51
|
Silva-dos-Santos D, Barreto-de-Albuquerque J, Guerra B, Moreira OC, Berbert LR, Ramos MT, Mascarenhas BAS, Britto C, Morrot A, Serra Villa-Verde DM, Garzoni LR, Savino W, Cotta-de-Almeida V, de Meis J. Unraveling Chagas disease transmission through the oral route: Gateways to Trypanosoma cruzi infection and target tissues. PLoS Negl Trop Dis 2017; 11:e0005507. [PMID: 28379959 PMCID: PMC5397068 DOI: 10.1371/journal.pntd.0005507] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 04/19/2017] [Accepted: 03/20/2017] [Indexed: 02/02/2023] Open
Abstract
Oral transmission of Trypanosoma cruzi, the causative agent of Chagas disease, is the most important route of infection in Brazilian Amazon and Venezuela. Other South American countries have also reported outbreaks associated with food consumption. A recent study showed the importance of parasite contact with oral cavity to induce a highly severe acute disease in mice. However, it remains uncertain the primary site of parasite entry and multiplication due to an oral infection. Here, we evaluated the presence of T. cruzi Dm28c luciferase (Dm28c-luc) parasites in orally infected mice, by bioluminescence and quantitative real-time PCR. In vivo bioluminescent images indicated the nasomaxillary region as the site of parasite invasion in the host, becoming consistently infected throughout the acute phase. At later moments, 7 and 21 days post-infection (dpi), luminescent signal is denser in the thorax, abdomen and genital region, because of parasite dissemination in different tissues. Ex vivo analysis demonstrated that the nasomaxillary region, heart, mandibular lymph nodes, liver, spleen, brain, epididymal fat associated to male sex organs, salivary glands, cheek muscle, mesenteric fat and lymph nodes, stomach, esophagus, small and large intestine are target tissues at latter moments of infection. In the same line, amastigote nests of Dm28c GFP T. cruzi were detected in the nasal cavity of 6 dpi mice. Parasite quantification by real-time qPCR at 7 and 21 dpi showed predominant T. cruzi detection and expansion in mouse nasal cavity. Moreover, T. cruzi DNA was also observed in the mandibular lymph nodes, pituitary gland, heart, liver, small intestine and spleen at 7 dpi, and further, disseminated to other tissues, such as the brain, stomach, esophagus and large intestine at 21 dpi. Our results clearly demonstrated that oral cavity and adjacent compartments is the main target region in oral T. cruzi infection leading to parasite multiplication at the nasal cavity. Oral transmission of Trypanosoma cruzi associated with food/beverage consumption is presently an important route of infection in Brazil and Venezuela. Colombia, Bolivia, Argentina and Ecuador have also reported to have acute cases of Chagas disease transmission through the oral route. Significant studies about this form of T. cruzi infection are largely lacking. In addition to the classic cardiac involvement, orally-infected patient progress to a highly symptomatic disease and increased mortality rate (8–35%), surpassing the calculated mortality produced by the disease resulting from the biting of infected insect vectors (5–10%). Here, we explored by in vivo bioluminescent images, qPCR and fluorescence microscopy the primary site of parasite entry and multiplication in oral infection (OI). Our results clearly demonstrated that the oral cavity is the main T. cruzi target region in OI, leading to parasite multiplication at the nasal cavity and parasite dissemination to the brain and peripheral tissues. Interestingly, facial edema, paraesthesia of the tongue, gingivitis and dry cough were already described in affected patients. These findings might be associated to our present data, which describe for the first time the nasomaxillary region as the main target tissue following oral T. cruzi infection.
Collapse
Affiliation(s)
- Danielle Silva-dos-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Bárbara Guerra
- National Center of Structural Biology and Bio-imaging—CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacilio C. Moreira
- Laboratory on Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz Ricardo Berbert
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Tavares Ramos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Constança Britto
- Laboratory on Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Department of Immunology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Déa M. Serra Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luciana Ribeiro Garzoni
- Laboratory for Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
52
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
53
|
Trypanosoma cruzi contains two galactokinases; molecular and biochemical characterization. Parasitol Int 2016; 65:472-82. [DOI: 10.1016/j.parint.2016.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/20/2016] [Accepted: 06/12/2016] [Indexed: 11/20/2022]
|
54
|
Freire-de-Lima L, da Fonseca LM, da Silva VA, da Costa KM, Morrot A, Freire-de-Lima CG, Previato JO, Mendonça-Previato L. Modulation of Cell Sialoglycophenotype: A Stylish Mechanism Adopted by Trypanosoma cruzi to Ensure Its Persistence in the Infected Host. Front Microbiol 2016; 7:698. [PMID: 27242722 PMCID: PMC4862976 DOI: 10.3389/fmicb.2016.00698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/26/2016] [Indexed: 01/04/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease exhibits multiple mechanisms to guarantee its establishment and persistence in the infected host. It has been well demonstrated that T. cruzi is not able to synthesize sialic acids (Sia). To acquire the monosaccharide, the parasite makes use of a multifunctional enzyme called trans-sialidase (Tc-TS). Since this enzyme has no analogous in the vertebrate host, it has been used as a target in drug therapy development. Tc-TS preferentially catalyzes the transfer of Sia from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules present on the parasite's cell surface. Alternatively, the enzyme can sialylate/re-sialylate glycoconjugates expressed on the surface of host cells. Since its discovery, several studies have shown that T. cruzi employs the Tc-TS activity to modulate the host cell sialoglycophenotype, thus favoring its perpetuation in the infected vertebrate. In this review, we summarize the dynamic of host/parasite sialoglycophenotype modulation, highlighting its role in the subversion of host immune response in order to promote the establishment of persistent chronic infection.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Leonardo M da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Vanessa A da Silva
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Kelli M da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Célio G Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Jose O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
55
|
Nardy AFFR, Freire-de-Lima CG, Pérez AR, Morrot A. Role of Trypanosoma cruzi Trans-sialidase on the Escape from Host Immune Surveillance. Front Microbiol 2016; 7:348. [PMID: 27047464 PMCID: PMC4804232 DOI: 10.3389/fmicb.2016.00348] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi, affecting millions of people throughout Latin America. The parasite dampens host immune response causing modifications in diverse lymphoid compartments, including the thymus. T. cruzi trans-sialidase (TS) seems to play a fundamental role in such immunopathological events. This unusual enzyme catalyses the transference of sialic acid molecules from host glycoconjugates to acceptor molecules placed on the parasite surface. TS activity mediates several biological effects leading to the subversion of host immune system, hence favoring both parasite survival and the establishment of chronic infection. This review summarizes current findings on the roles of TS in the immune response during T. cruzi infection.
Collapse
Affiliation(s)
- Ana F F R Nardy
- Institute of Microbiology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Celio G Freire-de-Lima
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Ana R Pérez
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of Rosario Rosario, Argentina
| | - Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
56
|
Vieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors 2016; 9:119. [PMID: 26931761 PMCID: PMC4774030 DOI: 10.1186/s13071-016-1398-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/20/2016] [Indexed: 11/16/2022] Open
Abstract
Background Rhodnius prolixus is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In natural habitats, these insects are in contact with a variety of bacteria, fungi, virus and parasites that they acquire from both their environments and the blood of their hosts. Microorganism ingestion may trigger the synthesis of humoral immune factors, including antimicrobial peptides (AMPs). The objective of this study was to compare the expression levels of AMPs (defensins and prolixicin) in the different midgut compartments and the fat body of R. prolixus infected with different T. cruzi strains. The T. cruzi Dm 28c clone (TcI) successfully develops whereas Y strain (TcII) does not complete its life- cycle in R. prolixus. The relative AMP gene expressions were evaluated in the insect midgut and fat body infected on different days with the T. cruzi Dm 28c clone and the Y strain. The influence of the antibacterial activity on the intestinal microbiota was taken into account. Methods The presence of T. cruzi in the midgut of R. prolixus was analysed by optical microscope. The relative expression of the antimicrobial peptides encoding genes defensin (defA, defB, defC) and prolixicin (prol) was quantified by RT-qPCR. The antimicrobial activity of the AMPs against Staphylococcus aureus, Escherichia coli and Serratia marcescens were evaluated in vitro using turbidimetric tests with haemolymph, anterior and posterior midgut samples. Midgut bacteria were quantified using colony forming unit (CFU) assays and real time quantitative polymerase chain reaction (RT-qPCR). Results Our results showed that the infection of R. prolixus by the two different T. cruzi strains exhibited different temporal AMP induction profiles in the anterior and posterior midgut. Insects infected with T. cruzi Dm 28c exhibited an increase in defC and prol transcripts and a simultaneous reduction in the midgut cultivable bacteria population, Serratia marcescens and Rhodococcus rhodnii. In contrast, the T. cruzi Y strain neither induced AMP gene expression in the gut nor reduced the number of colony formation units in the anterior midgut. Beside the induction of a local immune response in the midgut after feeding R. prolixus with T. cruzi, a simultaneous systemic response was also detected in the fat body. Conclusions R. prolixus AMP gene expressions and the cultivable midgut bacterial microbiota were modulated in distinct patterns, which depend on the T. cruzi genotype used for infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1398-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - D P Mattos
- Laboratório deBiologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - O C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil. .,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
57
|
Sosa-Hernández E, Ballesteros-Rodea G, Arias-del-Angel JA, Dévora-Canales D, Manning-Cela RG, Santana-Solano J, Santillán M. Experimental and Mathematical-Modeling Characterization of Trypanosoma cruzi Epimastigote Motility. PLoS One 2015; 10:e0142478. [PMID: 26544863 PMCID: PMC4636178 DOI: 10.1371/journal.pone.0142478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 10/22/2015] [Indexed: 12/28/2022] Open
Abstract
The present work is aimed at characterizing the motility of parasite T. cruzi in its epimastigote form. To that end, we recorded the trajectories of two strains of this parasite (a wild-type strain and a stable transfected strain, which contains an ectopic copy of LYT1 gene and whose motility is known to be affected). We further extracted parasite trajectories from the recorded videos, and statistically analysed the following trajectory-step features: step length, angular change of direction, longitudinal and transverse displacements with respect to the previous step, and mean square displacement. Based on the resulting observations, we developed a mathematical model to simulate parasite trajectories. The fact that the model predictions closely match most of the experimentally observed parasite-trajectory characteristics, allows us to conclude that the model is an accurate description of T. cruzi motility.
Collapse
Affiliation(s)
- Eduardo Sosa-Hernández
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca NL, México
| | | | | | - Diego Dévora-Canales
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca NL, México
| | - Rebeca G. Manning-Cela
- Depto. de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Jesús Santana-Solano
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca NL, México
| | - Moisés Santillán
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca NL, México
- * E-mail:
| |
Collapse
|