51
|
Tennessen JA. Gene buddies: linked balanced polymorphisms reinforce each other even in the absence of epistasis. PeerJ 2018; 6:e5110. [PMID: 29967750 PMCID: PMC6026533 DOI: 10.7717/peerj.5110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
The fates of genetic polymorphisms maintained by balancing selection depend on evolutionary dynamics at linked sites. While coevolution across linked, epigenetically-interacting loci has been extensively explored, such supergenes may be relatively rare. However, genes harboring adaptive variation can occur in close physical proximity while generating independent effects on fitness. Here, I present a model in which two linked loci without epistasis are both under balancing selection for unrelated reasons. Using forward-time simulations, I show that recombination rate strongly influences the retention of adaptive polymorphism, especially for intermediate selection coefficients. A locus is more likely to retain adaptive variation if it is closely linked to another locus under balancing selection, even if the two loci have no interaction. Thus, two linked polymorphisms can both be retained indefinitely even when they would both be lost to drift if unlinked. While these results may be intuitive, they have important implications for genetic architecture: clusters of mutually reinforcing genes may underlie phenotypic variation in natural populations, and such genes cannot be assumed to be functionally associated. Future studies that measure selection coefficients and recombination rates among closely linked genes will be fruitful for characterizing the extent of this phenomenon.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
52
|
The rate of facultative sex governs the number of expected mating types in isogamous species. Nat Ecol Evol 2018; 2:1168-1175. [DOI: 10.1038/s41559-018-0580-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/16/2018] [Indexed: 01/30/2023]
|
53
|
Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Nonself-Recognition System. Genetics 2018; 209:861-883. [PMID: 29716955 DOI: 10.1534/genetics.118.300748] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/28/2018] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) is a genetically based recognition system that functions to prevent self-fertilization and mating among related plants. An enduring puzzle in SI is how the high diversity observed in nature arises and is maintained. Based on the underlying recognition mechanism, SI can be classified into two main groups: self-recognition (SR) and nonself-recognition (NSR). Most work has focused on diversification within SR systems despite expected differences between the two groups in the evolutionary pathways and outcomes of diversification. Here, we use a deterministic population genetic model and stochastic simulations to investigate how novel S-haplotypes evolve in a gametophytic NSR [SRNase/S Locus F-box (SLF)] SI system. For this model, the pathways for diversification involve either the maintenance or breakdown of SI and can vary in the order of mutations of the female (SRNase) and male (SLF) components. We show analytically that diversification can occur with high inbreeding depression and self-pollination, but this varies with evolutionary pathway and level of completeness (which determines the number of potential mating partners in the population), and, in general, is more likely for lower haplotype number. The conditions for diversification are broader in stochastic simulations of finite population size. However, the number of haplotypes observed under high inbreeding and moderate-to-high self-pollination is less than that commonly observed in nature. Diversification was observed through pathways that maintain SI as well as through self-compatible intermediates. Yet the lifespan of diversified haplotypes was sensitive to their level of completeness. By examining diversification in a NSR SI system, this model extends our understanding of the evolution and maintenance of haplotype diversity observed in a recognition system common in flowering plants.
Collapse
|
54
|
Bachmann JA, Tedder A, Laenen B, Steige KA, Slotte T. Targeted Long-Read Sequencing of a Locus Under Long-Term Balancing Selection in Capsella. G3 (BETHESDA, MD.) 2018; 8:1327-1333. [PMID: 29476024 PMCID: PMC5873921 DOI: 10.1534/g3.117.300467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022]
Abstract
Rapid advances in short-read DNA sequencing technologies have revolutionized population genomic studies, but there are genomic regions where this technology reaches its limits. Limitations mostly arise due to the difficulties in assembly or alignment to genomic regions of high sequence divergence and high repeat content, which are typical characteristics for loci under strong long-term balancing selection. Studying genetic diversity at such loci therefore remains challenging. Here, we investigate the feasibility and error rates associated with targeted long-read sequencing of a locus under balancing selection. For this purpose, we generated bacterial artificial chromosomes (BACs) containing the Brassicaceae S-locus, a region under strong negative frequency-dependent selection which has previously proven difficult to assemble in its entirety using short reads. We sequence S-locus BACs with single-molecule long-read sequencing technology and conduct de novo assembly of these S-locus haplotypes. By comparing repeated assemblies resulting from independent long-read sequencing runs on the same BAC clone we do not detect any structural errors, suggesting that reliable assemblies are generated, but we estimate an indel error rate of 5.7×10-5 A similar error rate was estimated based on comparison of Illumina short-read sequences and BAC assemblies. Our results show that, until de novo assembly of multiple individuals using long-read sequencing becomes feasible, targeted long-read sequencing of loci under balancing selection is a viable option with low error rates for single nucleotide polymorphisms or structural variation. We further find that short-read sequencing is a valuable complement, allowing correction of the relatively high rate of indel errors that result from this approach.
Collapse
Affiliation(s)
- Jörg A Bachmann
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Andrew Tedder
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
55
|
Austen EJ, Lin SY, Forrest JRK. On the ecological significance of pollen color: a case study in American trout lily (Erythronium americanum). Ecology 2018; 99:926-937. [PMID: 29380868 DOI: 10.1002/ecy.2164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022]
Abstract
Evolutionary ecologists seek to explain the processes that maintain variation within populations. In plants, petal color variation can affect pollinator visitation, environmental tolerance, and herbivore deterrence. Variation in sexual organs may similarly affect plant performance. Within-population variation in pollen color, as occurs in the eastern North American spring ephemeral Erythronium americanum, provides an excellent opportunity to investigate the maintenance of variation in this trait. Although the red/yellow pollen-color polymorphism of E. americanum is widely recognized, it has been poorly documented. Our goals were thus (1) to determine the geographic distribution of the color morphs and (2) to test the effects of pollen color on components of pollen performance. Data provided by citizen scientists indicated that populations range from monomorphic red, to polymorphic, to monomorphic yellow, but there was no detectable geographic pattern in morph distribution, suggesting morph occurrence cannot be explained by a broad-scale ecological cline. In field experiments, we found no effect of pollen color on the probability of predation by the pollen-feeding beetle Asclera ruficollis, on the ability of pollen to tolerate UV-B radiation, or on siring success (as measured by the fruit set of hand-pollinated flowers). Pollinators, however, exhibited site-specific pollen-color preferences, suggesting they may act as agents of selection on this trait, and, depending on the constancy of their preferences, could contribute to the maintenance of variation. Collectively, our results eliminate some hypothesized ecological effects of pollen color in E. americanum, and identify effects of pollen color on pollinator attraction as a promising direction for future investigation.
Collapse
Affiliation(s)
- Emily J Austen
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Biology Department, Mount Allison University, Sackville, New Brunswick , E4L 1E4, Canada
| | - Shang-Yao Lin
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Jessica R K Forrest
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
56
|
Abstract
Persistent genetic variation within populations presents an evolutionary problem, as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the maintenance of genetic variation observed in natural populations. Negative frequency-dependent selection is a powerful type of balancing selection that maintains many natural polymorphisms, but it is also commonly misinterpreted. This review aims to clarify the processes underlying negative frequency-dependent selection, describe classes of polymorphisms that can and cannot result from these processes, and discuss the empirical data needed to accurately identify processes that generate or maintain diversity in nature. Finally, the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress is considered.
Collapse
Affiliation(s)
- Dustin Brisson
- Biology Department, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
57
|
Pratas MI, Aguiar B, Vieira J, Nunes V, Teixeira V, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP. Inferences on specificity recognition at the Malus×domestica gametophytic self-incompatibility system. Sci Rep 2018; 8:1717. [PMID: 29379047 PMCID: PMC5788982 DOI: 10.1038/s41598-018-19820-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
In Malus × domestica (Rosaceae) the product of each SFBB gene (the pollen component of the gametophytic self-incompatibility (GSI) system) of a S-haplotype (the combination of pistil and pollen genes that are linked) interacts with a sub-set of non-self S-RNases (the pistil component), but not with the self S-RNase. To understand how the Malus GSI system works, we identified 24 SFBB genes expressed in anthers, and determined their gene sequence in nine M. domestica cultivars. Expression of these SFBBs was not detected in the petal, sepal, filament, receptacle, style, stigma, ovary or young leaf. For all SFBBs (except SFBB15), identical sequences were obtained only in cultivars having the same S-RNase. Linkage with a particular S-RNase was further established using the progeny of three crosses. Such data is needed to understand how other genes not involved in GSI are affected by the S-locus region. To classify SFBBs specificity, the amino acids under positive selection obtained when performing intra-haplotypic analyses were used. Using this information and the previously identified S-RNase positively selected amino acid sites, inferences are made on the S-RNase amino acid properties (hydrophobicity, aromatic, aliphatic, polarity, and size), at these positions, that are critical features for GSI specificity determination.
Collapse
Affiliation(s)
- Maria I Pratas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Nunes
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Teixeira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Nuno A Fonseca
- European Bioinformatics Institute (EMBL-EBI,) Welcome Trust Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Amy Iezzoni
- Michigan State University, East Lansing, MI, 48824-1325, USA
| | | | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
58
|
Voillemot M, Rougemont Q, Roux C, Pannell JR. The divergence history of the perennial plant Linaria cavanillesii
confirms a recent loss of self-incompatibility. J Evol Biol 2017; 31:136-147. [DOI: 10.1111/jeb.13209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
Affiliation(s)
- M. Voillemot
- Department of Ecology and Evolution; Biophore/Sorge; University of Lausanne; Lausanne Switzerland
| | - Q. Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS); University of Laval; Québec City Québec Canada
| | - C. Roux
- Department of Ecology and Evolution; Biophore/Sorge; University of Lausanne; Lausanne Switzerland
- Unité Evo-Eco-Paléo (EEP) - UMR 8198; CNRS; Université de Lille Sciences et Technologies; Villeneuve d'Ascq Cedex France
| | - J. R. Pannell
- Department of Ecology and Evolution; Biophore/Sorge; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
59
|
Chantha SC, Herman AC, Castric V, Vekemans X, Marande W, Schoen DJ. The unusual S locus of Leavenworthia is composed of two sets of paralogous loci. THE NEW PHYTOLOGIST 2017; 216:1247-1255. [PMID: 28906557 DOI: 10.1111/nph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/25/2017] [Indexed: 05/28/2023]
Abstract
The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins.
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
| | - Adam C Herman
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
- Department of Plant Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Vincent Castric
- Unité Evo-Eco-Paléo (EEP) - UMR 8198, CNRS/Université de Lille - Sciences et Technologies, Villeneuve d'Ascq Cedex, F-59655, France
| | - Xavier Vekemans
- Unité Evo-Eco-Paléo (EEP) - UMR 8198, CNRS/Université de Lille - Sciences et Technologies, Villeneuve d'Ascq Cedex, F-59655, France
| | - William Marande
- Institut National de la Recherche Agronomique, 31326, Castanet Tolosan Cedex, France
| | - Daniel J Schoen
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
| |
Collapse
|
60
|
Furstenau TN, Cartwright RA. The impact of self-incompatibility systems on the prevention of biparental inbreeding. PeerJ 2017; 5:e4085. [PMID: 29188143 PMCID: PMC5703146 DOI: 10.7717/peerj.4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 12/05/2022] Open
Abstract
Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system-homomorphic SI-can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI). Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.
Collapse
Affiliation(s)
- Tara N. Furstenau
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Reed A. Cartwright
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
61
|
Nasrallah JB. Plant mating systems: self-incompatibility and evolutionary transitions to self-fertility in the mustard family. Curr Opin Genet Dev 2017; 47:54-60. [PMID: 28915488 DOI: 10.1016/j.gde.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Flowering plants have evolved diverse mechanisms that promote outcrossing. The most widespread of these outbreeding devices are self-incompatibility systems, the highly selective prefertilization mating barriers that prevent self-fertilization by disrupting pollen-pistil interactions. Despite the advantages of outcrossing, loss of self-incompatibility has occurred repeatedly in many plant families. In the mustard family, the highly polymorphic receptors and ligands that mediate the recognition and inhibition of self-pollen in self-incompatibility have been characterized and the 3D structure of the receptor-ligand complex has been solved. Sequence analyses and empirical studies in self-incompatible and self-compatible species are elucidating the genetic basis of switches from the outcrossing to selfing modes of mating and beginning to provide clues to the diversification of the self recognition repertoire.
Collapse
Affiliation(s)
- June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
62
|
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures. Proc Natl Acad Sci U S A 2017; 114:8325-8329. [PMID: 28673971 DOI: 10.1073/pnas.1702482114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.
Collapse
|
63
|
James TY, Porter D, Hamrick JL, Vilgalys R. EVIDENCE FOR LIMITED INTERCONTINENTAL GENE FLOW IN THE COSMOPOLITAN MUSHROOM, SCHIZOPHYLLUM COMMUNE. Evolution 2017; 53:1665-1677. [PMID: 28565469 DOI: 10.1111/j.1558-5646.1999.tb04552.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/1998] [Accepted: 06/08/1999] [Indexed: 11/28/2022]
Abstract
The genetic structure of populations of Schizophyllum commune was inferred from electrophoretic variation among 136 individuals at 11 polymorphic allozyme loci to determine the extent of geographic differentiation in this widespread mushroom species. The majority of the genetic variation was contained within populations; however, considerable genetic differentiation was observed among populations (global GST = 0.214). Clustering analysis demonstrated that genetic distance was correlated with geographic distance and that a large component of the genetic variation was due to allele frequency differences among populations from the eastern and western hemispheres. Our results also suggest that populations are large and geographically widespread. The lack of fixed genetic differences among intercontinental populations at any of the allozyme loci suggests that long-distance spore dispersal may counter the effects of genetic drift in this cosmopolitan species. These results are contrasted with a previous description of the same collection, in which the mating allele distribution of the species displayed no population substructure at any geographic scale (Raper et al. 1958). Broader implications of this study are that both species and mating allele distributions may not be correlated with long-distance gene flow in basidiomycete fungi.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Botany, University of Georgia, Athens, Georgia, 30602
| | - David Porter
- Department of Botany, University of Georgia, Athens, Georgia, 30602
| | - James L Hamrick
- Departments of Botany and Genetics, University of Georgia, Athens, Georgia, 30602
| | - Rytas Vilgalys
- Department of Botany, Duke University, Durham, North Carolina, 27708-0338
| |
Collapse
|
64
|
Vekemans X, Schierup MH, Christiansen FB. MATE AVAILABILITY AND FECUNDITY SELECTION IN MULTI-ALLELIC SELF-INCOMPATIBILITY SYSTEMS IN PLANTS. Evolution 2017; 52:19-29. [PMID: 28568138 DOI: 10.1111/j.1558-5646.1998.tb05134.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1997] [Accepted: 09/29/1997] [Indexed: 10/19/2022]
Affiliation(s)
- Xavier Vekemans
- Laboratoire de Génétique et d'Ecologie Végétales; Université Libre de Bruxelles; 1850 Chaussée de Wavre B-1160 Brussels Belgium
| | - Mikkel H. Schierup
- Department of Ecology and Genetics; University of Aarhus; DK-8000 Aarhus C. Denmark
| | | |
Collapse
|
65
|
Levin DA, Ritter K, Ellstrand NC. PROTEIN POLYMORPHISM IN THE NARROW ENDEMIC
OENOTHERA ORGANENSIS. Evolution 2017; 33:534-542. [DOI: 10.1111/j.1558-5646.1979.tb04708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/1978] [Revised: 10/10/1978] [Indexed: 11/28/2022]
Affiliation(s)
| | - Krehe Ritter
- Department of Botany University of California Berkeley California 94720
| | | |
Collapse
|
66
|
Iwasa Y, Sasaki A. EVOLUTION OF THE NUMBER OF SEXES. Evolution 2017; 41:49-65. [DOI: 10.1111/j.1558-5646.1987.tb05770.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1985] [Accepted: 08/22/1986] [Indexed: 11/29/2022]
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of Science; Kyushu University; Fukuoka 812 Japan
| | - Akira Sasaki
- Department of Biology, Faculty of Science; Kyushu University; Fukuoka 812 Japan
| |
Collapse
|
67
|
|
68
|
Crosby JL. SELF-INCOMPATIBILITY ALLELES IN THE POPULATION OF OENOTHERA ORGANENSIS. Evolution 2017; 20:567-579. [DOI: 10.1111/j.1558-5646.1966.tb03387.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/1966] [Indexed: 11/26/2022]
|
69
|
Saumitou-Laprade P, Vernet P, Vekemans X, Billiard S, Gallina S, Essalouh L, Mhaïs A, Moukhli A, El Bakkali A, Barcaccia G, Alagna F, Mariotti R, Cultrera NGM, Pandolfi S, Rossi M, Khadari B, Baldoni L. Elucidation of the genetic architecture of self-incompatibility in olive: Evolutionary consequences and perspectives for orchard management. Evol Appl 2017; 10:867-880. [PMID: 29151878 PMCID: PMC5680433 DOI: 10.1111/eva.12457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
The olive (Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self‐incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra‐ and interspecific stigma tests on 89 genotypes representative of species‐wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self‐incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus. SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross‐incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.
Collapse
Affiliation(s)
- Pierre Saumitou-Laprade
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Philippe Vernet
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Xavier Vekemans
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Sylvain Billiard
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Sophie Gallina
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | | | - Ali Mhaïs
- Montpellier SupAgro UMR 1334 AGAP Montpellier France.,INRAUR Amélioration des Plantes Marrakech Morocco.,Laboratoire AgroBiotech L02B005 Faculté des Sciences et Techniques Guéliz University Cadi Ayyad Marrakech Morocco
| | | | - Ahmed El Bakkali
- INRAUR Amélioration des Plantes et Conservation des Ressources Phytogénétiques Meknès Morocco
| | - Gianni Barcaccia
- Laboratory of Genomics and Plant Breeding DAFNAE - University of Padova Legnaro PD Italy
| | - Fiammetta Alagna
- Research Unit for Table Grapes and Wine Growing in Mediterranean Environment CREATuriBA Italy.,CNRInstitute of Biosciences and BioresourcesPerugiaItaly
| | | | | | | | - Martina Rossi
- CNRInstitute of Biosciences and BioresourcesPerugiaItaly
| | - Bouchaïb Khadari
- Montpellier SupAgro UMR 1334 AGAP Montpellier France.,INRA/CBNMed UMR 1334 Amélioration Génétique et Adaptation des Plantes (AGAP) Montpellier France
| | | |
Collapse
|
70
|
Weis JJ, Ode PJ, Heimpel GE. Balancing selection maintains sex determining alleles in multiple‐locus complementary sex determination. Evolution 2017; 71:1246-1257. [DOI: 10.1111/evo.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/07/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jerome J. Weis
- Department of Entomology University of Minnesota St. Paul Minnesota 55108
| | - Paul J. Ode
- Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins Colorado 80523
| | - George E. Heimpel
- Department of Entomology University of Minnesota St. Paul Minnesota 55108
| |
Collapse
|
71
|
Layman NC, Fernando MTR, Herlihy CR, Busch JW. Costs of selfing prevent the spread of a self‐compatibility mutation that causes reproductive assurance. Evolution 2017; 71:884-897. [DOI: 10.1111/evo.13167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/15/2016] [Accepted: 12/21/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Nathan C. Layman
- School of Biological Sciences Washington State University Pullman Washington 99164
| | - M. Thilina R. Fernando
- Department of Biology, Evolution and Ecology Group Middle Tennessee State University Murfreesboro Tennessee 37132
| | - Christopher R. Herlihy
- Department of Biology, Evolution and Ecology Group Middle Tennessee State University Murfreesboro Tennessee 37132
| | - Jeremiah W. Busch
- School of Biological Sciences Washington State University Pullman Washington 99164
| |
Collapse
|
72
|
Baldwin SJ, Schoen DJ. Genetic variation for pseudo-self-compatibility in self-incompatible populations of Leavenworthia alabamica (Brassicaceae). THE NEW PHYTOLOGIST 2017; 213:430-439. [PMID: 27448252 DOI: 10.1111/nph.14109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 05/24/2023]
Abstract
Self-incompatibility (SI) promotes outcrossing, but transitions to self-compatibility (SC) are frequent. Population genetic theory describing the breakdown of SI to SC suggests that, under most conditions, populations should be composed of either SI or SC individuals. Under a narrow range of conditions, theory suggests that SI may persist alongside reduced expression of SI (pseudo-SI, PSI) in mixed-mating populations. We studied genetic variation for PSI segregating in four SI populations of Leavenworthia alabamica by measurement of the heritability of pollen tube number after self-pollination. We tested for the role of the S-locus in this variation by sequencing seven S-alleles from plants with high pseudo-SC (PSC) and testing for the co-segregation of these alleles with PSC. We found a continuous distribution of PSC in all populations and 90% of plants exhibited PSC. The heritability ranged from 0.39 to 0.57. All seven S-alleles from plants with high PSC exhibited trans-specific polymorphism, and no stop codons were observed within the c. 600-bp region sequenced. One of these S-alleles was directly associated with the inheritance of PSC. We conclude that heritable variation in PSC is largely a result of genetic variation in the signaling cascade downstream of the S-locus reaction, together with the presence of one leaky S-allele.
Collapse
Affiliation(s)
- Sarah J Baldwin
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Daniel J Schoen
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
73
|
Equilibrium behavior of population genetic models with non-random mating. Part II: Pedigrees, Homozygosity and Stochastic Models. J Appl Probab 2016. [DOI: 10.1017/s0021900200114391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Wright (1921) computed various correlations of relatives by a rather cumbersome procedure called the “method of path coefficients”. Wright's method is basically a disguised form of the use of Bayes' rule and the law of total probabilities. Malecot (1948) reorganized Wright's calculations by introducing the fundamental concept of identity by descent and exploiting its properties. The method of identity by descent has been perfected and developed by Malécot and his students, especially Gillois, Jauquard and Bouffette. Kempthorne (1957) has applied the concept of identity by descent to the study of quantitative inheritance. Kimura (1963) elegantly employed the ideas of identity by descent in determining rates of approach to homozygosity in certain mating situations with finite population size. Later in this chapter we will extend and refine the results of Kimura (1963) to give a more complete study of rates of approach to homozygosity. Ellison (1966) established several important limit theorems corresponding to polyploid, multi-locus random mating infinite populations by judicious enlargement of the concepts of identity by descent. Kesten (unpublished)) has recently refined the technique of Ellison.
Collapse
|
74
|
Abstract
Population genetics is that branch of genetics, whose object is the study of the genetical make-up of natural populations. By investigating the laws which govern the genetic structure of natural populations, we intend to clarify the mechanism of evolution.
Collapse
|
75
|
Abstract
Population genetics is that branch of genetics, whose object is the study of the genetical make-up of natural populations. By investigating the laws which govern the genetic structure of natural populations, we intend to clarify the mechanism of evolution.
Collapse
|
76
|
Karlin S. Equilibrium behavior of population genetic models with non-random mating. Part II: Pedigrees, Homozygosity and Stochastic Models. J Appl Probab 2016. [DOI: 10.2307/3211920] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Wright (1921) computed various correlations of relatives by a rather cumbersome procedure called the “method of path coefficients”. Wright's method is basically a disguised form of the use of Bayes' rule and the law of total probabilities. Malecot (1948) reorganized Wright's calculations by introducing the fundamental concept of identity by descent and exploiting its properties. The method of identity by descent has been perfected and developed by Malécot and his students, especially Gillois, Jauquard and Bouffette. Kempthorne (1957) has applied the concept of identity by descent to the study of quantitative inheritance. Kimura (1963) elegantly employed the ideas of identity by descent in determining rates of approach to homozygosity in certain mating situations with finite population size. Later in this chapter we will extend and refine the results of Kimura (1963) to give a more complete study of rates of approach to homozygosity. Ellison (1966) established several important limit theorems corresponding to polyploid, multi-locus random mating infinite populations by judicious enlargement of the concepts of identity by descent. Kesten (unpublished)) has recently refined the technique of Ellison.
Collapse
|
77
|
Silva JL, Brennan AC, Mejías JA. Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species. AOB PLANTS 2016; 8:plw029. [PMID: 27154621 PMCID: PMC4940477 DOI: 10.1093/aobpla/plw029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
The mating systems of species in small or fragmented populations impact upon their persistence. Small self-incompatible (SI) populations risk losing S allele diversity, responsible for the SI response, by drift thereby limiting mate availability and leading to population decline or SI system breakdown. But populations of relict and/or endemic species have resisted these demographic conditions over long periods suggesting their mating systems have adapted. To address a lack of empirical data on this topic, we studied the SI systems of three relict cliff-dwelling species of Sonchus section Pustulati (Asteraceae): S. masguindalii, S. fragilis and S. pustulatus in the western Mediterranean region. We performed controlled pollinations within and between individuals to measure index of SI (ISI) expression and identify S alleles in multiple population samples. Sonchus masguindalii and S. pustulatus showed strong SI (ISI = 0.6-1.0) compared to S. fragilis (ISI = 0.1-0.7). Just five S alleles were estimated for Spanish S. pustulatus and a moderate 11-15 S alleles for Moroccan S. pustulatus and S. fragilis, respectively. The fact that autonomous fruit set was generally improved by active self-pollination in self-compatible S. fragilis suggests that individuals with weak SI can show a wide range of outcrossing levels dependent on the degree of self or outcross pollen that pollinators bear. We conclude that frequent S allele dominance interactions that mask the incompatibility interactions of recessive S alleles leading to higher mate availability and partial breakdown of SI leading to mixed mating, both contribute to reproductive resilience in this group.
Collapse
Affiliation(s)
- Jose L Silva
- Departamento De Biología Vegetal Y Ecología, Universidad De Sevilla, Sevilla, CP 41012, España
| | - Adrian C Brennan
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | - José A Mejías
- Departamento De Biología Vegetal Y Ecología, Universidad De Sevilla, Sevilla, CP 41012, España
| |
Collapse
|
78
|
Nantongo JS, Eilu G, Geburek T, Schueler S, Konrad H. Detection of Self Incompatibility Genotypes in Prunus africana: Characterization, Evolution and Spatial Analysis. PLoS One 2016; 11:e0155638. [PMID: 27348423 PMCID: PMC4922633 DOI: 10.1371/journal.pone.0155638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 05/02/2016] [Indexed: 11/29/2022] Open
Abstract
In flowering plants, self-incompatibility is an effective genetic mechanism that prevents self-fertilization. Most Prunus tree species exhibit a homomorphic gametophytic self-incompatibility (GSI) system, in which the pollen phenotype is encoded by its own haploid genome. To date, no identification of S-alleles had been done in Prunus africana, the only member of the genus in Africa. To identify S-RNase alleles and hence determine S-genotypes in African cherry (Prunus africana) from Mabira Forest Reserve, Uganda, primers flanking the first and second intron were designed and these amplified two bands in most individuals. PCR bands on agarose indicated 26 and 8 different S-alleles for second and first intron respectively. Partial or full sequences were obtained for all these fragments. Comparison with published S-RNase data indicated that the amplified products were S-RNase alleles with very high interspecies homology despite the high intraspecific variation. Against expectations for a locus under balancing selection, frequency and spatial distribution of the alleles in a study plot was not random. Implications of the results to breeding efforts in the species are discussed, and mating experiments are strongly suggested to finally prove the functionality of SI in P. africana.
Collapse
Affiliation(s)
| | | | - Thomas Geburek
- Austrian Federal Office and Research Centre for Forests (BFW), Vienna, Austria
| | - Silvio Schueler
- Austrian Federal Office and Research Centre for Forests (BFW), Vienna, Austria
| | - Heino Konrad
- Austrian Federal Office and Research Centre for Forests (BFW), Vienna, Austria
| |
Collapse
|
79
|
Sakai S. How Have Self-Incompatibility Haplotypes Diversified? Generation of New Haplotypes during the Evolution of Self-Incompatibility from Self-Compatibility. Am Nat 2016; 188:163-74. [PMID: 27420782 DOI: 10.1086/687110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
I developed a gametophytic self-incompatibility (SI) model to study the conditions leading to diversification in SI haplotypes. In the model, the SI system is assumed to be incomplete, and the pollen expressing a given specificity is not fully rejected by the pistils expressing the same specificity. I also assumed that mutations can occur that enhance the rejection of pollen by pistils with the same haplotype variant and reduce rejection by pistils with other variants in the same haplotype. I found that if such mutations occur, the new haplotypes (mutant variants) can stably coexist with the ancestral haplotype in which the mutant arose. This is because pollen bearing the new haplotype is most strongly rejected by pistils bearing the same new haplotype among the pistils in the population; hence, negative frequency-dependent selection prevents their fixation. I also performed simulations and found that the nearly complete SI system evolves from completely self-compatible populations and that SI haplotypes can increase to about 40-50 within a few thousand generations. On the basis of my findings, I propose that diversification of SI haplotypes occurred during the evolution of SI from self-compatibility.
Collapse
|
80
|
Vernet P, Lepercq P, Billiard S, Bourceaux A, Lepart J, Dommée B, Saumitou-Laprade P. Evidence for the long-term maintenance of a rare self-incompatibility system in Oleaceae. THE NEW PHYTOLOGIST 2016; 210:1408-17. [PMID: 26833140 DOI: 10.1111/nph.13872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 05/21/2023]
Abstract
A rare homomorphic diallelic self-incompatibility (DSI) system discovered in Phillyrea angustifolia (family Oleaceae, subtribe Oleinae) can promote the transition from hermaphroditism to androdioecy. If widespread and stable in Oleaceae, DSI may explain the exceptionally high rate of androdioecious species reported in this plant family. Here, we set out to determine whether DSI occurs in another Oleaceae lineage. We tested for DSI in subtribe Fraxininae, a lineage that diverged from subtribe Oleinae c. 40 million yr ago. We explored the compatibility relationships in Fraxinus ornus using 81 hermaphrodites and 25 males from one natural stand and two naturalized populations using intra- and interspecific stigma tests performed on F. ornus and P. angustifolia testers. We uncovered a DSI system with hermaphrodites belonging to one of two self-incompatibility (SI) groups and males compatible with both groups, making for a truly androdioecious reproductive system. The two human-founded populations contained only one of the two SI groups. Our results provide evidence for the evolutionary persistence of DSI. We discuss how its stability over time may have affected transitions to other sexual systems, such as dioecy.
Collapse
Affiliation(s)
- Philippe Vernet
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Pierre Lepercq
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Sylvain Billiard
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Angélique Bourceaux
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Jacques Lepart
- CEFE-UMR 5175 du CNRS, 1919 route de Mende, 34293, Montpellier Cedex, France
| | - Bertrand Dommée
- CEFE-UMR 5175 du CNRS, 1919 route de Mende, 34293, Montpellier Cedex, France
| | - Pierre Saumitou-Laprade
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| |
Collapse
|
81
|
Douglas TE, Strassmann JE, Queller DC. Sex ratio and gamete size across eastern North America in
Dictyostelium discoideum,
a social amoeba with three sexes. J Evol Biol 2016; 29:1298-306. [DOI: 10.1111/jeb.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/22/2016] [Accepted: 03/25/2016] [Indexed: 01/17/2023]
Affiliation(s)
- T. E. Douglas
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | - J. E. Strassmann
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | - D. C. Queller
- Department of Biology Washington University in St. Louis St. Louis MO USA
| |
Collapse
|
82
|
de Filippo C, Key FM, Ghirotto S, Benazzo A, Meneu JR, Weihmann A, Parra G, Green ED, Andrés AM. Recent Selection Changes in Human Genes under Long-Term Balancing Selection. Mol Biol Evol 2016; 33:1435-47. [PMID: 26831942 DOI: 10.1093/molbev/msw023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Balancing selection is an important evolutionary force that maintains genetic and phenotypic diversity in populations. Most studies in humans have focused on long-standing balancing selection, which persists over long periods of time and is generally shared across populations. But balanced polymorphisms can also promote fast adaptation, especially when the environment changes. To better understand the role of previously balanced alleles in novel adaptations, we analyzed in detail four loci as case examples of this mechanism. These loci show hallmark signatures of long-term balancing selection in African populations, but not in Eurasian populations. The disparity between populations is due to changes in allele frequencies, with intermediate frequency alleles in Africans (likely due to balancing selection) segregating instead at low- or high-derived allele frequency in Eurasia. We explicitly tested the support for different evolutionary models with an approximate Bayesian computation approach and show that the patterns in PKDREJ, SDR39U1, and ZNF473 are best explained by recent changes in selective pressure in certain populations. Specifically, we infer that alleles previously under long-term balancing selection, or alleles linked to them, were recently targeted by positive selection in Eurasian populations. Balancing selection thus likely served as a source of functional alleles that mediated subsequent adaptations to novel environments.
Collapse
Affiliation(s)
- Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Felix M Key
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Juan R Meneu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Antje Weihmann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Genís Parra
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eric D Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
83
|
The influence of genetic drift on the formation and stability of polymorphisms arising from negative frequency-dependent selection. J Theor Biol 2016; 391:51-64. [DOI: 10.1016/j.jtbi.2015.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
|
84
|
Hedhly A, Wünsch A, Kartal Ö, Herrero M, Hormaza JI. Paternal-specific S-allele transmission in sweet cherry (Prunus avium L.): the potential for sexual selection. J Evol Biol 2016; 29:490-501. [PMID: 26559165 DOI: 10.1111/jeb.12790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 11/27/2022]
Abstract
Homomorphic self-incompatibility is a well-studied example of a physiological process that is thought to increase population diversity and reduce the expression of inbreeding depression. Whereas theoretical models predict the presence of a large number of S-haplotypes with equal frequencies at equilibrium, unequal allele frequencies have been repeatedly reported and attributed to sampling effects, population structure, demographic perturbation, sheltered deleterious mutations or selection pressure on linked genes. However, it is unclear to what extent unequal segregations are the results of gametophytic or sexual selection. Although these two forces are difficult to disentangle, testing S-alleles in the offspring of controlled crosses provides an opportunity to separate these two phenomena. In this work, segregation and transmission of S-alleles have been characterized in progenies of mixed donors and fully compatible pollinations under field conditions in Prunus avium. Seed set patterns and pollen performance have also been characterized. The results reveal paternal-specific distorted transmission of S-alleles in most of the crosses. Interestingly, S-allele segregation within any given paternal or maternal S-locus was random. Observations on pollen germination, pollen tube growth rate, pollen tube cohort size, seed set dynamics and transmission patterns strongly suggest post-pollination, prezygotic sexual selection, with male-male competition as the most likely mechanism. According to these results, post-pollination sexual selection takes precedence over frequency-dependent selection in explaining unequal S-haplotype frequencies.
Collapse
Affiliation(s)
- A Hedhly
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - A Wünsch
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Ö Kartal
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - M Herrero
- Estación Experimental de Aula Dei, CSIC, Zaragoza, Spain
| | - J I Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora - CSIC - UMA), Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
85
|
|
86
|
Hu QX, Fan Y, Xu L, Pang W, Wang S, Zheng YT, Lv LB, Yao YG. Analysis of the complete mitochondrial genome and characterization of diverse NUMTs of Macaca leonina. Gene 2015; 571:279-85. [PMID: 26151895 DOI: 10.1016/j.gene.2015.06.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 11/19/2022]
Abstract
As a non-human primate, the pig-tailed macaque has received wide attention because it can be infected by HIV-1. In this study, we determined the complete mtDNA sequence of the northern pig-tailed macaque (Macaca leonina). Unexpectedly, during the amplification of the mtDNA control region (D-loop region) we observed several D-loop-like sequences, which were NUMTs (nuclear mitochondrial sequences) and a total of 14 D-loop-like NUMT haplotypes were later identified in five individuals. The neighbor-joining tree and estimated divergence time based on these D-loop-like NUMT sequences of M. leonina provide some insights into the understanding of the evolutionary history of NUMTs. D-loop-like haplotypes G and H, which also exist in the nuclear genome of mulatta, appear to have been translocated into the nuclear genome before the divergence of M. mulatta and M. leonina. The other D-loop-like NUMT haplotypes were translocated into the nuclear genome of M. leonina after the divergence of the two species. Later sequence conversion was predicted to occur among these 14 D-loop-like NUMT haplotypes. The overall structure of the mtDNA of M. leonina was found to be similar to that seen in other mammalian mitochondrial genomes. Phylogenetic analysis based on the maximum likelihood method shows M. leonina clustered with Macaca silenus among the analyzed mammalian species.
Collapse
Affiliation(s)
- Qiu-Xiang Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Shuang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Long-Bao Lv
- Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
87
|
Pierson JC, Beissinger SR, Bragg JG, Coates DJ, Oostermeijer JGB, Sunnucks P, Schumaker NH, Trotter MV, Young AG. Incorporating evolutionary processes into population viability models. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2015; 29:755-764. [PMID: 25494697 DOI: 10.1111/cobi.12431] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence.
Collapse
Affiliation(s)
| | - Steven R Beissinger
- Department of Environmental Science, Policy and Management, and Museum of Vertebrate Zoology, UC Berkeley, Berkeley, CA, 94720, U.S.A
| | - Jason G Bragg
- Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - David J Coates
- Plant Science and Herbarium Program, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Bentley, WA, 6983, Australia
| | - J Gerard B Oostermeijer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, VIC, 3800, Australia
| | - Nathan H Schumaker
- Western Ecology Division, Environmental Protection Agency, Corvallis, OR, 97333, U.S.A
| | | | - Andrew G Young
- CSIRO Plant Industry, P.O. Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
88
|
Teixeira JC, de Filippo C, Weihmann A, Meneu JR, Racimo F, Dannemann M, Nickel B, Fischer A, Halbwax M, Andre C, Atencia R, Meyer M, Parra G, Pääbo S, Andrés AM. Long-Term Balancing Selection in LAD1 Maintains a Missense Trans-Species Polymorphism in Humans, Chimpanzees, and Bonobos. Mol Biol Evol 2015; 32:1186-96. [PMID: 25605789 DOI: 10.1093/molbev/msv007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Balancing selection maintains advantageous genetic and phenotypic diversity in populations. When selection acts for long evolutionary periods selected polymorphisms may survive species splits and segregate in present-day populations of different species. Here, we investigate the role of long-term balancing selection in the evolution of protein-coding sequences in the Homo-Pan clade. We sequenced the exome of 20 humans, 20 chimpanzees, and 20 bonobos and detected eight coding trans-species polymorphisms (trSNPs) that are shared among the three species and have segregated for approximately 14 My of independent evolution. Although the majority of these trSNPs were found in three genes of the major histocompatibility locus cluster, we also uncovered one coding trSNP (rs12088790) in the gene LAD1. All these trSNPs show clustering of sequences by allele rather than by species and also exhibit other signatures of long-term balancing selection, such as segregating at intermediate frequency and lying in a locus with high genetic diversity. Here, we focus on the trSNP in LAD1, a gene that encodes for Ladinin-1, a collagenous anchoring filament protein of basement membrane that is responsible for maintaining cohesion at the dermal-epidermal junction; the gene is also an autoantigen responsible for linear IgA disease. This trSNP results in a missense change (Leucine257Proline) and, besides altering the protein sequence, is associated with changes in gene expression of LAD1.
Collapse
Affiliation(s)
- João C Teixeira
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Antje Weihmann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Juan R Meneu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fernando Racimo
- Department of Integrative Biology, University of California, Berkeley
| | - Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Fischer
- International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Michel Halbwax
- Clinique vétérinaire du Dr. Jacquemin, Maisons-Alfort, France
| | - Claudine Andre
- Lola Ya Bonobo sanctuary, Kinshasa, Democratic Republic Congo
| | - Rebeca Atencia
- Réserve Naturelle Sanctuaire à Chimpanzés de Tchimpounga, Jane Goodall Institute, Pointe-Noire, Republic of Congo
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Genís Parra
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
89
|
Van de Paer C, Saumitou-Laprade P, Vernet P, Billiard S. The joint evolution and maintenance of self-incompatibility with gynodioecy or androdioecy. J Theor Biol 2015; 371:90-101. [PMID: 25681148 DOI: 10.1016/j.jtbi.2015.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Mating systems show two kinds of frequent transitions: from hermaphroditism to dioecy, gynodioecy or androdioecy, or from self-incompatibility (SI) to self-compatibility (SC). While models have mostly investigated these two kinds of transitions as independent, empirical observations suggest that, to some extent, they can evolve jointly. Here, we study the joint evolution and maintenance of SI and androdioecy or SI and gynodioecy by the means of phenotypic models. Our models focus on three parameters: the unisexuals׳ advantage relative to that of the hermaphrodites due to resource reallocation, inbreeding depression and the selfing rate. We assume no pollen limitation or discounting. We show that SI helps the maintenance of androdioecy, but favors the loss of gynodioecy, and also that androdioecy facilitates the maintenance of SI, whereas gynodioecy does not affect it. We finally investigate how gynodioecy and androdioecy may affect the diversification of SI groups, especially considering an evolutionary pathway through SC intermediates. We show that while androdioecy prevents the increase of the number of SI groups, under certain conditions of inbreeding depression and selfing rates, gynodioecy allows it.
Collapse
Affiliation(s)
- Céline Van de Paer
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Pierre Saumitou-Laprade
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Philippe Vernet
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Sylvain Billiard
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| |
Collapse
|
90
|
Billiard S, Husse L, Lepercq P, Godé C, Bourceaux A, Lepart J, Vernet P, Saumitou-Laprade P. Selfish male-determining element favors the transition from hermaphroditism to androdioecy. Evolution 2015; 69:683-93. [PMID: 25643740 DOI: 10.1111/evo.12613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022]
Abstract
According to the current, widely accepted paradigm, the evolutionary transition from hermaphroditism toward separate sexes occurs in two successive steps: an initial, intermediate step in which unisexual individuals, male or female, sterility mutants coexist with hermaphrodites and a final step that definitively establishes dioecy. Two nonexclusive processes can drive this transition: inbreeding avoidance and reallocation of resources from one sexual function to the other. Here, we report results of controlled crosses between males and hermaphrodites in Phillyrea angustifolia, an androdioecious species with two mutually intercompatible, but intraincompatible groups of hermaphrodites. We observed different segregation patterns that can be explained by: (1) epistatic interactions between two unlinked diallelic loci, determining sex and mating compatibility, and (2) a mutation with pleiotropic effects: female sterility, full compatibility of males with both hermaphrodite incompatibility groups, and complete male-biased sex-ratio distortion in one of the two groups. Modeling shows that these mechanisms can explain the high frequency of males in populations of P. angustifolia and can promote the maintenance of androdioecy without requiring inbreeding depression or resource reallocation. We thus argue that segregation distortion establishes the right conditions for the evolution of cryptic dioecy and potentially initiates the evolution toward separate sexes.
Collapse
Affiliation(s)
- Sylvain Billiard
- Unité Evolution, Ecologie et Paléontologie (EEP), UMR CNRS 8198, Université des Sciences et Technologies de Lille-Lille1, F-59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Lombardo P, Gambassi A, Dall'Asta L. Fixation properties of subdivided populations with balancing selection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032130. [PMID: 25871077 DOI: 10.1103/physreve.91.032130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 06/04/2023]
Abstract
In subdivided populations, migration acts together with selection and genetic drift and determines their evolution. Building upon a recently proposed method, which hinges on the emergence of a time scale separation between local and global dynamics, we study the fixation properties of subdivided populations in the presence of balancing selection. The approximation implied by the method is accurate when the effective selection strength is small and the number of subpopulations is large. In particular, it predicts a phase transition between species coexistence and biodiversity loss in the infinite-size limit and, in finite populations, a nonmonotonic dependence of the mean fixation time on the migration rate. In order to investigate the fixation properties of the subdivided population for stronger selection, we introduce an effective coarser description of the dynamics in terms of a voter model with intermediate states, which highlights the basic mechanisms driving the evolutionary process.
Collapse
Affiliation(s)
- Pierangelo Lombardo
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Andrea Gambassi
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Luca Dall'Asta
- Department of Applied Science and Technology-DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy
| |
Collapse
|
92
|
Abstract
Understanding the molecular underpinnings of evolutionary adaptations is a central focus of modern evolutionary biology. Recent studies have uncovered a panoply of complex phenotypes, including locally adapted ecotypes and cryptic morphs, divergent social behaviours in birds and insects, as well as alternative metabolic pathways in plants and fungi, that are regulated by clusters of tightly linked loci. These 'supergenes' segregate as stable polymorphisms within or between natural populations and influence ecologically relevant traits. Some supergenes may span entire chromosomes, because selection for reduced recombination between a supergene and a nearby locus providing additional benefits can lead to locus expansions with dynamics similar to those known for sex chromosomes. In addition to allowing for the co-segregation of adaptive variation within species, supergenes may facilitate the spread of complex phenotypes across species boundaries. Application of new genomic methods is likely to lead to the discovery of many additional supergenes in a broad range of organisms and reveal similar genetic architectures for convergently evolved phenotypes.
Collapse
Affiliation(s)
- Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Romain Libbrecht
- Laboratory of Insect Social Evolution, Rockefeller University, New York 10065, USA
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
93
|
Satou Y, Hirayama K, Mita K, Fujie M, Chiba S, Yoshida R, Endo T, Sasakura Y, Inaba K, Satoh N. Sustained heterozygosity across a self-incompatibility locus in an inbred ascidian. Mol Biol Evol 2014; 32:81-90. [PMID: 25234703 DOI: 10.1093/molbev/msu268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Because self-incompatibility loci are maintained heterozygous and recombination within self-incompatibility loci would be disadvantageous, self-incompatibility loci are thought to contribute to structural and functional differentiation of chromosomes. Although the hermaphrodite chordate, Ciona intestinalis, has two self-incompatibility genes, this incompatibility system is incomplete and self-fertilization occurs under laboratory conditions. Here, we established an inbred strain of C. intestinalis by repeated self-fertilization. Decoding genome sequences of sibling animals of this strain identified a 2.4-Mbheterozygous region on chromosome 7. A self-incompatibility gene, Themis-B, was encoded within this region. This observation implied that this self-incompatibility locus and the linkage disequilibrium of its flanking region contribute to the formation of the 2.4-Mb heterozygous region, probably through recombination suppression. We showed that different individuals in natural populations had different numbers and different combinations of Themis-B variants, and that the rate of self-fertilization varied among these animals. Our result explains why self-fertilization occurs under laboratory conditions. It also supports the concept that the Themis-B locus is preferentially retained heterozygous in the inbred line and contributes to the formation of the 2.4-Mb heterozygous region. High structural variations might suppress recombination, and this long heterozygous region might represent a preliminary stage of structural differentiation of chromosomes.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Kazuko Hirayama
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Kaoru Mita
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Manabu Fujie
- Marine Genomics Unit and DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Shota Chiba
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Reiko Yoshida
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Toshinori Endo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Nori Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan Marine Genomics Unit and DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
94
|
Gervais C, Awad DA, Roze D, Castric V, Billiard S. GENETIC ARCHITECTURE OF INBREEDING DEPRESSION AND THE MAINTENANCE OF GAMETOPHYTIC SELF-INCOMPATIBILITY. Evolution 2014; 68:3317-24. [DOI: 10.1111/evo.12495] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Gervais
- UMI 3614; Evolutionary Biology and Ecology of Algae; CNRS; 29680 Roscoff France
- Sorbonne Universités; UPMC University Paris 06 29680 Roscoff France
| | - Diala Abu Awad
- Laboratoire de Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université Lille 1 - Sciences et Technologies; 59655 Villeneuve d'Ascq France
| | - Denis Roze
- UMI 3614; Evolutionary Biology and Ecology of Algae; CNRS; 29680 Roscoff France
- Sorbonne Universités; UPMC University Paris 06 29680 Roscoff France
| | - Vincent Castric
- Laboratoire de Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université Lille 1 - Sciences et Technologies; 59655 Villeneuve d'Ascq France
| | - Sylvain Billiard
- Laboratoire de Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université Lille 1 - Sciences et Technologies; 59655 Villeneuve d'Ascq France
| |
Collapse
|
95
|
Key FM, Teixeira JC, de Filippo C, Andrés AM. Advantageous diversity maintained by balancing selection in humans. Curr Opin Genet Dev 2014; 29:45-51. [PMID: 25173959 DOI: 10.1016/j.gde.2014.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 11/16/2022]
Abstract
Most human polymorphisms are neutral or slightly deleterious, but some genetic variation is advantageous and maintained in populations by balancing selection. Considered a rarity and overlooked for years, balanced polymorphisms have recently received renewed attention with several lines of evidence showing their relevance in human evolution. From theoretical work on its role in adaptation to empirical studies that identify its targets, recent developments have showed that balancing selection is more prevalent than previously thought. Here we review these developments and discuss their implications in our understanding of the influence of balancing selection in human evolution. We also review existing evidence on the biological functions that benefit most from advantageous diversity, and the functional consequences of these variants. Overall, we argue that balancing selection must be considered an important selective force in human evolution.
Collapse
Affiliation(s)
- Felix M Key
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - João C Teixeira
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
96
|
Self-incompatibility in Brassicaceae: identification and characterization of SRK-like sequences linked to the S-locus in the tribe Biscutelleae. G3-GENES GENOMES GENETICS 2014; 4:983-92. [PMID: 24939184 PMCID: PMC4065267 DOI: 10.1534/g3.114.010843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Self-incompatibility (SI) is a genetic system that prevents self-fertilization in many Angiosperms. Although plants from the Brassicaceae family present an apparently unique SI system that is ancestral to the family, investigations at the S-locus responsible for SI have been mostly limited to two distinct lineages (Brassica and Arabidopsis-Capsella, respectively). Here, we investigated SI in a third deep-branching lineage of Brassicaceae: the tribe Biscutelleae. By coupling sequencing of the SI gene responsible for pollen recognition (SRK) with phenotypic analyses based on controlled pollinations, we identified 20 SRK-like sequences functionally linked to 13 S-haplotypes in 21 individuals of Biscutella neustriaca and 220 seedlings. We found two genetic and phylogenetic features of SI in Biscutelleae that depart from patterns observed in the reference Arabidopsis clade: (1) SRK-like sequences cluster into two main phylogenetic lineages interspersed within the many SRK lineages of Arabidopsis; and (2) some SRK-like sequences are transmitted by linked pairs, suggesting local duplication within the S-locus. Strikingly, these features also were observed in the Brassica clade but probably evolved independently, as the two main SRK clusters in Biscutella are distinct from those in Brassica. In the light of our results and of what has been previously observed in other Brassicaceae, we discuss the ecological and evolutionary implications on SI plant populations of the high diversity and the complex dominance relationships we found at the S-locus in Biscutelleae.
Collapse
|
97
|
Vekemans X, Poux C, Goubet PM, Castric V. The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the S-locus? J Evol Biol 2014; 27:1372-85. [PMID: 24725152 DOI: 10.1111/jeb.12372] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
Evolutionary transitions between mating systems have occurred repetitively and independently in flowering plants. One of the most spectacular advances of the recent empirical literature in the field was the discovery of the underlying genetic machinery, which provides the opportunity to retrospectively document the scenario of the outcrossing to selfing transitions in a phylogenetic perspective. In this review, we explore the literature describing patterns of polymorphism and molecular evolution of the locus controlling self-incompatibility (S-locus) in selfing species of the Brassicaceae family in order to document the transition from outcrossing to selfing, a retrospective approach that we describe as the 'mating system genes approach'. The data point to strikingly contrasted scenarios of transition from outcrossing to selfing. We also perform original analyses of the fully sequenced genomes of four species showing self-compatibility, to compare the orthologous S-locus region with that of functional S-locus haplotypes. Phylogenetic analyses suggest that all species we investigated evolved independently towards loss of self-incompatibility, and in most cases almost intact sequences of either of the two S-locus genes suggest that these transitions occurred relatively recently. The S-locus region in Aethionema arabicum, representing the most basal lineage of Brassicaceae, showed unusual patterns so that our analysis could not determine whether self-incompatibility was lost secondarily, or evolved in the core Brassicaceae after the split with this basal lineage. Although the approach we detail can only be used when mating system genes have been identified in a clade, we suggest that its integration with phylogenetic and population genetic approaches should help determine the main routes of this predominant mating system shift in plants.
Collapse
Affiliation(s)
- X Vekemans
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université Lille 1, Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
98
|
Lombardo P, Gambassi A, Dall'Asta L. Nonmonotonic effects of migration in subdivided populations. PHYSICAL REVIEW LETTERS 2014; 112:148101. [PMID: 24766019 DOI: 10.1103/physrevlett.112.148101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Indexed: 06/03/2023]
Abstract
The influence of migration on the stochastic dynamics of subdivided populations is still an open issue in various evolutionary models. Here, we develop a self-consistent mean-field-like method in order to determine the effects of migration on relevant nonequilibrium properties, such as the mean fixation time. If evolution strongly favors coexistence of species (e.g., balancing selection), the mean fixation time develops an unexpected minimum as a function of the migration rate. Our analysis hinges only on the presence of a separation of time scales between local and global dynamics, and therefore, it carries over to other nonequilibrium processes in physics, biology, ecology, and social sciences.
Collapse
Affiliation(s)
- Pierangelo Lombardo
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Andrea Gambassi
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Luca Dall'Asta
- Department of Applied Science and Technology-DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy and Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy
| |
Collapse
|
99
|
Suarez-Gonzalez A, Good SV. Pollen limitation and reduced reproductive success are associated with local genetic effects in Prunus virginiana, a widely distributed self-incompatible shrub. ANNALS OF BOTANY 2014; 113:595-605. [PMID: 24327534 PMCID: PMC3936584 DOI: 10.1093/aob/mct289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND AIMS A vast quantity of empirical evidence suggests that insufficient quantity or quality of pollen may lead to a reduction in fruit set, in particular for self-incompatible species. This study uses an integrative approach that combines field research with marker gene analysis to understand the factors affecting reproductive success in a widely distributed self-incompatible species, Prunus virginiana (Rosaceae). METHODS Twelve patches of P. virginiana distributed within three populations that differed in degree of disturbance were examined. Two of the sites were small (7-35 km(2)) remnants of forest in an intensively used agricultural landscape, while the third was continuous (350 km(2)) and less disturbed. Field studies (natural and hand cross-pollinations) were combined with marker gene analyses (microsatellites and S-locus) in order to explore potential factors affecting pollen delivery and consequently reproductive success at landscape (between populations) and fine scales (within populations). KEY RESULTS Reductions in reproductive output were found in the two fragments compared with the continuous population, and suggest that pollen is an important factor limiting fruit production. Genetic analyses carried out in one of the fragments and in the continuous site suggest that even though S-allele diversity is high in both populations, the fragment exhibits an increase in biparental inbreeding and correlated paternity. The increase in biparental inbreeding in the fragment is potentially attributable to variation in the density of individuals and/or the spatial distribution of genotypes among populations, both of which could alter mating dynamics. CONCLUSIONS By using a novel integrative approach, this study shows that even though P. virginiana is a widespread species, fragmented populations can experience significant reductions in fruit set and pollen limitation in the field. Deatiled examination of one fragmented population suggests that these linitations may be explained by an increase in biparental inbreeding, correlated paternity and fine-scale genetic structure. The consistency of the field and fine-scale genetic analyses, and the consistency of the results within patches and across years, suggest that these are important processes driving pollen limitation in the fragment.
Collapse
Affiliation(s)
- Adriana Suarez-Gonzalez
- For correspondence. Present address: Department of Botany, The University of British Columbia, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada. E-mail
| | | |
Collapse
|
100
|
Griffin PC, Willi Y. Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American Arabidopsis lyrata. Ecol Lett 2014; 17:484-90. [PMID: 24428521 DOI: 10.1111/ele.12248] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/26/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
Cross-fertilisation predominates in eukaryotes, but shifts to self-fertilisation are common and ecologically and evolutionarily important. Reproductive assurance under outcross gamete limitation is one eco-evolutionary process held responsible for the shift to selfing. Although small effective population size is a situation where selfing plants could theoretically benefit from reproductive assurance, empirical tests of the role of population size are rare. Here, we show that selfing evolved repeatedly at range margins, where historical demographic processes produced low effective population sizes. Outcrossing populations of North American Arabidopsis lyrata have low genetic diversity at geographic margins, with a signature of post-glacial range expansion in the north and rear-edge isolation in the south. Selfing populations occur at the margins of two genetic groups and never in their interior. These results corroborate small effective population size as the promoter of self-fertilisation and have important implications for our understanding of species turnover, range limits and range dynamics.
Collapse
Affiliation(s)
- P C Griffin
- Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| | | |
Collapse
|