51
|
Lunghi G, Fazzari M, Di Biase E, Mauri L, Chiricozzi E, Sonnino S. The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio 2021; 11:3193-3200. [PMID: 34003598 PMCID: PMC8634855 DOI: 10.1002/2211-5463.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/14/2021] [Indexed: 11/07/2022] Open
Abstract
Gangliosides are particularly abundant in the central nervous system, where they are mainly associated with the synaptic membranes. Their structure underlies a specific role in determining several cell physiological processes of the nervous system. The high number of different gangliosides available in nature suggests that their structure, related to both the hydrophobic and hydrophilic portion of the molecule, defines a code, although not completely understood, that through hydrophobic interactions and hydrogen bonds allows the transduction of signals starting at the plasma membranes. In this short review, we describe some structural aspects responsible for the role played by gangliosides in maintaining and determining neuronal functions.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| |
Collapse
|
52
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
53
|
Li Z, Zhang Q. Ganglioside isomer analysis using ion polarity switching liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2021; 413:3269-3279. [PMID: 33686479 PMCID: PMC8672327 DOI: 10.1007/s00216-021-03262-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
Gangliosides are ubiquitously present on cell surface. They are more abundantly expressed in nerve cells and tissues and involved in pathology of various diseases. Diversity of molecular structures in the carbohydrate head group, fatty acyl, and long chain base increases the complexity of analyzing gangliosides. In this study, an ultrahigh-performance liquid chromatography-tandem mass spectrometry method is developed for analysis of the co-eluting ganglioside isomers, which uses ion polarity switching to integrate glycan head isomer identification, ceramide isomer differentiation, and quantification of ganglioside into one analysis. The method is facilitated with an extensive ganglioside target list by combining the various glycan head groups, long chain bases, and the experimentally determined fatty acyls. Correlation between the retention time of ganglioside and its ceramide total carbon number is experimentally validated and used to predict retention time of ganglioside target list for scheduling the final multiple reaction monitoring method. This method was validated according to the FDA guidelines: 96.5% of gangliosides with good accuracy (80-120%), precision (< 15%), and linearity R2 > 0.99. The authenticated gangliosides were quantified from mouse brain by isotope dilution. Overall, 165 gangliosides were quantified using 10 mg mouse brain tissue, including 100 isomers of GM1, GM2, GM3, GD1a, GD1b, GD2, GD3, and GT1b.
Collapse
Affiliation(s)
- Zhucui Li
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
54
|
Hongo Y, Kaida K, Komuta Y, Takazaki H, Yamazaki K, Suzuki K. Cholesterol-added antigens can enhance antiglycolipid antibody activity: Application to antibody testing. J Neuroimmunol 2021; 356:577580. [PMID: 33933819 DOI: 10.1016/j.jneuroim.2021.577580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
We analysed the effect of adding cholesterol to glycolipid antigens on antibody activity with enzyme-linked immunosorbent assay in 123 subjects consisting of 96 patients with Guillain-Barré syndrome, 25 Miller Fisher syndrome, and two Bickerstaff brainstem encephalitis. The use of cholesterol-added GM1 antigens increased anti-GM1 activity in 11 out of 23 anti-GM1-positive patients and resulted in six out of 100 anti-GM1-negative patients becoming anti-GM1-positive. Enhancement of anti-GM1 activity by cholesterol addition was significantly associated with antecedent gastrointestinal infection. The use of cholesterol-added glycolipid antigens can increase the detection rate of anti-glycolipid antibodies and accurately evaluate the anti-glycolipid antibody activity in vivo.
Collapse
Affiliation(s)
- Yu Hongo
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| | - Kenichi Kaida
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan; Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan.
| | - Yukari Komuta
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Takazaki
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| | - Keishi Yamazaki
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| | - Kazushi Suzuki
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
55
|
Ranasinghe A, Ciccimaro E, D'Arienzo C, Olah TV, Ponath P, Hnatyshyn S. An integrated Qual/Quan strategy for ganglioside lipidomics using high-resolution mass spectrometry and Skyline software. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9041. [PMID: 33415785 DOI: 10.1002/rcm.9041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE Gangliosides (GS) are attractive targets in biomarker discovery because of their physiological significance in numerous human diseases including certain cancers and developmental and metabolic disorders. The robust strategy described here enables the profiling of numerous GS while obtaining quantitative data of exploratory biomarkers present in human plasma and whole blood. METHOD The GS from human blood, human plasma, and several cell lines were extracted using a mixture of methanol and isopropanol/0.1% formic acid followed by direct analysis of the supernatant. The simultaneous Qualitative and Quantitative (Qual/Quan) approach involves micro flow (20 μL/min) high pressure liquid chromatography (HPLC)/high-resolution mass spectrometry (HRMS) and post-acquisition data processing with Skyline software for profiling numerous GS in biological matrices. The quantitative assay involves reverse-phase liquid chromatography/HRMS and calibration curves using commercially available GS. RESULTS Protein precipitation resulted in ~60%-80% GS recovery from biological matrices. Direct injection of the extract allowed for quantification of targeted GS in human blood, plasma, and cancer cell lines. The lower limit of detection for the target analytes, GM1, GT1, GD1, spiked into 1% BSA/PBS, ranged from 1 to 10 ng/mL. Human lung cancer cell lines contained variable amounts (1-130 ng/mL) of soluble Fuc-GM1 analogs, potential biomarkers of lung cancer. CONCLUSIONS A combination of simple extraction and micro-HPLC/HRMS allowed for quantification of GS in human serum and whole blood. Integration of HRMS with Skyline allowed for GS profiling in the same samples using post-acquisition HRMS data without the need for reanalysis. The strategy presented here is expected to play an important role in profiling exploratory GS biomarkers in discovery bioanalytical research.
Collapse
Affiliation(s)
- Asoka Ranasinghe
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| | - Eugene Ciccimaro
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| | - Celia D'Arienzo
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| | - Timothy V Olah
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| | - Paul Ponath
- Bristol-Myers Squibb Bay Area Research Facility, Research & Development, Redwood City, California
| | - Serhiy Hnatyshyn
- Bristol Myers Squibb Co, Route 206 & Province Line Road, Princeton, New Jersey
| |
Collapse
|
56
|
Investigation of Fusion between Nanosized Lipid Vesicles and a Lipid Monolayer Toward Formation of Giant Lipid Vesicles with Various Kinds of Biomolecules. MICROMACHINES 2021; 12:mi12020133. [PMID: 33530580 PMCID: PMC7911008 DOI: 10.3390/mi12020133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/03/2023]
Abstract
We determined the properties of fusion between large unilamellar vesicles (LUVs) and the lipid monolayer by measuring the fluorescence intensity of rhodamine-conjugated phospholipids in cell-sized lipid vesicles. The charge of LUVs (containing cationic lipids) and lipid droplets (containing anionic lipids) promoted lipid membrane fusion. We also investigated the formation of cell-sized lipid vesicles with asymmetric lipid distribution using this fusion method. Moreover, cell-sized asymmetric ganglioside vesicles can be generated from the planar lipid bilayer formed at the interface between the lipid droplets with/without LUVs containing ganglioside. The flip-flop dynamics of ganglioside were observed on the asymmetric ganglioside vesicles. This fusion method can be used to form asymmetric lipid vesicles with poor solubility in n-decane or lipid vesicles containing various types of membrane proteins for the development of complex artificial cell models.
Collapse
|
57
|
D'Aprile C, Prioni S, Mauri L, Prinetti A, Grassi S. Lipid rafts as platforms for sphingosine 1-phosphate metabolism and signalling. Cell Signal 2021; 80:109929. [PMID: 33493577 DOI: 10.1016/j.cellsig.2021.109929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Spontaneous segregation of cholesterol and sphingolipids as a liquid-ordered phase leads to their clustering in selected membrane areas, the lipid rafts. These specialized membrane domains enriched in gangliosides, sphingomyelin, cholesterol and selected proteins involved in signal transduction, organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating cell homeostasis. Sphingosine 1-phosphate, an important biologically active mediator, is involved in several signal transduction processes regulating a plethora of cell functions and, not only several of its downstream effectors tend to localize in lipid rafts, some of the enzymes involved in its pathway, of receptors involved in its signalling and its transporters have been often found in these membrane microdomains. Considering this, in this review we address what is currently known regarding the relationship between sphingosine 1-phosphate metabolism and signalling and plasma membrane lipid rafts.
Collapse
Affiliation(s)
- Chiara D'Aprile
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
58
|
Nowack L, Teschers CS, Albrecht S, Gilmour R. Oligodendroglial glycolipids in (Re)myelination: implications for multiple sclerosis research. Nat Prod Rep 2021; 38:890-904. [PMID: 33575689 DOI: 10.1039/d0np00093k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: up to 2020 This short review surveys aspects of glycolipid-based natural products and their biological relevance in multiple sclerosis (MS). The role of isolated gangliosides in disease models is discussed together with an overview of ganglioside-inspired small molecule drugs and imaging probes. The discussion is extended to neurodegeneration in a more general context and addresses the need for more efficient synthetic methods to generate (glyco)structures that are of therapeutic relevance.
Collapse
Affiliation(s)
- Luise Nowack
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany. and Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Charlotte S Teschers
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
59
|
Danolic D, Heffer M, Wagner J, Skrlec I, Alvir I, Mamic I, Susnjar L, Banovic M, Danolić D, Puljiz M. Role of ganglioside biosynthesis genetic polymorphism in cervical cancer development. J OBSTET GYNAECOL 2020; 40:1127-1132. [PMID: 31847655 DOI: 10.1080/01443615.2019.1692801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cervical cancer is the most common gynaecological cancer in women. Cell mediated immunity plays a significant role in the progression or regression of neoplastic cervical lesions caused by human papilloma virus infection. Engagement of antigen-specific T cell receptors is a prerequisite for T cell activation. The initial events of T cell activation involve the movement of the T cell receptor into specialised microdomains known as lipid rafts. Gangliosides play an active role in the formation, stabilisation and biological functions of lipid rafts. This study aims to determine whether polymorphisms in the genes involved in the biosynthesis of gangliosides represent risk a factor for cervical cancer.Taqman methods for single nucleotide polymorphism genotyping was used. All subjects carried the homozygous wild-type genotypes for all analysed genes (CC for gene B4GALT5, AA for gene ST3GAL5, AA for gene ST8SIA1 and CC for gene B4GALNT1). A χ2 test showed significant differences in genotype failure for B4GALT5 rs138960078 (χ2 = 32.02, df = 1, p = .001) and genotype failure for B4GALNT1 rs144643461 (χ2 = 41.03, df = 1, p = .001) between cervical cancer group and control group. Genotype failures were significantly more frequent in the cervical cancer group. Unknown adjacent SNPs to rs138960078 in gene B4GALT5 and rs144643461 in gene B4GALNT1 could be associated with cervical cancer development.IMPACT STATEMENTWhat is already known on this subject? Individual genetic factors play an important role in the pathogenesis of disease. In recent years, the different SNPs and their potential effects on CC risk have been extensively studied. A large number of single nucleotide genetic variants associated with cervical cancer have been identified.What do the results of this study add? Our results suggest the presence of unknown adjacent SNPs to rs138960078 in gene B4GALT5 and rs144643461 in gene B4GALNT1 that could be associated with cervical cancer development.What are the implications of these findings for clinical practice and/or further research? Better understanding of causal-consequence relationship between ganglioside biosynthesis and TCR mediated activation with consequently cervical cancer development is needed. Our research opens a new possibilities for identification of polymorphisms in the genes involved in the biosynthesis of gangliosides which can be a risk factor for cervical cancer development.
Collapse
Affiliation(s)
- Damir Danolic
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Jasenka Wagner
- Department of Biology, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Skrlec
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
- Department of Biology, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ilija Alvir
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Ivica Mamic
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Lucija Susnjar
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Marija Banovic
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Mario Puljiz
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| |
Collapse
|
60
|
Assessing the DOPC-cholesterol interactions and their influence on fullerene C60 partitioning in lipid bilayers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Grad P, Gedda L, Edwards K. Effect of gangliosides on structure and integrity of polyethylene glycol (PEG)-stabilized liposomes. J Colloid Interface Sci 2020; 578:281-289. [DOI: 10.1016/j.jcis.2020.05.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
|
62
|
Rudajev V, Novotny J. The Role of Lipid Environment in Ganglioside GM1-Induced Amyloid β Aggregation. MEMBRANES 2020; 10:membranes10090226. [PMID: 32916822 PMCID: PMC7558528 DOI: 10.3390/membranes10090226] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023]
Abstract
Ganglioside GM1 is the most common brain ganglioside enriched in plasma membrane regions known as lipid rafts or membrane microdomains. GM1 participates in many modulatory and communication functions associated with the development, differentiation, and protection of neuronal tissue. It has, however, been demonstrated that GM1 plays a negative role in the pathophysiology of Alzheimer's disease (AD). The two features of AD are the formation of intracellular neurofibrillary bodies and the accumulation of extracellular amyloid β (Aβ). Aβ is a peptide characterized by intrinsic conformational flexibility. Depending on its partners, Aβ can adopt different spatial arrangements. GM1 has been shown to induce specific changes in the spatial organization of Aβ, which lead to enhanced peptide accumulation and deleterious effect especially on neuronal membranes containing clusters of this ganglioside. Changes in GM1 levels and distribution during the development of AD may contribute to the aggravation of the disease.
Collapse
|
63
|
Schengrund CL. Gangliosides and Neuroblastomas. Int J Mol Sci 2020; 21:E5313. [PMID: 32726962 PMCID: PMC7432824 DOI: 10.3390/ijms21155313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022] Open
Abstract
The focus of this review is the ganglio-series of glycosphingolipids found in neuroblastoma (NB) and the myriad of unanswered questions associated with their possible role(s) in this cancer. NB is one of the more common solid malignancies of children. Five-year survival for those diagnosed with low risk NB is 90-95%, while that for children with high-risk NB is around 40-50%. Much of the survival rate reflects age of diagnosis with children under a year having a much better prognosis than those over two. Identification of expression of GD2 on the surface of most NB cells led to studies of the effectiveness and subsequent approval of anti-GD2 antibodies as a treatment modality. Despite much success, a subset of patients, possibly those whose tumors fail to express concentrations of gangliosides such as GD1b and GT1b found in tumors from patients with a good prognosis, have tumors refractory to treatment. These observations support discussion of what is known about control of ganglioside synthesis, and their actual functions in NB, as well as their possible relationship to treatment response.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
64
|
Adar T, Shankar Lankalapalli R, Bittman R, Ilan Y. The assembly of glycosphingolipid determines their immunomodulatory effect: A novel method for structure-based design of immunotherapy. Cell Immunol 2020; 355:104157. [PMID: 32659503 DOI: 10.1016/j.cellimm.2020.104157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022]
Abstract
Structure-activity relationships provide insight into the binding interactions of beta-glycosphingolipids (GSLs) with both the TCR and the CD1d molecules, as well as the subsequent immunologic response of regulatory NKT cells. AIM To determine the effects of synthetic GSL structures on their immune modulatory functions. METHODS GSLs of various structures were tested in vitro and in an animal model of Concanavalin A (ConA) immune-mediated hepatitis. RESULTS In vitro, using SV40 binding to live monkey CV1 cells, the l-threo stereoisomer of C8-β-LacCer inhibits caveolar internalization, reducing viral binding to the cell surface. In vivo, in the ConA model, LR172, which has a saturated C8 chain, and LR178, which has a trans double bond at C-2 in the C8 chain, suppressed the immune-mediated liver inflammation and reduced IFNγ levels in a dose dependent manner. The beneficial effects of LR172 and of LR178 are associated with suppression of liver apoptosis, increased phosphorylated STAT3 expression in the liver, and an increase in the NKT liver/spleen ratio. SUMMARY The assembly of GSLs determines their immunomodulatory effect and can serve as a method for structure-based design of immunotherapy.
Collapse
Affiliation(s)
- Tomer Adar
- Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ravi Shankar Lankalapalli
- Department of Chemistry & Biochemistry, Queens College of the City University of New York, United States; Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Robert Bittman
- Department of Chemistry & Biochemistry, Queens College of the City University of New York, United States
| | - Yaron Ilan
- Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
65
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
66
|
Ye L, Jia K, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, He Y, Zhou C. CD137, an attractive candidate for the immunotherapy of lung cancer. Cancer Sci 2020; 111:1461-1467. [PMID: 32073704 PMCID: PMC7226203 DOI: 10.1111/cas.14354] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy has become a hotspot in cancer therapy in recent years. Several immune checkpoints inhibitors have been used to treat lung cancer. CD137 is a kind of costimulatory molecule that mediates T cell activation, which regulates the activity of immune cells in a variety of physiological and pathological processes. Targeting CD137 or its ligand (CD137L) has been studied, aiming to enhance anticancer immune responses. Accumulating studies show that anti-CD137 mAbs alone or combined with other drugs have bright antitumor prospects. In the following, we reviewed the biology of CD137, the antitumor effects of anti-CD137 Ab monotherapy and the combined therapy in lung cancer.
Collapse
Affiliation(s)
- Lingyun Ye
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
- Medical schoolTongji UniversityShanghaiChina
| | - Keyi Jia
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
- Medical schoolTongji UniversityShanghaiChina
| | - Lei Wang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
| | - Wei Li
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
| | - Bin Chen
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
| | - Yu Liu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
- Medical schoolTongji UniversityShanghaiChina
| | - Hao Wang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
- Medical schoolTongji UniversityShanghaiChina
| | - Sha Zhao
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
| | - Yayi He
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
| | - Caicun Zhou
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghaiChina
| |
Collapse
|
67
|
Andreas NJ, Basu Roy R, Gomez-Romero M, Horneffer-van der Sluis V, Lewis MR, Camuzeaux SSM, Jiménez B, Posma JM, Tientcheu L, Egere U, Sillah A, Togun T, Holmes E, Kampmann B. Performance of metabonomic serum analysis for diagnostics in paediatric tuberculosis. Sci Rep 2020; 10:7302. [PMID: 32350385 PMCID: PMC7190829 DOI: 10.1038/s41598-020-64413-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
We applied a metabonomic strategy to identify host biomarkers in serum to diagnose paediatric tuberculosis (TB) disease. 112 symptomatic children with presumptive TB were recruited in The Gambia and classified as bacteriologically-confirmed TB, clinically diagnosed TB, or other diseases. Sera were analysed using 1H nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Multivariate data analysis was used to distinguish patients with TB from other diseases. Diagnostic accuracy was evaluated using Receiver Operating Characteristic (ROC) curves. Model performance was tested in a validation cohort of 36 children from the UK. Data acquired using 1H NMR demonstrated a sensitivity, specificity and Area Under the Curve (AUC) of 69% (95% confidence interval [CI], 56-73%), 83% (95% CI, 73-93%), and 0.78 respectively, and correctly classified 20% of the validation cohort from the UK. The most discriminatory MS data showed a sensitivity of 67% (95% CI, 60-71%), specificity of 86% (95% CI, 75-93%) and an AUC of 0.78, correctly classifying 83% of the validation cohort. Amongst children with presumptive TB, metabolic profiling of sera distinguished bacteriologically-confirmed and clinical TB from other diseases. This novel approach yielded a diagnostic performance for paediatric TB comparable to that of Xpert MTB/RIF and interferon gamma release assays.
Collapse
Affiliation(s)
- Nicholas J Andreas
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Robindra Basu Roy
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Maria Gomez-Romero
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Verena Horneffer-van der Sluis
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
| | - Matthew R Lewis
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Stephane S M Camuzeaux
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
| | - Beatriz Jiménez
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Joram M Posma
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Leopold Tientcheu
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Uzochukwu Egere
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Abdou Sillah
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Toyin Togun
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Beate Kampmann
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom.
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia.
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
68
|
Cutillo G, Saariaho AH, Meri S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell Mol Immunol 2020; 17:313-322. [PMID: 32152553 PMCID: PMC7109116 DOI: 10.1038/s41423-020-0388-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 01/05/2023] Open
Abstract
Gangliosides are structurally and functionally polymorphic sialic acid containing glycosphingolipids that are widely distributed in the human body. They play important roles in protecting us against immune attacks, yet they can become targets for autoimmunity and act as receptors for microbes, like the influenza viruses, and toxins, such as the cholera toxin. The expression patterns of gangliosides vary in different tissues, during different life periods, as well as in different animals. Antibodies against gangliosides (AGA) can target immune attack e.g., against neuronal cells and neutralize their complement inhibitory activity. AGAs are important especially in acquired demyelinating immune-mediated neuropathies, like Guillain-Barré syndrome (GBS) and its variant, the Miller-Fisher syndrome (MFS). They can emerge in response to different microbial agents and immunological insults. Thereby, they can be involved in a variety of diseases. In addition, antibodies against GM3 were found in the sera of patients vaccinated with Pandemrix®, who developed secondary narcolepsy, strongly supporting the autoimmune etiology of the disease.
Collapse
Affiliation(s)
- Gianni Cutillo
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Humanitas University, Milan, Rozzano, Italy
| | - Anna-Helena Saariaho
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
- Humanitas University, Milan, Rozzano, Italy.
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki, Finland.
| |
Collapse
|
69
|
Sun H, Zhou Y, Jiang H, Xu Y. Elucidation of Functional Roles of Sialic Acids in Cancer Migration. Front Oncol 2020; 10:401. [PMID: 32296639 PMCID: PMC7137995 DOI: 10.3389/fonc.2020.00401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
Sialic acids (SA), negatively charged nine-carbon sugars, have long been implicated in cancer metastasis since 1960's but its detailed functional roles remain elusive. We present a computational analysis of transcriptomic data of cancer vs. control tissues of eight types in TCGA, aiming to elucidate the possible reason for the increased production and utilization of SAs in cancer and their possible driving roles in cancer migration. Our analyses have revealed for all cancer types: (1) the synthesis and deployment enzymes of SAs are persistently up-regulated throughout the progression for all but one cancer type; and (2) gangliosides, of which SAs are part, tend to converge to specific types that allow SAs to pack at high densities on cancer cell surface as a cancer advances. Statistical and modeling analyses suggest that (i) a highly plausible reason for the increased syntheses of SAs is to produce net protons, used for neutralizing the OH− persistently generated by elevated intracellular iron metabolism coupled with chronic inflammation in cancer tissues; (ii) the level of SA accumulation on cancer cell surface strongly correlates with the stage of cancer migration, as well as multiple migration-related characteristics such as altered cell-cell adhesion, mechanical stress, cell protrusion, and contraction; and (iii) the pattern of SA deployment correlates with the 5-year survival rate of a cancer type. Overall, our study provides strong evidence for that the continuous accumulation of SAs on cancer cell surface gives rise to increasingly stronger cell-cell repulsion due to their negative charges, leading to cell deformation by electrostatic force-induced mechanical compression, which is known to be able to drive cancer cell migration established by recent studies.
Collapse
Affiliation(s)
- Huiyan Sun
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China.,School of Artificial Intelligence, Jilin University, Changchun, China
| | - Yi Zhou
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, the University of Georgia, Athens, GA, United States
| | - Hongyang Jiang
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Ying Xu
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China.,Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, the University of Georgia, Athens, GA, United States
| |
Collapse
|
70
|
Di Biase E, Lunghi G, Fazzari M, Maggioni M, Pomè DY, Valsecchi M, Samarani M, Fato P, Ciampa MG, Prioni S, Mauri L, Sonnino S, Chiricozzi E. Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide. Glycoconj J 2020; 37:329-343. [PMID: 32198666 DOI: 10.1007/s10719-020-09919-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and neuroprotective properties of GM1 ganglioside. In addition to this, differently from GM1, GM1-oligosaccharide is not taken up by the cells, remaining solubilized into the extracellular environment interacting with cell surface proteins. Those characteristics make GM1-oligosaccharide a good tool to study the properties of the endogenous GM1, avoiding to interfere with the ganglioside natural metabolic pathway. In this study, we show that GM1-oligosaccharide administered to mice cerebellar granule neurons by interacting with cell surface induces TrkA-MAP kinase pathway activation enhancing neuron clustering, arborization and networking. Accordingly, in the presence of GM1-oligosaccharide, neurons show a higher phosphorylation rate of FAK and Src proteins, the intracellular key regulators of neuronal motility. Moreover, treated cells express increased level of specific neuronal markers, suggesting an advanced stage of maturation compared to controls. In parallel, we found that in the presence of GM1-oligosaccharide, neurons accelerate the expression of complex gangliosides and reduce the level of the simplest ones, displaying the typical ganglioside pattern of mature neurons. Our data confirms the specific role of GM1 in neuronal differentiation and maturation, determined by its oligosaccharide portion. GM1-oligosacchairide interaction with cell surface receptors triggers the activation of intracellular biochemical pathways responsible for neuronal migration, dendrites emission and axon growth.
Collapse
Affiliation(s)
- Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Pamela Fato
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| |
Collapse
|
71
|
Jefferies D, Khalid S. To infect or not to infect: molecular determinants of bacterial outer membrane vesicle internalization by host membranes. J Mol Biol 2020; 432:1251-1264. [DOI: 10.1016/j.jmb.2020.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
|
72
|
Kim BH, Ju WS, Kim JS, Kim SU, Park SJ, Ward SM, Lyu JH, Choo YK. Effects of Gangliosides on Spermatozoa, Oocytes, and Preimplantation Embryos. Int J Mol Sci 2019; 21:E106. [PMID: 31877897 PMCID: PMC6982094 DOI: 10.3390/ijms21010106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Gangliosides are sialic acid-containing glycosphingolipids, which are the most abundant family of glycolipids in eukaryotes. Gangliosides have been suggested to be important lipid molecules required for the control of cellular procedures, such as cell differentiation, proliferation, and signaling. GD1a is expressed in interstitial cells during ovarian maturation in mice and exogenous GD1a is important to oocyte maturation, monospermic fertilization, and embryonic development. In this context, GM1 is known to influence signaling pathways in cells and is important in sperm-oocyte interactions and sperm maturation processes, such as capacitation. GM3 is expressed in the vertebrate oocyte cytoplasm, and exogenously added GM3 induces apoptosis and DNA injury during in vitro oocyte maturation and embryogenesis. As a consequence of this, ganglioside GT1b and GM1 decrease DNA fragmentation and act as H2O2 inhibitors on germ cells and preimplantation embryos. This review describes the functional roles of gangliosides in spermatozoa, oocytes, and early embryonic development.
Collapse
Affiliation(s)
- Bo Hyun Kim
- CHA Fertility Center, 5455 Wilshire Blvd. Los Angeles, CA 90036, USA;
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea; (W.S.J.); (S.J.P.)
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, Neongme-gil, Ibam-myeon, Jeongup-si, Jeonvuk 56216, Korea;
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeonggudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Korea;
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea; (W.S.J.); (S.J.P.)
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA; (S.M.W.); (J.H.L.)
| | - Ju Hyeong Lyu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA; (S.M.W.); (J.H.L.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea; (W.S.J.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea
| |
Collapse
|
73
|
Meng XY, Yau LF, Huang H, Chan WH, Luo P, Chen L, Tong TT, Mi JN, Yang Z, Jiang ZH, Wang JR. Improved approach for comprehensive profiling of gangliosides and sulfatides in rat brain tissues by using UHPLC-Q-TOF-MS. Chem Phys Lipids 2019; 225:104813. [DOI: 10.1016/j.chemphyslip.2019.104813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
|
74
|
Jordan LR, Blauch ME, Baxter AM, Cawley JL, Wittenberg NJ. Influence of brain gangliosides on the formation and properties of supported lipid bilayers. Colloids Surf B Biointerfaces 2019; 183:110442. [DOI: 10.1016/j.colsurfb.2019.110442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 01/04/2023]
|
75
|
Ji L, Qiao Z, Zhang X, Cheng X, Wang W, Zhang F, Zhou Y, Yuan Y. Preparation of Ganglioside GM1 by Supercritical CO2 Extraction and Immobilized Sialidase. Molecules 2019; 24:molecules24203732. [PMID: 31623198 PMCID: PMC6832980 DOI: 10.3390/molecules24203732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Monosialotetrahexosylganglioside (GM1) has good activity on brain diseases and was developed to be a drug applied in clinics for neurological disorders and nerve injury. It is difficult to isolate GM1 in industry scale from the brains directly. In this work, a simple and highly efficient method with high yield was developed for the isolation, conversion, and purification of GM1 from a pig brain. Gangliosides (GLS) were first extracted by supercritical CO2 (SCE). The optimum extraction time of GLS by SCE was 4 h, and the ratio of entrainer to acetone powder from the pig brain was 3:1 (v/w). GM1 was then prepared from GLS by immobilized sialidase and purified by reverse-phase silica gel. Sodium alginate embedding was used for the immobilization of sialidase. Under the optimized method, the yield of high-purity GM1 was around 0.056%. This method has the potential to be applied in the production of GM1 in the industry.
Collapse
Affiliation(s)
- Li Ji
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zhonghui Qiao
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Xin Zhang
- College of Biology and Agricultural Engineering, Jilin University, Changchun 130022, China.
| | - Xiaolei Cheng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Weiyang Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Fan Zhang
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Ye Yuan
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
76
|
Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes. Biophys J 2019; 117:1215-1223. [PMID: 31542224 DOI: 10.1016/j.bpj.2019.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
Gangliosides (GMs) form an important class of lipids found in the outer leaflet of the plasma membrane. Typically, they colocalize with cholesterol and sphingomyelin in ordered membrane domains. However, detailed understanding of the lateral organization of GM-rich membranes is still lacking. To gain molecular insight, we performed molecular dynamics simulations of GMs in model membranes composed of coexisting liquid-ordered and liquid-disordered domains. We found that GMs indeed have a preference to partition into the ordered domains. At higher concentrations (>10 mol %), we observed a destabilizing effect of GMs on the phase coexistence. Further simulations with modified GMs show that the structure of the GM headgroup affects the phase separation, whereas the nature of the tail determines the preferential location. Together, our findings provide a molecular basis to understand the lateral organization of GM-rich membranes.
Collapse
|
77
|
Srivastava AK, Pittman JM, Zerweck J, Venkata BS, Moore PC, Sachleben JR, Meredith SC. β-Amyloid aggregation and heterogeneous nucleation. Protein Sci 2019; 28:1567-1581. [PMID: 31276610 PMCID: PMC6699094 DOI: 10.1002/pro.3674] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023]
Abstract
In this article, we consider the role of heterogeneous nucleation in β-amyloid aggregation. Heterogeneous nucleation is more common and occurs at lower levels of supersaturation than homogeneous nucleation. The nucleation period is also the stage at which most of the polymorphism of amyloids arises, this being one of the defining features of amyloids. We focus on several well-known heterogeneous nucleators of β-amyloid, including lipid surfaces, especially those enriched in gangliosides and cholesterol, and divalent metal ions. These two broad classes of nucleators affect β-amyloid particularly in light of the amphiphilicity of these peptides: the N-terminal region, which is largely polar and charged, contains the metal binding site, whereas the C-terminal region is aliphatic and is important in lipid binding. Notably, these two classes of nucleators can interact cooperatively, aggregation begetting greater aggregation.
Collapse
Affiliation(s)
- Atul K. Srivastava
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Jay M. Pittman
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Jonathan Zerweck
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Bharat S. Venkata
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | | | | | - Stephen C. Meredith
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| |
Collapse
|
78
|
Dimitriou E, Paschali E, Kanariou M, Michelakakis H. Prevalence of antibodies to ganglioside and Hep 2 in Gaucher, Niemann - Pick type C and Sanfilippo diseases. Mol Genet Metab Rep 2019; 20:100477. [PMID: 31194046 PMCID: PMC6554541 DOI: 10.1016/j.ymgmr.2019.100477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/02/2022] Open
Abstract
Lysosomal Storage Diseases (LSDs) are rare genetic diseases, the majority of which are caused by specific lysosomal enzyme deficiencies and all are characterized by malfunctioning lysosomes. Lysosomes are key regulators of many different cellular processes and are vital for the function of the immune system. Several studies have shown the coexistence of LSDs and immune abnormalities. In this study, we investigated the presence of autoantibodies in the plasma of patients with Gaucher disease (GD; n = 6), Sanfilippo Syndrome B (SFB; n = 8) and Niemann - Pick type C disease (NPC; n = 5) before and following Miglustat treatment (n = 3). All were examined for antibodies to antigens of Hep-2 cells and antiganglioside antibodies (AGSA). No autoantibodies were detected in GD patients. 3/8 SFB patients showed only AGSA (2/3 IgM / IgG; 1/3 IgG), 3/8 only anti-Sm E/F and 2/8 showed both IgM / IgG or IgG AGSA and anti-Sm E/F. 3/5 NPC patients showed AGSA (2/3 IgM and IgG, 1/3 IgM) and one anti-Sm E/F and IgM AGSA. Following treatment one patient with no AGSA developed IgM AGSA and two with both IgG and IgM showed only IgG AGSA. In our study, investigating similar numbers of patients, autoantibodies were observed in NPC and SFB patients but not in GD patients. Our findings suggest that, independently of the development of an autoimmune disease in patients with LSDs, there seems to be an autoimmune activation that differs in different disorders. Further studies including more patients, also at different stages of disease and treatment, are needed in order to get further insight into the immune irregularities associated with different LSDs and their significance.
Collapse
Key Words
- AGSA, Antiganglioside antibodies
- AMA-M2, antimitochondrial antibodies to M2 antigen
- Autoimmunity
- GD, Gaucher disease
- Gaucher disease
- Immunoglobulins
- Jo-1, Histidyl-tRNA synthetase antigen
- Ku:Ku antigen(p70/p80)CENP A,B,C, Centromere proteins A,B,C
- LSDs, Lysosomal storage diseases
- NPC, Niemann Pick type C disease
- Niemann pick type C disease
- PM-Scl-70, Polymyositis - Scleroderma-70
- RNP, ribonucleoprotein
- SFB, Sanfilippo B syndrome
- SS-A, Sjögren's antigen A
- SS-B, Sjögren's syndrome antigen B
- Sanfilippo B syndrome
- Scl-70, Scleroderma-70
- Sm, Smith antigen (B,B′,D,E,F,G proteins)
- rib-P-Protein, Ribosomal P protein
Collapse
Affiliation(s)
- Evangelia Dimitriou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Evangelia Paschali
- Department of Immunology and Histocompatibility Specialized Center & Referral Center for Primary Immunodeficiencies, Paediatric Immunology, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Maria Kanariou
- Department of Immunology and Histocompatibility Specialized Center & Referral Center for Primary Immunodeficiencies, Paediatric Immunology, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| |
Collapse
|
79
|
Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019; 10:807. [PMID: 31427962 PMCID: PMC6689979 DOI: 10.3389/fphar.2019.00807] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is characterized by a high content of sphingolipids and by a high diversity in terms of different structures. Stage- and cell-specific sphingolipid metabolism and expression are crucial for brain development and maintenance toward adult age. On the other hand, deep dysregulation of sphingolipid metabolism, leading to altered sphingolipid pattern, is associated with the majority of neurological and neurodegenerative diseases, even those totally lacking a common etiological background. Thus, sphingolipid metabolism has always been regarded as a promising pharmacological target for the treatment of brain disorders. However, any therapeutic hypothesis applied to complex amphipathic sphingolipids, components of cellular membranes, has so far failed probably because of the high regional complexity and specificity of the different biological roles of these structures. Simpler sphingosine-based lipids, including ceramide and sphingosine 1-phosphate, are important regulators of brain homeostasis, and, thanks to the relative simplicity of their metabolic network, they seem a feasible druggable target for the treatment of brain diseases. The enzymes involved in the control of the levels of bioactive sphingoids, as well as the receptors engaged by these molecules, have increasingly allured pharmacologists and clinicians, and eventually fingolimod, a functional antagonist of sphingosine 1-phosphate receptors with immunomodulatory properties, was approved for the therapy of relapsing-remitting multiple sclerosis. Considering the importance of neuroinflammation in many other brain diseases, we would expect an extension of the use of such analogs for the treatment of other ailments in the future. Nevertheless, many aspects other than neuroinflammation are regulated by bioactive sphingoids in healthy brain and dysregulated in brain disease. In this review, we are addressing the multifaceted possibility to address the metabolism and biology of bioactive sphingosine 1-phosphate as novel targets for the development of therapeutic paradigms and the discovery of new drugs.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
80
|
Drab M, Stopar D, Kralj-Iglič V, Iglič A. Inception Mechanisms of Tunneling Nanotubes. Cells 2019; 8:cells8060626. [PMID: 31234435 PMCID: PMC6627088 DOI: 10.3390/cells8060626] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/13/2023] Open
Abstract
Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theoretical and simulation models of nanodomain segregation suggesting the mechanisms of TNT inception and stability. We discuss the coupling of nanodomain segregation with the action of protruding cytoskeletal forces, which are mostly provided in eukaryotic cells by the polymerization of f-actin, and review recent inception mechanisms of TNTs in relation to motor proteins.
Collapse
Affiliation(s)
- Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - David Stopar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
81
|
Ilic K, Auer B, Mlinac-Jerkovic K, Herrera-Molina R. Neuronal Signaling by Thy-1 in Nanodomains With Specific Ganglioside Composition: Shall We Open the Door to a New Complexity? Front Cell Dev Biol 2019; 7:27. [PMID: 30899760 PMCID: PMC6416198 DOI: 10.3389/fcell.2019.00027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023] Open
Abstract
Thy-1 is a small membrane glycoprotein and member of the immunoglobulin superfamily of cell adhesion molecules. It is abundantly expressed in many cell types including neurons and is anchored to the outer membrane leaflet via a glycosyl phosphatidylinositol tail. Thy-1 displays a number of interesting properties such as fast lateral diffusion, which allows it to get in and out of membrane nanodomains with different lipid composition. Thy-1 displays a broad expression in different cell types and plays confirmed roles in cell development, adhesion and differentiation. Here, we explored the functions of Thy-1 in neuronal signaling, initiated by extracellular binding of αVβ3 integrin, may strongly dependent on the lipid content of the cell membrane. Also, we assort literature suggesting the association of Thy-1 with specific components of lipid rafts such as sialic acid containing glycosphingolipids, called gangliosides. Furthermore, we argue that Thy-1 positioning in nanodomains may be influenced by gangliosides. We propose that the traditional conception of Thy-1 localization in rafts should be reconsidered and evaluated in detail based on the potential diversity of neuronal nanodomains.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Benedikt Auer
- Laboratory of Neuronal and Synaptic Signals, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Rodrigo Herrera-Molina
- Laboratory of Neuronal and Synaptic Signals, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
82
|
Kociurzynski R, Beck SD, Bouhon JB, Römer W, Knecht V. Binding of SV40's Viral Capsid Protein VP1 to Its Glycosphingolipid Receptor GM1 Induces Negative Membrane Curvature: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3534-3544. [PMID: 30802059 DOI: 10.1021/acs.langmuir.8b03765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The binding of the pentameric capsid protein VP1 of simian virus 40 to its glycosphingolipid receptor GM1 is a key step for the entry of the virus into the host cell. Recent experimental studies have shown that the interaction of variants of soluble VP1 pentamers with giant unilamellar vesicles composed of GM1, DOPC, and cholesterol leads to the formation of tubular membrane invaginations to the inside of the vesicles, mimicking the initial steps of endocytosis. We have used coarse-grained and atomistic molecular dynamics (MD) simulations to study the interaction of VP1 with GM1/DOPC/cholesterol bilayers. In the presence of one VP1 protein, we monitor the formation of small local negative curvature and membrane thinning at the protein binding site as well as reduction of area per lipid. These membrane deformations are also observed under cholesterol-free conditions. However, here, the number of GM1 molecules attached to the VP1 binding pockets increases. The membrane curvature is slightly increased for asymmetric GM1 distribution that mimics conditions in vivo, compared to symmetric GM1 distributions which are often applied in experiments. Slightly smaller inward curvature was observed in atomistic control simulations. Binding of four VP1 proteins leads to an increase of the average intrinsic area per lipid in the protein binding leaflet. Membrane fluctuations appear to be the driving force of VP1 aggregation, as was previously shown for membrane-adhering particles because no VP1 aggregation is observed in the absence of a lipid membrane.
Collapse
Affiliation(s)
- Raisa Kociurzynski
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Schänzlestraße 1 , 79104 Freiburg , Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
| | - Sophie D Beck
- Materials Theory , ETH Zürich , Wolfgang-Pauli-Straße 27 , CH-8093 Zürich , Switzerland
| | - Jean-Baptiste Bouhon
- Institute of Physics , Albert-Ludwigs-University Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - Winfried Römer
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Schänzlestraße 1 , 79104 Freiburg , Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
- Signalling Resaerch Centers BIOSS and CIBSS , Albert-Ludwigs-University Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany
| | - Volker Knecht
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
- Institute of Physics , Albert-Ludwigs-University Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
- Signalling Resaerch Centers BIOSS and CIBSS , Albert-Ludwigs-University Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany
| |
Collapse
|
83
|
Enhanced Ordering in Monolayers Containing Glycosphingolipids: Impact of Carbohydrate Structure. Biophys J 2019. [PMID: 29539397 DOI: 10.1016/j.bpj.2017.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influence of carbohydrate structure on the ordering of glycosphingolipids (GSLs) and surrounding phospholipids was investigated in monolayers at the air-water interface. Binary mixtures composed of GSLs, chosen to span a range of carbohydrate complexity, and zwitterionic dipalmitoylphosphatidylcholine phospholipid, were studied. X-ray reflectivity was used to measure the out-of-plane structure of the monolayers and characterize the extension and conformation of the GSL carbohydrates. Using synchrotron grazing incidence x-ray diffraction, the in-plane packing of the lipid acyl chains and the area per molecule within ordered domains were characterized at different mole ratios of the two components. Our findings indicate that GSL-containing mixtures, regardless of the carbohydrate size, enhance the ordering of the surrounding lipids, resulting in a larger fraction of ordered phase of the monolayer and greater dimensions of the ordered domains. Reduction of the averaged area per molecule within the ordered domains was also observed but only in the cases where there was a size mismatch between the phospholipid headgroups and GSL components, suggesting that the condensation mechanism involves the relief of steric interactions between headgroups in mixtures.
Collapse
|
84
|
Lee J, Patel DS, Ståhle J, Park SJ, Kern NR, Kim S, Lee J, Cheng X, Valvano MA, Holst O, Knirel YA, Qi Y, Jo S, Klauda JB, Widmalm G, Im W. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J Chem Theory Comput 2018; 15:775-786. [PMID: 30525595 DOI: 10.1021/acs.jctc.8b01066] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycolipids (such as glycoglycerolipids, glycosphingolipids, and glycosylphosphatidylinositol) and lipoglycans (such as lipopolysaccharides (LPS), lipooligosaccharides (LOS), mycobacterial lipoarabinomannan, and mycoplasma lipoglycans) are typically found on the surface of cell membranes and play crucial roles in various cellular functions. Characterizing their structure and dynamics at the molecular level is essential to understand their biological roles, but systematic generation of glycolipid and lipoglycan structures is challenging because of great variations in lipid structures and glycan sequences (i.e., carbohydrate types and their linkages). To facilitate the generation of all-atom glycolipid/LPS/LOS structures, we have developed Glycolipid Modeler and LPS Modeler in CHARMM-GUI ( http://www.charmm-gui.org ), a web-based interface that simplifies building of complex biological simulation systems. In addition, we have incorporated these modules into Membrane Builder so that users can readily build a complex symmetric or asymmetric biological membrane system with various glycolipids and LPS/LOS. These tools are expected to be useful in innovative and novel glycolipid/LPS/LOS modeling and simulation research by easing tedious and intricate steps in modeling complex biological systems and shall provide insight into structures, dynamics, and underlying mechanisms of complex glycolipid-/LPS-/LOS-containing biological membrane systems.
Collapse
Affiliation(s)
- Jumin Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Sang-Jun Park
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Joonseong Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Xi Cheng
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine , Queen's University Belfast BT9 7BL , United Kingdom
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel , Airway Research Center North, Member of the German Center for Lung Research (DZL) , D-23845 Borstel , Germany
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 Moscow , Russia
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Sunhwan Jo
- Leadership Computing Facility , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
85
|
Pavićević A, Lakočević M, Popović M, Popović-Bijelić A, Daković M, Mojović M. Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study. Biol Chem 2018; 399:447-452. [PMID: 29272250 DOI: 10.1515/hsz-2017-0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/10/2017] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is a lysosomal storage disorder, caused by an impaired function of β-glucocerebrosidase, which results in accumulation of glucocerebroside in cells, and altered membrane ordering. Using electron paramagnetic resonance spin labeling, a statistically significant difference in the order parameter between the peripheral blood mononuclear cell membranes of GD patients and healthy controls was observed. Moreover, the results show that the introduction of the enzyme replacement therapy leads to the restoration of the physiological membrane fluidity. Accordingly, this simple method could serve as a preliminary test for GD diagnosis and therapy efficiency.
Collapse
Affiliation(s)
- Aleksandra Pavićević
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Lakočević
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotića 13, 11000 Belgrade, Serbia
| | - Milan Popović
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Ana Popović-Bijelić
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marko Daković
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Miloš Mojović
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
86
|
Mehdizadeh Gohari I, Brefo-Mensah EK, Palmer M, Boerlin P, Prescott JF. Sialic acid facilitates binding and cytotoxic activity of the pore-forming Clostridium perfringens NetF toxin to host cells. PLoS One 2018; 13:e0206815. [PMID: 30403719 PMCID: PMC6221314 DOI: 10.1371/journal.pone.0206815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/20/2018] [Indexed: 11/19/2022] Open
Abstract
NetF-producing type A Clostridium perfringens is an important cause of canine and foal necrotizing enteritis. NetF, related to the β-sheet pore-forming Leukocidin/Hemolysin superfamily, is considered a major virulence factor for this disease. The main purpose of this work is to demonstrate the pore-forming activity of NetF and characterize the chemical nature of its binding site. Electron microscopy using recombinant NetF (rNetF) confirmed that NetF is able to oligomerize and form large pores in equine ovarian (EO) cell membranes and sheep red blood cells. These oligomeric pores appear to be about 4–6 nm in diameter, and the number of oligomer subunits to vary from 6 to 9. Sodium periodate treatment rendered EO cells non-susceptible to NetF, suggesting that NetF binding requires cell surface carbohydrates. NetF cytotoxicity was also inhibited by a lectin that binds sialic acid, by sialidase, and by free sialic acid in excess, all of which clearly implicate sialic acid-containing membrane carbohydrates in NetF binding and/or toxicity for EO cells. Binding of NetF to sheep red blood cells was not inhibited by the gangliosides GM1, GM2 and GM3, nor did the latter promote membrane permeabilization in liposomes, suggesting that they do not constitute the cellular receptors. In contrast, treatment of EO cells with different proteases reduced their susceptibility to NetF, suggesting that the NetF receptor is a sialic acid-containing glycoprotein.
Collapse
Affiliation(s)
| | | | - Michael Palmer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - John F. Prescott
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
87
|
Ranasinghe A, Mehl J, D'Arienzo C, Nabbie F, Chiu C, Thevanayagam L, Srinivasan M, Hogan J, Ponath P, Olah T. Fucosyl monosialoganglioside: Quantitative analysis of specific potential biomarkers of lung cancer in biological matrices using immunocapture extraction/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1481-1490. [PMID: 29876976 DOI: 10.1002/rcm.8194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/19/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Certain lung cancer patients express elevated Fucosyl Monosialoganglioside (Fuc-GM1) in circulation compared to control groups. Several sensitive methods involving characterization of Fuc-GM1 have been reported. However, a highly specific and sensitive method for quantifying multiple potential Fuc-GM1 biomarkers present in various biological matrices has not been reported to date. METHODS Individual Fuc-GM1 analogs in a commercially obtained standard mixture were characterized using HPLC/UV/MS and high-resolution mass spectrometry (HRMS). Proprietary antibodies, mAb1 and mAb2, were used to selectively capture and pre-concentrate the soluble and drug-bound forms of Fuc-GM1 molecules present in human serum and whole blood, eliminating the background matrix components. Immunocapture extraction (ICE) followed by HPLC/MS/MS was used to quantify specific Fuc-GM1 analogs in biological matrices. RESULTS The concentration of individual Fuc-GM1 analogs in the standard mixture was estimated to be 7-34%, using HPLC/UV/MS. Using the standard mixture spiked into the biological matrices (100 μL), the lower limit of quantification (LLOQ) of each analog was 0.2-0.4 ng/mL with a dynamic range of up to 200 ng/mL. The applicability of the ICE-HPLC/MS/MS method was demonstrated by detecting endogenous Fuc-GM1 analogs present in rat blood and in several lung cancer cell lines. CONCLUSIONS This highly specific and sensitive HPLC/MS/MS method for quantifying individual potential Fuc-GM1 biomarkers in serum and whole blood can play a critical role in patient stratification strategies and during drug treatment. This method can be employed for monitoring both free (soluble) form and antibody drug-bound Fuc-GM1.
Collapse
Affiliation(s)
- Asoka Ranasinghe
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, 08543, USA
| | - John Mehl
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, 08543, USA
| | - Celia D'Arienzo
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, 08543, USA
| | - Fizal Nabbie
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, 08543, USA
| | - Christopher Chiu
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, 08543, USA
| | | | | | - Jason Hogan
- Bristol-Myers Squibb Company, Redwood City, CA, 94063, USA
| | - Paul Ponath
- Bristol-Myers Squibb Company, Redwood City, CA, 94063, USA
| | - Timothy Olah
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, 08543, USA
| |
Collapse
|
88
|
Grassi S, Chiricozzi E, Mauri L, Sonnino S, Prinetti A. Sphingolipids and neuronal degeneration in lysosomal storage disorders. J Neurochem 2018; 148:600-611. [PMID: 29959861 DOI: 10.1111/jnc.14540] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/27/2022]
Abstract
Ceramide, sphingomyelin, and glycosphingolipids (both neutral and acidic) are characterized by the presence in the lipid moiety of an aliphatic base known as sphingosine. Altogether, they are called sphingolipids and are particularly abundant in neuronal plasma membranes, where, via interactions with the other membrane lipids and membrane proteins, they play a specific role in modulating the cell signaling processes. The metabolic pathways determining the plasma membrane sphingolipid composition are thus the key point for functional changes of the cell properties. Unnatural changes of the neuronal properties are observed in sphingolipidoses, lysosomal storage diseases occurring when a lysosomal sphingolipid hydrolase is not working, leading to the accumulation of the substrate and to its distribution to all the cell membranes interacting with lysosomes. Moreover, secondary accumulation of sphingolipids is a common trait of other lysosomal storage diseases. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
89
|
Ponath P, Menezes D, Pan C, Chen B, Oyasu M, Strachan D, LeBlanc H, Sun H, Wang XT, Rangan VS, Deshpande S, Cristea S, Park KS, Sage J, Cardarelli PM. A Novel, Fully Human Anti-fucosyl-GM1 Antibody Demonstrates Potent In Vitro and In Vivo Antitumor Activity in Preclinical Models of Small Cell Lung Cancer. Clin Cancer Res 2018; 24:5178-5189. [PMID: 30021910 DOI: 10.1158/1078-0432.ccr-18-0018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/15/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
Purpose: The ganglioside fucosyl-GM1 (FucGM1) is a tumor-associated antigen expressed in a large percentage of human small cell lung cancer (SCLC) tumors, but absent in most normal adult tissues, making it a promising target in immuno-oncology. This study was undertaken to evaluate the preclinical efficacy of BMS-986012, a novel, nonfucosylated, fully human IgG1 antibody that binds specifically to FucGM1.Experimental Design: The antitumor activity of BMS-986012 was evaluated in in vitro assays using SCLC cells and in mouse xenograft and syngeneic tumor models, with and without chemotherapeutic agents and checkpoint inhibitors.Results: BMS-986012 showed a high binding affinity for FcγRIIIa (CD16), which resulted in enhanced antibody-dependent cellular cytotoxicity (ADCC) against FucGM1-expressing tumor cell lines. BMS-986012-mediated tumor cell killing was also observed in complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP) assays. In several mouse SCLC models, BMS-986012 demonstrated efficacy and was well tolerated. In the DMS79 xenograft model, tumor regression was achieved with BMS-986012 doses of 0.3 mg/kg and greater; antitumor activity was enhanced when BMS-986012 was combined with standard-of-care cisplatin or etoposide. In a syngeneic model, tumors derived from a genetically engineered model of SCLC were treated with BMS-986012 or anti-FucGM1 with a mouse IgG2a Fc and their responses evaluated; when BMS-986012 was combined with anti-PD-1 or anti-CD137 antibody, therapeutic responses significantly improved.Conclusions: Single-agent BMS-986012 demonstrated robust antitumor activity, with the addition of chemotherapeutic or immunomodulatory agents further inhibiting SCLC growth in the same models. These preclinical data supported evaluation of BMS-986012 in a phase I clinical trial of patients with relapsed, refractory SCLC. Clin Cancer Res; 24(20); 5178-89. ©2018 AACR.
Collapse
Affiliation(s)
- Paul Ponath
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | - Daniel Menezes
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | - Chin Pan
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | - Bing Chen
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | - Miho Oyasu
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | - Debbie Strachan
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | - Heidi LeBlanc
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | | | | | - Vangipuram S Rangan
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | - Shrikant Deshpande
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California
| | - Sandra Cristea
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California
| | - Kwon-Sik Park
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California
| | - Pina M Cardarelli
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California.
| |
Collapse
|
90
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
91
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
92
|
Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu RX, Siuda I, Melo MN, Moussatova A, DeGagné LJ, Sejdiu BI, Singh G, Wassenaar TA, Delgado Magnero K, Marrink SJ, Tieleman DP. Lipid-Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS CENTRAL SCIENCE 2018; 4:709-717. [PMID: 29974066 PMCID: PMC6028153 DOI: 10.1021/acscentsci.8b00143] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 05/08/2023]
Abstract
Cell membranes contain hundreds of different proteins and lipids in an asymmetric arrangement. Our current understanding of the detailed organization of cell membranes remains rather elusive, because of the challenge to study fluctuating nanoscale assemblies of lipids and proteins with the required spatiotemporal resolution. Here, we use molecular dynamics simulations to characterize the lipid environment of 10 different membrane proteins. To provide a realistic lipid environment, the proteins are embedded in a model plasma membrane, where more than 60 lipid species are represented, asymmetrically distributed between the leaflets. The simulations detail how each protein modulates its local lipid environment in a unique way, through enrichment or depletion of specific lipid components, resulting in thickness and curvature gradients. Our results provide a molecular glimpse of the complexity of lipid-protein interactions, with potentially far-reaching implications for our understanding of the overall organization of real cell membranes.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Eduardo Mendez-Villuendas
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Helgi I. Ingólfsson
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ruo-Xu Gu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Iwona Siuda
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Manuel N. Melo
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anastassiia Moussatova
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Lucien J. DeGagné
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Gurpreet Singh
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tsjerk A. Wassenaar
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Karelia Delgado Magnero
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- E-mail:
| |
Collapse
|
93
|
Kakimoto Y, Tachihara Y, Okamoto Y, Miyazawa K, Fukuma T, Tero R. Morphology and Physical Properties of Hydrophilic-Polymer-Modified Lipids in Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7201-7209. [PMID: 29788718 DOI: 10.1021/acs.langmuir.8b00870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lipid molecules such as glycolipids that are modified with hydrophilic biopolymers participate in the biochemical reactions occurring on cell membranes. Their functions and efficiency are determined by the formation of microdomains and their physical properties. We investigated the morphology and properties of domains induced by the hydrophilic-polymer-modified lipid applying a polyethylene glycol (PEG)-modified lipid as a model modified lipid. We formed supported lipid bilayers (SLBs) using a 0-10 mol % range of PEG-modified lipid concentration ( CPEG). We studied their morphology and fluidity by fluorescence microscopy, the fluorescence recovery after photobleaching method, and atomic force microscopy (AFM). Fluorescence images showed that domains rich in the PEG-modified lipid appeared and SLB fluidity decreased when CPEG ≥ 5%. AFM topographies showed that clusters of the PEG-modified lipid appeared prior to domain formation and the PEG-lipid-rich domains were observed as depressions. Frequency-modulation AFM revealed a force-dependent appearance of the PEG-lipid-rich domain.
Collapse
Affiliation(s)
- Yasuhiro Kakimoto
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | - Yoshihiro Tachihara
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | - Yoshiaki Okamoto
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | - Keisuke Miyazawa
- Division of Electrical Engineering and Computer Science , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
- Nano Life Science Institute (WPI-NanoLSI) , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Ryugo Tero
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| |
Collapse
|
94
|
Alpaugh M, Galleguillos D, Forero J, Morales LC, Lackey SW, Kar P, Di Pardo A, Holt A, Kerr BJ, Todd KG, Baker GB, Fouad K, Sipione S. Disease-modifying effects of ganglioside GM1 in Huntington's disease models. EMBO Mol Med 2018; 9:1537-1557. [PMID: 28993428 PMCID: PMC5666311 DOI: 10.15252/emmm.201707763] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and psychiatric problems. Previous studies indicated that levels of brain gangliosides are lower than normal in HD models and that administration of exogenous ganglioside GM1 corrects motor dysfunction in the YAC128 mouse model of HD In this study, we provide evidence that intraventricular administration of GM1 has profound disease-modifying effects across HD mouse models with different genetic background. GM1 administration results in decreased levels of mutant huntingtin, the protein that causes HD, and in a wide array of beneficial effects that include changes in levels of DARPP32, ferritin, Iba1 and GFAP, modulation of dopamine and serotonin metabolism, and restoration of normal levels of glutamate, GABA, L-Ser and D-Ser. Treatment with GM1 slows down neurodegeneration, white matter atrophy and body weight loss in R6/2 mice. Motor functions are significantly improved in R6/2 mice and restored to normal in Q140 mice, including gait abnormalities that are often resistant to treatments. Psychiatric-like and cognitive dysfunctions are also ameliorated by GM1 administration in Q140 and YAC128 mice. The widespread benefits of GM1 administration, at molecular, cellular and behavioural levels, indicate that this ganglioside has strong therapeutic and disease-modifying potential in HD.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Danny Galleguillos
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Juan Forero
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | - Preeti Kar
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Alba Di Pardo
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Andrew Holt
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kathryn G Todd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Simonetta Sipione
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
95
|
Dasgupta R, Miettinen MS, Fricke N, Lipowsky R, Dimova R. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proc Natl Acad Sci U S A 2018; 115:5756-5761. [PMID: 29760097 PMCID: PMC5984512 DOI: 10.1073/pnas.1722320115] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ganglioside GM1 is present in neuronal membranes at elevated concentrations with an asymmetric spatial distribution. It is known to generate curvature and can be expected to strongly influence the neuron morphology. To elucidate these effects, we prepared giant vesicles with GM1 predominantly present in one leaflet of the membrane, mimicking the asymmetric GM1 distribution in neuronal membranes. Based on pulling inward and outward tubes, we developed a technique that allowed the direct measurement of the membrane spontaneous curvature. Using vesicle electroporation and fluorescence intensity analysis, we were able to quantify the GM1 asymmetry across the membrane and to subsequently estimate the local curvature generated by the molecule in the bilayer. Molecular-dynamics simulations confirm the experimentally determined dependence of the membrane spontaneous curvature as a function of GM1 asymmetry. GM1 plays a crucial role in connection with receptor proteins. Our results on curvature generation of GM1 point to an additional important role of this ganglioside, namely in shaping neuronal membranes.
Collapse
Affiliation(s)
- Raktim Dasgupta
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nico Fricke
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
96
|
Le Bon AM, Deprêtre N, Sibille E, Cabaret S, Grégoire S, Soubeyre V, Masson E, Acar N, Bretillon L, Grosmaitre X, Berdeaux O. Comprehensive study of rodent olfactory tissue lipid composition. Prostaglandins Leukot Essent Fatty Acids 2018; 131:32-43. [PMID: 29628048 DOI: 10.1016/j.plefa.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The peripheral olfactory tissue (OT) plays a primordial role in the detection and transduction of olfactory information. Recent proteomic and transcriptomic studies have provided valuable insight into proteins and RNAs expressed in this tissue. Paradoxically, there is little information regarding the lipid composition of mammalian OT. To delve further into this issue, using a set of complementary state-of-the-art techniques, we carried out a comprehensive analysis of OT lipid composition in rats and mice fed with standard diets. The results showed that phospholipids are largely predominant, the major classes being phosphatidylcholine and phosphatidylethanolamine. Two types of plasmalogens, plasmenyl-choline and plasmenyl-ethanolamine, as well as gangliosides were also detected. With the exception of sphingomyelin, substantial levels of n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (22:6n-3; DHA), were found in the different phospholipid classes. These findings demonstrate that the rodent OT shares several features in common with other neural tissues, such as the brain and retina.
Collapse
Affiliation(s)
- Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
| | - Nicolas Deprêtre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|
97
|
Ledeen RW, Kopitz J, Abad-Rodríguez J, Gabius HJ. Glycan Chains of Gangliosides: Functional Ligands for Tissue Lectins (Siglecs/Galectins). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:289-324. [PMID: 29747818 DOI: 10.1016/bs.pmbts.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular signals on the cell surface are responsible for adhesion and communication. Of relevance in this respect, their chemical properties endow carbohydrates with the capacity to store a maximum of information in a minimum of space. One way to present glycans on the cell surface is their covalent conjugation to a ceramide anchor. Among the resulting glycosphingolipids, gangliosides are special due to the presence of at least one sialic acid in the glycan chains. Their spatial accessibility and the dynamic regulation of their profile are factors that argue in favor of a role of glycans of gangliosides as ligands (counterreceptors) for carbohydrate-binding proteins (lectins). Indeed, as discovered first for a bacterial toxin, tissue lectins bind gangliosides and mediate contact formation (trans) and signaling (cis). While siglecs have a preference for higher sialylated glycans, certain galectins also target the monosialylated pentasaccharide of ganglioside GM1. Enzymatic interconversion of ganglioside glycans by sialidase action, relevant for neuroblastoma cell differentiation and growth control in vitro, for axonogenesis and axon regeneration, as well as for proper communication between effector and regulatory T cells, changes lectin-binding affinity profoundly. The GD1a-to-GM1 "editing" is recognized by such lectins, for example, myelin-associated glycoprotein (siglec-4) losing affinity and galectin-1 gaining reactivity, and then translated into postbinding signaling. Orchestrations of loss/gain of affinity, of ganglioside/lectin expression, and of lectin presence in a network offer ample opportunities for fine-tuning. Thus glycans of gangliosides such as GD1a and GM1 are functional counterreceptors by a pairing with tissue lectins, an emerging aspect of ganglioside and lectin functionality.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Jürgen Kopitz
- Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
98
|
Zuverink M, Barbieri JT. Protein Toxins That Utilize Gangliosides as Host Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:325-354. [PMID: 29747819 DOI: 10.1016/bs.pmbts.2017.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subsets of protein toxins utilize gangliosides as host receptors. Gangliosides are preferred receptors due to their extracellular localization on the eukaryotic cell and due to their essential nature in host physiology. Glycosphingolipids, including gangliosides, are mediators of signal transduction within and between eukaryotic cells. Protein toxins possess AB structure-function organization, where the A domain encodes a catalytic function for the posttranslational modification of a host macromolecule, including proteins and nucleic acids, and a B domain, which encodes host receptor recognition, including proteins and glycosphingolipids, alone or in combination. Protein toxins use similar strategies to bind glycans by pockets and loops, generally employing hydrogen bonding and aromatic stacking to stabilize interactions with sugars. In some cases, glycan binding facilitates uptake, while in other cases, cross-linking or a second receptor is necessary to stimulate entry. The affinity that protein toxins have for host glycans is necessary for tissue targeting, but not always sufficient to cause disease. In addition to affinity for binding the glycan, the lipid moiety also plays an important role in productive uptake and tissue tropism. Upon endocytosis, the protein toxin must escape to another intracellular compartment or into cytosol to modify a host substrate, modulating host signaling, often resulting in cytotoxic or apoptotic events in the cell, and a unique morbidity for the organism. The study of protein toxins that utilize gangliosides as host receptors has illuminated numerous eukaryotic cellular processes, identified the basis for developing interventions to prevent disease through vaccines and control bacterial diseases through therapies. In addition, subsets of these protein toxins have been utilized as therapeutic agents to treat numerous human inflictions.
Collapse
|
99
|
Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, Chen Y, Huang K. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: Mechanisms, contributors, and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1876-1888. [PMID: 29466701 DOI: 10.1016/j.bbamem.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The toxic deposition of misfolded amyloidogenic proteins is associated with more than fifty protein misfolding diseases (PMDs), including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. Protein deposition is a multi-step process modulated by a variety of factors, in particular by membrane-protein interaction. The interaction results in permeabilization of biomembranes contributing to the cytotoxicity that leads to PMDs. Different biological and physiochemical factors, such as protein sequence, lipid composition, and chaperones, are known to affect the membrane-protein interaction. Here, we provide a comprehensive review of the mechanisms and contributing factors of the interaction between biomembranes and amyloidogenic proteins, and a summary of the therapeutic approaches to PMDs that target this interaction. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yang Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan 430072, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
100
|
Adar T, Ilan Y, Elstein D, Zimran A. Liver involvement in Gaucher disease – Review and clinical approach. Blood Cells Mol Dis 2018; 68:66-73. [DOI: 10.1016/j.bcmd.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
|