotide substitutions, relative to the respective sites (0.046), indicated that the evolution of the E gene of the DV-1 is subject mostly to purifying selection.
Collapse
Affiliation(s)
- Ana P Goncalvez
- Instituto Venezolano de Investigaciones Cienti;ficas, Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
82
|
Costa-Mattioli M, Cristina J, Romero H, Perez-Bercof R, Casane D, Colina R, Garcia L, Vega I, Glikman G, Romanowsky V, Castello A, Nicand E, Gassin M, Billaudel S, Ferré V. Molecular evolution of hepatitis A virus: a new classification based on the complete VP1 protein. J Virol 2002; 76:9516-25. [PMID: 12186933 PMCID: PMC136434 DOI: 10.1128/jvi.76.18.9516-9525.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis A virus (HAV) is a positive-stranded RNA virus in the genus Hepatovirus in the family Picornaviridae So far, analysis of the genetic variability of HAV has been based on two discrete regions, the VP1/2A junction and the VP1 N terminus. In this report, we determined the nucleotide and deduced amino acid sequences of the complete VP1 gene of 81 strains from France, Kosovo, Mexico, Argentina, Chile, and Uruguay and compared them with the sequences of seven strains of HAV isolated elsewhere. Overall strain variation in the complete VP1 gene was found to be as high as 23.7% at the nucleotide level and 10.5% at the amino acid level. Different phylogenetic methods revealed that HAV sequences form five distinct and well-supported genetic lineages. Within these lineages, HAV sequences clustered by geographical origin only for European strains. The analysis of the complete VP1 gene allowed insight into the mode of evolution of HAV and revealed the emergence of a novel variant with a 15-amino-acid deletion located on the VP1 region where neutralization escape mutations were found. This could be the first antigenic variant of HAV so far identified.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, 44093 Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Alexandersen S, Zhang Z, Reid SM, Hutchings GH, Donaldson AI. Quantities of infectious virus and viral RNA recovered from sheep and cattle experimentally infected with foot-and-mouth disease virus O UK 2001. J Gen Virol 2002; 83:1915-1923. [PMID: 12124455 DOI: 10.1099/0022-1317-83-8-1915] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The profiles of virus production and excretion have been established for sheep experimentally infected with the UK 2001 strain of foot-and-mouth disease (FMD) virus by inoculation and by direct and intensive contact. Virus replicated rapidly in the inoculated sheep, from which a peak infectivity of airborne virus of 10(4.3) TCID(50) per sheep per 24 h was recovered. Around 24 h later, contact-infected sheep excreted airborne virus maximally. Similar amounts of airborne virus were recovered from cattle. The excretion of virus by the sheep under these conditions fell into three phases. First, a highly infectious period of around 7-8 days. Second, a period of 1-3 days soon afterwards when trace amounts of viral RNA were recovered in nasal and rectal swabs. Third, at 4 weeks after exposure, the demonstration, by tests on oesophageal-pharyngeal samples, that 50% of the sheep were carriers. The implications of the results and the variable role that sheep may play in the epidemiology of FMD are discussed.
Collapse
Affiliation(s)
- S Alexandersen
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| | - Z Zhang
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| | - S M Reid
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| | - G H Hutchings
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| | - A I Donaldson
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| |
Collapse
|
84
|
Hughes GJ, Mioulet V, Haydon DT, Kitching RP, Donaldson AI, Woolhouse MEJ. Serial passage of foot-and-mouth disease virus in sheep reveals declining levels of viraemia over time. J Gen Virol 2002; 83:1907-1914. [PMID: 12124454 DOI: 10.1099/0022-1317-83-8-1907] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If an infectious agent is to maintain itself within a closed population by means of an unbroken serial chain of infections, it must maintain the level of infectiousness of individuals through time, or termination of the transmission chain is inevitable. One possible cause of diminution in infectiousness along serial chains of transmission may be that individuals are unable to amplify and transmit comparable levels of the infectious agent. Here, the results are reported of a novel experiment designed specifically to assess the effects of serial passage of foot-and-mouth disease virus (FMDV) in experimental groups of sheep. A virus isolate taken from an epidemic of foot-and-mouth disease (FMD) characterized by rapid fade-out of infection was passed serially through four groups of sheep housed in an isolation unit. Although it was not possible to measure individual infectiousness directly, blood virus load from infected individuals was quantified using a real-time PCR assay and used as an underlying indicator of the level of infection. The results of this assay concurred well with those of the traditional tissue-culture assay and were shown to be highly repeatable. The level of peak viraemia was shown to fall significantly with the time of infection and with passage group, both in terms of the group mean and regression analysis of individual values, suggesting that this isolate of FMDV may, under certain conditions, be unable to maintain itself indefinitely in susceptible sheep populations. The results of these experiments are discussed in terms of the epidemiology of FMD in sheep.
Collapse
Affiliation(s)
- Gareth J Hughes
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| | - Valerie Mioulet
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| | - Daniel T Haydon
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK2
| | - R Paul Kitching
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| | - Alex I Donaldson
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK1
| | - Mark E J Woolhouse
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK2
| |
Collapse
|
85
|
Alexandersen S, Zhang Z, Donaldson AI. Aspects of the persistence of foot-and-mouth disease virus in animals--the carrier problem. Microbes Infect 2002; 4:1099-110. [PMID: 12191660 DOI: 10.1016/s1286-4579(02)01634-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is a member of the Aphthovirus genus in the Picornaviridae family. Seven distinct serotypes, each including a wide range of variants, have been defined. FMD, affects wild and domesticated ruminants and pigs, is difficult to control and is the major constraint to international trade in livestock and animal products. After the acute stage of infection, FMDV may cause a prolonged, asymptomatic but persistent infection in ruminants. Also, vaccinated or naturally immune animals subsequently exposed to live virus may become persistently infected (the so-called carriers), a situation which can result in export embargoes if vaccination is included in a country's control policy.
Collapse
Affiliation(s)
- Soren Alexandersen
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey, GU24 ONF, UK.
| | | | | |
Collapse
|
86
|
Ford MJ. Applications of selective neutrality tests to molecular ecology. Mol Ecol 2002; 11:1245-62. [PMID: 12144648 PMCID: PMC7201874 DOI: 10.1046/j.1365-294x.2002.01536.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 04/10/2002] [Accepted: 04/10/2002] [Indexed: 11/20/2022]
Abstract
This paper reviews how statistical tests of neutrality have been used to address questions in molecular ecology are reviewed. The work consists of four major parts: a brief review of the current status of the neutral theory; a review of several particularly interesting examples of how statistical tests of neutrality have led to insight into ecological problems; a brief discussion of the pitfalls of assuming a strictly neutral model if it is false; and a discussion of some of the opportunities and problems that molecular ecologists face when using neutrality tests to study natural selection.
Collapse
Affiliation(s)
- Michael J Ford
- Northwest Fisheries Science Center, Conservation Biology Division, 2725 Montlake Blvd E, Seattle, WA 98112, USA.
| |
Collapse
|
87
|
Anisimova M, Bielawski JP, Yang Z. Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol 2002; 19:950-8. [PMID: 12032251 DOI: 10.1093/oxfordjournals.molbev.a004152] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bayes prediction quantifies uncertainty by assigning posterior probabilities. It was used to identify amino acids in a protein under recurrent diversifying selection indicated by higher nonsynonymous (d(N)) than synonymous (d(S)) substitution rates or by omega = d(N)/d(S) > 1. Parameters were estimated by maximum likelihood under a codon substitution model that assumed several classes of sites with different omega ratios. The Bayes theorem was used to calculate the posterior probabilities of each site falling into these site classes. Here, we evaluate the performance of Bayes prediction of amino acids under positive selection by computer simulation. We measured the accuracy by the proportion of predicted sites that were truly under selection and the power by the proportion of true positively selected sites that were predicted by the method. The accuracy was slightly better for longer sequences, whereas the power was largely unaffected by the increase in sequence length. Both accuracy and power were higher for medium or highly diverged sequences than for similar sequences. We found that accuracy and power were unacceptably low when data contained only a few highly similar sequences. However, sampling a large number of lineages improved the performance substantially. Even for very similar sequences, accuracy and power can be high if over 100 taxa are used in the analysis. We make the following recommendations: (1) prediction of positive selection sites is not feasible for a few closely related sequences; (2) using a large number of lineages is the best way to improve the accuracy and power of the prediction; and (3) multiple models of heterogeneous selective pressures among sites should be applied in real data analysis.
Collapse
Affiliation(s)
- Maria Anisimova
- Department of Biology, Galton Laboratory, University College London, United Kingdom
| | | | | |
Collapse
|
88
|
Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 2002; 19:908-17. [PMID: 12032247 DOI: 10.1093/oxfordjournals.molbev.a004148] [Citation(s) in RCA: 996] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonsynonymous (amino acid-altering) to synonymous (silent) substitution rate ratio (omega = d(N)/d(S)) provides a measure of natural selection at the protein level, with omega = 1, >1, and <1, indicating neutral evolution, purifying selection, and positive selection, respectively. Previous studies that used this measure to detect positive selection have often taken an approach of pairwise comparison, estimating substitution rates by averaging over all sites in the protein. As most amino acids in a functional protein are under structural and functional constraints and adaptive evolution probably affects only a few sites at a few time points, this approach of averaging rates over sites and over time has little power. Previously, we developed codon-based substitution models that allow the omega ratio to vary either among lineages or among sites. In this paper we extend previous models to allow the omega ratio to vary both among sites and among lineages and implement the new models in the likelihood framework. These models may be useful for identifying positive selection along prespecified lineages that affects only a few sites in the protein. We apply those branch-site models as well as previous branch- and site-specific models to three data sets: the lysozyme genes from primates, the tumor suppressor BRCA1 genes from primates, and the phytochrome (PHY) gene family in angiosperms. Positive selection is detected in the lysozyme and BRCA genes by both the new and the old models. However, only the new models detected positive selection acting on lineages after gene duplication in the PHY gene family. Additional tests on several data sets suggest that the new models may be useful in detecting positive selection after gene duplication in gene family evolution.
Collapse
Affiliation(s)
- Ziheng Yang
- Galton Laboratory, Department of Biology, University College London.
| | | |
Collapse
|
89
|
Yang Z, Swanson WJ. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 2002; 19:49-57. [PMID: 11752189 DOI: 10.1093/oxfordjournals.molbev.a003981] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nonsynonymous to synonymous substitution rate ratio (omega = d(N)/d(S)) provides a sensitive measure of selective pressure at the protein level, with omega values <1, =1, and >1 indicating purifying selection, neutral evolution, and diversifying selection, respectively. Maximum likelihood models of codon substitution developed recently account for variable selective pressures among amino acid sites by employing a statistical distribution for the omega ratio among sites. Those models, called random-sites models, are suitable when we do not know a priori which sites are under what kind of selective pressure. Sometimes prior information (such as the tertiary structure of the protein) might be available to partition sites in the protein into different classes, which are expected to be under different selective pressures. It is then sensible to use such information in the model. In this paper, we implement maximum likelihood models for prepartitioned data sets, which account for the heterogeneity among site partitions by using different omega parameters for the partitions. The models, referred to as fixed-sites models, are also useful for combined analysis of multiple genes from the same set of species. We apply the models to data sets of the major histocompatibility complex (MHC) class I alleles from human populations and of the abalone sperm lysin genes. Structural information is used to partition sites in MHC into two classes: those in the antigen recognition site (ARS) and those outside. Positive selection is detected in the ARS by the fixed-sites models. Similarly, sites in lysin are classified into the buried and solvent-exposed classes according to the tertiary structure, and positive selection was detected at the solvent-exposed sites. The random-sites models identified a number of sites under positive selection in each data set, confirming and elaborating the results of the fixed-sites models. The analysis demonstrates the utility of the fixed-sites models, as well as the power of previous random-sites models, which do not use the prior information to partition sites.
Collapse
Affiliation(s)
- Ziheng Yang
- Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK.
| | | |
Collapse
|
90
|
Abstract
We traced the sequence evolution of the active lineage of LINE-1 (L1) retrotransposons over the last approximately 25 Myr of human evolution. Five major families (L1PA5, L1PA4, L1PA3B, L1PA2, and L1PA1) of elements have succeeded each other as a single lineage. We found that part of the first open-reading frame (ORFI) had a higher rate of nonsynonymous (amino acid replacement) substitution than synonymous substitution during the evolution of the ancestral L1PA5 through the L1PA3B families. This segment encodes the coiled coil region of the protein-protein interaction domain of the ORFI protein (ORFIp). Statistical analysis of these changes indicates that positive selection had been acting on this region. In contrast, the coiled coil segment hardly changed during the evolution of the L1PA3B to the present L1PA1 family. Therefore, selective pressure on the coiled coil segment has changed over time. We suggest that the fast rate of amino acid replacement in the coiled coil segment reflects the adaptation of L1 either to a changing genomic environment or to host repression factors. In contrast, the second open-reading frame and the nucleic acid-binding domain of the first open-reading frame are extremely well conserved, attesting to the strong purifying selection acting on these regions.
Collapse
Affiliation(s)
- S Boissinot
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
91
|
Huang JA, Ficorilli N, Hartley CA, Wilcox RS, Weiss M, Studdert MJ. Equine rhinitis B virus: a new serotype. J Gen Virol 2001; 82:2641-2645. [PMID: 11602775 DOI: 10.1099/0022-1317-82-11-2641] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine rhinovirus serotype 3 isolate P313/75 was assigned, with an unclassified genus status, to the family PICORNAVIRIDAE: The sequence from the 5' poly(C) tract to the 3' poly(A) tract of P313/75 was determined. The sequence is 8821 bases in length and contains a potential open reading frame for a polyprotein of 2583 amino acids. Sequence comparison and phylogenic analysis suggest that P313/75 is most closely related to the prototype equine rhinitis B virus (ERBV) strain P1436/71, formerly named equine rhinovirus type 2. A high degree of sequence similarity was found in the P2 and P3 regions of the two genomes. However, the deduced amino acid sequences of the P1 region of P313/75 and ERBV strain P1436/71 contained significant differences, which presumably account for the serological segregation of the two viruses. It is suggested that P313/75 can be classified as a new serotype of the genus Erbovirus, tentatively named ERBV2. Seroepidemiological data indicate that ERBV2 infection of horses may be common (24%) in Australia.
Collapse
Affiliation(s)
- Jin-An Huang
- Centre for Equine Virology, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia1
| | - Nino Ficorilli
- Centre for Equine Virology, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia1
| | - Carol A Hartley
- Centre for Equine Virology, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia1
| | - Rebbecca S Wilcox
- Centre for Equine Virology, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia1
| | - Marianne Weiss
- Institute of Veterinary Virology, University of Berne, Berne, Switzerland2
| | - Michael J Studdert
- Centre for Equine Virology, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia1
| |
Collapse
|
92
|
Haydon DT, Samuel AR, Knowles NJ. The generation and persistence of genetic variation in foot-and-mouth disease virus. Prev Vet Med 2001; 51:111-24. [PMID: 11530198 DOI: 10.1016/s0167-5877(01)00210-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genetic variation in foot-and-mouth disease virus (FMDV) is of interest for at least two reasons. First, changes to the genes encoding capsid proteins results in antigenic variation, and affects vaccine efficiency and effectiveness of vaccination programs; second, genetic changes can lead to important insights into the transport of virus between countries, regions, herds, and even possibly individuals. Current estimates of RNA virus mutation rates suggest that an average of about one base mis-incorporation is likely to occur each time a single FMDV genome replicates. This should result in the introduction of every possible 1-step mutation from the progenitor genotype into the viraemia of a single infected animal many times a day. In the absence of purifying selection, a single infected animal should therefore generate a genetically very diverse population of virus.Viral-capsid sequences obtained from infected animals sampled over long-term FMDV epidemics suggest that these genetic changes accrue in a remarkably linear 'clock-like' fashion and at rates of around 1% change per year. While such a rate is generally regarded as quite high, it is actually somewhat lower than one might expect based on the rate at which viral diversity could be generated within a single animal. The difference might be explained in a variety of possible ways: (1) the mutation rate has been overestimated; (2) purifying selection is stronger than predicted; (3) only a restricted subset of excreted virus is actually infectious; (4) infected animals only excrete virus from a small partitioned subset of amplified virus, and that most of the generated viral diversity is unable to exit the animal; or (5) only a small fraction of all infected animals participate in the actual disease-transmission process.
Collapse
Affiliation(s)
- D T Haydon
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, EH25 9RG, Midlothian, UK.
| | | | | |
Collapse
|