51
|
Sun C, Yang C, Xue R, Li S, Zhang T, Pan L, Ma X, Wang L, Li D. Sulforaphane alleviates muscular dystrophy in mdx mice by activation of Nrf2. J Appl Physiol (1985) 2014; 118:224-37. [PMID: 25593219 DOI: 10.1152/japplphysiol.00744.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sulforaphane (SFN), one of the most important isothiocyanates in the human diet, is known to have chemo-preventive and antioxidant activities in different tissues via activation of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated induction of antioxidant/phase II enzymes, such as heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1. However, its effects on muscular dystrophy remain unknown. This work was undertaken to evaluate the effects of SFN on Duchenne muscular dystrophy. Four-week-old mdx mice were treated with SFN by gavage (2 mg·kg body wt(-1)·day(-1) for 8 wk), and our results demonstrated that SFN treatment increased the expression and activity of muscle phase II enzymes NAD(P)H quinone oxidoreductase 1 and heme oxygenase-1 with a Nrf2-dependent manner. SFN significantly increased skeletal muscle mass, muscle force (∼30%), running distance (∼20%), and GSH-to-GSSG ratio (∼3.2-fold) of mdx mice and decreased the activities of plasma creatine phosphokinase (∼45%) and lactate dehydrogenase (∼40%), gastrocnemius hypertrophy (∼25%), myocardial hypertrophy (∼20%), and malondialdehyde levels (∼60%). Furthermore, SFN treatment also reduced the central nucleation (∼40%), fiber size variability, and inflammation and improved the sarcolemmal integrity of mdx mice. Collectively, these results show that SFN can improve muscle function and pathology and protect dystrophic muscle from oxidative damage in mdx mice associated with Nrf2 signaling pathway, which indicate Nrf2 may have clinical implications for the treatment of patients with muscular dystrophy.
Collapse
Affiliation(s)
- Chengcao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| | - Cuili Yang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| | - Ruilin Xue
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| | - Shujun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| | - Ting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| | - Lei Pan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| | - Xuejiao Ma
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| | - Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hube, China
| |
Collapse
|
52
|
Al-Rewashdy H, Ljubicic V, Lin W, Renaud JM, Jasmin BJ. Utrophin A is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation. Hum Mol Genet 2014; 24:1243-55. [PMID: 25324540 DOI: 10.1093/hmg/ddu535] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin along muscle fibers. An attractive therapeutic avenue for DMD consists in the upregulation of utrophin A, a protein with high sequence identity and functional redundancy with dystrophin. Recent work has shown that pharmacological interventions that induce a muscle fiber shift toward a slower, more oxidative phenotype with increased expression of utrophin A confer morphological and functional improvements in mdx mice. Whether such improvements result from the increased expression of utrophin A per se or are linked to other beneficial adaptations associated with the slow, oxidative phenotype remain to be established. To address this central issue, we capitalized on the use of double knockout (dKO) mice, which are mdx mice also deficient in utrophin. We first compared expression of signaling molecules and markers of the slow, oxidative phenotype in muscles of mdx versus dKO mice and found that both strains exhibit similar phenotypes. Chronic activation of 5' adenosine monophosphate-activated protein kinase with 5-amino-4-imidazolecarboxamide riboside (AICAR) resulted in expression of a slower, more oxidative phenotype in both mdx and dKO mice. In mdx mice, this fiber type shift was accompanied by clear functional improvements that included reductions in central nucleation, IgM sarcoplasmic penetration and sarcolemmal damage resulting from eccentric contractions, as well as in increased grip strength. These important morphological and functional adaptations were not seen in AICAR-treated dKO mice. Our findings show the central role of utrophin A in mediating the functional benefits associated with expression of a slower, more oxidative phenotype in dystrophic animals.
Collapse
Affiliation(s)
- Hasanen Al-Rewashdy
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Wei Lin
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
53
|
Altamirano F, Perez CF, Liu M, Widrick J, Barton ER, Allen PD, Adams JA, Lopez JR. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice. PLoS One 2014; 9:e106590. [PMID: 25181488 PMCID: PMC4152333 DOI: 10.1371/journal.pone.0106590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/30/2014] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.
Collapse
Affiliation(s)
- Francisco Altamirano
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Claudio F. Perez
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Liu
- Department of Physiology, Perleman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey Widrick
- Division of Genetics and Program in Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elisabeth R. Barton
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul D. Allen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, Florida, United States of America
| | - Jose R. Lopez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
54
|
Gordon BS, Lowe DA, Kostek MC. Exercise increases utrophin protein expression in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 2014; 49:915-8. [PMID: 24375286 DOI: 10.1002/mus.24151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a lethal genetic disease caused by mutations in the dystrophin gene resulting in chronic muscle damage, muscle wasting, and premature death. Utrophin is a dystrophin protein homologue that increases dystrophic muscle function and reduces pathology. Currently, no treatments that increase utrophin protein expression exist. However, exercise increases utrophin mRNA expression in healthy humans. Therefore, the purpose was to determine whether exercise increases utrophin protein expression in dystrophic muscle. METHODS Utrophin protein was measured in the quadriceps and soleus muscles of mdx mice after 12 weeks of voluntary wheel running exercise or sedentary controls. Muscle pathology was measured in the quadriceps. RESULTS Exercise increased utrophin protein expression 334 ± 63% in the quadriceps relative to sedentary controls. Exercise increased central nuclei 4 ± 1% but not other measures of pathology. CONCLUSIONS Exercise may be an intervention that increases utrophin expression in patients with DMD.
Collapse
Affiliation(s)
- Bradley S Gordon
- University of South Carolina, Department of Exercise Science, Columbia, South Carolina, USA
| | | | | |
Collapse
|
55
|
Tan N, Lansman JB. Utrophin regulates modal gating of mechanosensitive ion channels in dystrophic skeletal muscle. J Physiol 2014; 592:3303-23. [PMID: 24879867 DOI: 10.1113/jphysiol.2014.274332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dystrophin is a large, submembrane cytoskeletal protein, absence of which causes Duchenne muscular dystrophy. Utrophin is a dystrophin homologue found in both muscle and brain whose physiological function is unknown. Recordings of single-channel activity were made from membrane patches on skeletal muscle from mdx, mdx/utrn(+/-) heterozygotes and mdx/utrn(-/-) double knockout mice to investigate the role of these cytoskeletal proteins in mechanosensitive (MS) channel gating. We find complex, gene dose-dependent effects of utrophin depletion in dystrophin-deficient mdx muscle: (1) increased MS channel open probability, (2) a shift of MS channel gating to larger pressures, (3) appearance of modal gating of MS channels and small conductance channels and (4) expression of large conductance MS channels. We suggest a physical model in which utrophin acts as a scaffolding protein that stabilizes lipid microdomains and clusters MS channel subunits. Depletion of utrophin disrupts domain composition in a manner that favours open channel area expansion, as well as allowing diffusion and aggregation of additional MS channel subunits.
Collapse
Affiliation(s)
- Nhi Tan
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143-0450, USA
| | - Jeffry B Lansman
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143-0450, USA
| |
Collapse
|
56
|
Puttini S, van Zwieten RW, Saugy D, Lekka M, Hogger F, Ley D, Kulik AJ, Mermod N. MAR-mediated integration of plasmid vectors for in vivo gene transfer and regulation. BMC Mol Biol 2013; 14:26. [PMID: 24295286 PMCID: PMC4219123 DOI: 10.1186/1471-2199-14-26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. RESULTS In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. CONCLUSIONS This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.
Collapse
Affiliation(s)
- Stefania Puttini
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Moorwood C, Khurana TS. Duchenne muscular dystrophy drug discovery - the application of utrophin promoter activation screening. Expert Opin Drug Discov 2013; 8:569-81. [PMID: 23473647 DOI: 10.1517/17460441.2013.777040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastating genetic muscle wasting disease caused by mutations in the DMD gene that in turn lead to an absence of dystrophin. Currently, there is no definitive therapy for DMD. Gene- and cell-based therapies designed to replace dystrophin have met some degree of success, as have strategies that seek to improve the dystrophic pathology independent of dystrophin. AREAS COVERED In this review the authors focus on utrophin promoter activation-based strategies and their implications on potential therapeutics for DMD. These strategies in common are designed to identify drugs/small molecules that can activate the utrophin promoter and would allow the functional substitution of dystrophin by upregulating utrophin expression in dystrophic muscle. The authors provide an overview of utrophin biology with a focus on regulation of the utrophin promoter and discuss current attempts in identifying utrophin promoter-activating molecules using high-throughput screening (HTS). EXPERT OPINION The characterisation of utrophin promoter regulatory mechanisms coupled with advances in HTS have allowed researchers to undertake screens and identify a number of promising lead compounds that may prove useful for DMD. In principle, these pharmacological compounds offer significant advantages from a translational viewpoint for developing DMD therapeutics.
Collapse
Affiliation(s)
- Catherine Moorwood
- University of Pennsylvania School of Dental Medicine, Department of Anatomy & Cell Biology, 438 Levy Research Building, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
58
|
Hourdé C, Joanne P, Medja F, Mougenot N, Jacquet A, Mouisel E, Pannerec A, Hatem S, Butler-Browne G, Agbulut O, Ferry A. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1509-18. [PMID: 23465861 DOI: 10.1016/j.ajpath.2013.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 12/19/2012] [Accepted: 01/14/2013] [Indexed: 12/25/2022]
Abstract
It is well known that inactivity/activity influences skeletal muscle physiological characteristics. However, the effects of inactivity/activity on muscle weakness and increased susceptibility to muscle contraction-induced injury have not been extensively studied in mdx mice, a murine model of Duchenne muscular dystrophy with dystrophin deficiency. In the present study, we demonstrate that inactivity (ie, leg immobilization) worsened the muscle weakness and the susceptibility to contraction-induced injury in mdx mice. Inactivity also mimicked these two dystrophic features in wild-type mice. In contrast, we demonstrate that these parameters can be improved by activity (ie, voluntary wheel running) in mdx mice. Biochemical analyses indicate that the changes induced by inactivity/activity were not related to fiber-type transition but were associated with altered expression of different genes involved in fiber growth (GDF8), structure (Actg1), and calcium homeostasis (Stim1 and Jph1). However, activity reduced left ventricular function (ie, ejection and shortening fractions) in mdx, but not C57, mice. Altogether, our study suggests that muscle weakness and susceptibility to contraction-induced injury in dystrophic muscle could be attributable, at least in part, to inactivity. It also suggests that activity exerts a beneficial effect on dystrophic skeletal muscle but not on the heart.
Collapse
Affiliation(s)
- Christophe Hourdé
- Institute of Myology, INSERM U974, CNRS UMR7215, UPMC UM76, Université Pierre et Marie Curie-Paris 6, Sorbonne Universities, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:1. [PMID: 23282144 PMCID: PMC3599653 DOI: 10.1186/2044-5040-3-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E, Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
60
|
Seto JT, Ramos JN, Muir L, Chamberlain JS, Odom GL. Gene replacement therapies for duchenne muscular dystrophy using adeno-associated viral vectors. Curr Gene Ther 2012; 12:139-51. [PMID: 22533379 DOI: 10.2174/156652312800840603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies collectively represent a major health challenge, as few significant treatment options currently exist for any of these disorders. Recent years have witnessed a proliferation of novel approaches to therapy, spanning increased testing of existing and new pharmaceuticals, DNA delivery (both anti-sense oligonucleotides and plasmid DNA), gene therapies and stem cell technologies. While none of these has reached the point of being used in clinical practice, all show promise for being able to impact different types of muscular dystrophies. Our group has focused on developing direct gene replacement strategies to treat recessively inherited forms of muscular dystrophy, particularly Duchenne and Becker muscular dystrophy (DMD/BMD). Both forms of dystrophy are caused by mutations in the dystrophin gene and all cases can in theory be treated by gene replacement using synthetic forms of the dystrophin gene. The major challenges for success of this approach are the development of a suitable gene delivery shuttle, generating a suitable gene expression cassette able to be carried by such a shuttle, and achieving safe and effective delivery without elicitation of a destructive immune response. This review summarizes the current state of the art in terms of using adeno-associated viral vectors to deliver synthetic dystrophin genes for the purpose of developing gene therapy for DMD.
Collapse
Affiliation(s)
- Jane T Seto
- Department of Neurology, University of Washington, Seattle, WA 98195-7720, USA.
| | | | | | | | | |
Collapse
|
61
|
Vasquez I, Tan N, Boonyasampant M, Koppitch KA, Lansman JB. Partial opening and subconductance gating of mechanosensitive ion channels in dystrophic skeletal muscle. J Physiol 2012; 590:6167-85. [PMID: 22966155 PMCID: PMC3530124 DOI: 10.1113/jphysiol.2012.240044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/03/2012] [Indexed: 12/31/2022] Open
Abstract
We recorded the activity of single mechanosensitive (MS) ion channels in skeletal muscle from the mdx mouse, a deletion mutant that lacks the cytoskeletal protein, dystrophin. Experiments were designed to examine the influence of dystrophin, a major component of skeletal muscle costameres, on the behaviour of single MS channels. In the majority of recordings from cell-attached patches, MS channels have a conductance of ∼23 pS. Recordings from some patches, however, showed a smaller conductance channel of ∼7-14 pS. Large and small conductance channels were detected in a single patch and showed serial, non-random gating, suggesting different opening levels of a single channel. Analysis of the distribution of current amplitudes within the open channel showed MS channels fluctuate between subconductance levels. MS channels in dystrophic muscle spend ∼60% of the time at smaller subconductance levels, often failing to reach the fully open level. Applying pressure to the membrane of mdx fibres increases in a graded manner occupancy of the fully open state, while reducing occupancy of subconductance levels. Recordings also show partial openings of MS channels in both wild-type and mdx muscle that fail to reach the fully open state. Partial openings occur at a higher frequency in mdx muscle and reflect occupancy of subconductance levels seen during complete activations. In muscle from mdx/utrn(-/-) double knockout mice, MS channels also spend more time at subconductance levels than the fully open state. Conductance variability of MS channels may represent gating of a heteromeric protein composed of different channel subunits. The results also show that partial opening and prolonged burst duration are distinct mechanisms that contribute to excess Ca(2+) entry in dystrophic muscle.
Collapse
Affiliation(s)
- Ivan Vasquez
- Department of Cellular & Molecular Pharmacology, School of Medicine, University of California, San Francisco, CA 94143-0450, USA
| | | | | | | | | |
Collapse
|
62
|
Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:441-75. [PMID: 23121053 DOI: 10.1146/annurev-pathol-011811-132450] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
63
|
Malik V, Rodino-Klapac LR, Mendell JR. Emerging drugs for Duchenne muscular dystrophy. Expert Opin Emerg Drugs 2012; 17:261-77. [PMID: 22632414 DOI: 10.1517/14728214.2012.691965] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is the most common, severe childhood form of muscular dystrophy. Treatment is limited to glucocorticoids that have the benefit of prolonging ambulation by approximately 2 years and preventing scoliosis. Finding a more satisfactory treatment should focus on maintaining long-term efficacy with a minimal side effect profile. AREAS COVERED Authors discuss different therapeutic strategies that have been used in pre-clinical and clinical settings. EXPERT OPINION Multiple treatment approaches have emerged. Most attractive are molecular-based therapies that can express the missing dystrophin protein (exon skipping or mutation suppression) or a surrogate gene product (utrophin). Other approaches include increasing the strength of muscles (myostatin inhibitors), reducing muscle fibrosis and decreasing oxidative stress. Additional targets include inhibiting NF-κB to reduce inflammation or promoting skeletal muscle blood flow and muscle contractility using phosphodiesterase inhibitors or nitric oxide (NO) donors. The potential for each of these treatment strategies to enter clinical trials is a central theme of discussion. The review emphasizes that the goal of treatment should be to find a product at least as good as glucocorticoids with a lower side effect profile or with a significant glucocorticoid sparing effect.
Collapse
Affiliation(s)
- Vinod Malik
- The Ohio State University, Research Institute, Nationwide Children's Hospital and, Department of Pediatrics, Columbus, OH 43205, USA
| | | | | |
Collapse
|
64
|
Marshall JL, Holmberg J, Chou E, Ocampo AC, Oh J, Lee J, Peter AK, Martin PT, Crosbie-Watson RH. Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. ACTA ACUST UNITED AC 2012; 197:1009-27. [PMID: 22734004 PMCID: PMC3384411 DOI: 10.1083/jcb.201110032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Utrophin is normally confined to the neuromuscular junction (NMJ) in adult muscle and partially compensates for the loss of dystrophin in mdx mice. We show that Akt signaling and utrophin levels were diminished in sarcospan (SSPN)-deficient muscle. By creating several transgenic and knockout mice, we demonstrate that SSPN regulates Akt signaling to control utrophin expression. SSPN determined α-dystroglycan (α-DG) glycosylation by affecting levels of the NMJ-specific glycosyltransferase Galgt2. After cardiotoxin (CTX) injury, regenerating myofibers express utrophin and Galgt2-modified α-DG around the sarcolemma. SSPN-null mice displayed delayed differentiation after CTX injury caused by loss of utrophin and Akt signaling. Treatment of SSPN-null mice with viral Akt increased utrophin and restored muscle repair after injury, revealing an important role for the SSPN-Akt-utrophin signaling axis in regeneration. SSPN improved cell surface expression of utrophin by increasing transportation of utrophin and DG from endoplasmic reticulum/Golgi membranes. Our experiments reveal functions of utrophin in regeneration and new pathways that regulate utrophin expression at the cell surface.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology and 2 Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gordon BS, Delgado Díaz DC, Kostek MC. Resveratrol decreases inflammation and increases utrophin gene expression in the mdx mouse model of Duchenne muscular dystrophy. Clin Nutr 2012; 32:104-11. [PMID: 22795790 DOI: 10.1016/j.clnu.2012.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/23/2012] [Accepted: 06/04/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Duchenne muscular dystrophy (DMD) is a lethal genetic disease with no cure. Reducing inflammation or increasing utrophin expression can alleviate DMD pathology. Resveratrol can reduce inflammation and activate the utrophin promoter. The aims of this study were to identify an active dose of resveratrol in mdx mice and examine if this dose decreased inflammation and increased utrophin expression. METHODS 5-week old mdx mice were given 0, 10, 100, or 500 mg/kg of resveratrol everyday for 10 days. Sirt1 was measured by qRT-PCR and used to determine the most active dose. Muscle inflammation was measured by H&E staining, CD45 and F4/80 immunohistochemistry. IL-6, TNFα, PGC-1α, and utrophin gene expression were measured by qRT-PCR. Utrophin, Sirt1, and PGC-1α protein were quantified by western blot. RESULTS The 100 mg/kg dose of resveratrol, the most active dose, increased Sirt1 mRNA 60 ± 10% (p < 0.01), reduced immune cell infiltration 21 ± 6% (H&E) and 42 ± 8% (CD45 immunohistochemistry (p < 0.05)), reduced macrophage infiltration 48 ± 10% (F4/80 immunohistochemistry (p < 0.05)), and increased IL-6, PGC-1α, and utrophin mRNA 247 ± 77%, 27 ± 17%, and 43 ± 23% respectively (p ≤ 0.05). Utrophin, Sirt1, and PGC-1α protein expression did not change. CONCLUSIONS Resveratrol may be a therapy for DMD by reducing inflammation.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
66
|
Singh SM, Molas JF, Kongari N, Bandi S, Armstrong GS, Winder SJ, Mallela KM. Thermodynamic stability, unfolding kinetics, and aggregation of the N-terminal actin-binding domains of utrophin and dystrophin. Proteins 2012; 80:1377-92. [PMID: 22275054 PMCID: PMC3439503 DOI: 10.1002/prot.24033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/21/2011] [Accepted: 01/02/2012] [Indexed: 12/12/2022]
Abstract
Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin and dystrophin are less understood. Both proteins interact with actin through their N-terminal actin-binding domain (N-ABD). In this study, we examined the thermodynamic stability and aggregation of utrophin N-ABD and compared with that of dystrophin. Our results show that utrophin N-ABD has spectroscopic properties similar to dystrophin N-ABD. However, utrophin N-ABD has decreased denaturant and thermal stability, unfolds faster, and is correspondingly more susceptible to proteolysis, which might account for its decreased in vivo half-life compared to dystrophin. In addition, utrophin N-ABD aggregates to a lesser extent compared with dystrophin N-ABD, contrary to the general behavior of proteins in which decreased stability enhances protein aggregation. Despite these differences in stability and aggregation, both proteins exhibit deleterious effects of mutations. When utrophin N-ABD mutations analogous in position to the dystrophin disease-causing mutations were generated, they behaved similarly to dystrophin mutants in terms of decreased stability and the formation of cross-β aggregates, indicating a possible role for utrophin mutations in disease mechanisms.
Collapse
Affiliation(s)
- Surinder M. Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Justine F. Molas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Narsimulu Kongari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Geoffrey S. Armstrong
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Steve J. Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
67
|
Comparison of skeletal muscle pathology and motor function of dystrophin and utrophin deficient mouse strains. Neuromuscul Disord 2012; 22:406-17. [DOI: 10.1016/j.nmd.2011.10.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/17/2011] [Accepted: 10/15/2011] [Indexed: 11/19/2022]
|
68
|
Seth M, Li T, Graham V, Burch J, Finch E, Stiber JA, Rosenberg PB. Dynamic regulation of sarcoplasmic reticulum Ca(2+) stores by stromal interaction molecule 1 and sarcolipin during muscle differentiation. Dev Dyn 2012; 241:639-47. [PMID: 22411552 PMCID: PMC3306055 DOI: 10.1002/dvdy.23760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During muscle development, the sarco/endoplasmic reticulum (SR/ER) undergoes remodeling to establish a specialized internal Ca(2+) store for muscle contraction. We hypothesized that store operated Ca(2+) entry (SOCE) is required to fill Ca(2+) stores and is, therefore, critical to creating a mature SR/ER. Stromal interaction molecule 1 (STIM1) functions as a sensor of internal Ca(2+) store content and an activator of SOCE channels. Myocytes lacking STIM1 display reduced SR Ca(2+) content and altered expression of key SR proteins. Sarcolipin (SLN), an inhibitor of the SR calcium pump, was markedly increased in the muscle of mutant STIM1 mice. SLN opposes the actions of STIM1 by limiting SOCE, reducing SR Ca(2+) content and delaying muscle differentiation. During mouse muscle development SLN is highly expressed in embryonic muscle, while the expression of STIM1 is up-regulated postnatally. These results suggest that SOCE regulates SR/ER specialization and that SLN and STIM1 act in opposing fashions to govern SOCE during myogenesis.
Collapse
Affiliation(s)
- Malini Seth
- Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Alison B, Elizabeth G, Steve L, Andrew B, Guy M, Volker S. Animal Models of Duchenne Muscular Dystrophy, with Special Reference to the mdx Mouse. Biocybern Biomed Eng 2012. [DOI: 10.1016/s0208-5216(12)70045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
70
|
Abstract
Duchenne muscular dystrophy is a devastating muscular dystrophy of childhood. Mutations in the dystrophin gene destroy the link between the internal muscle filaments and the extracellular matrix, resulting in severe muscle weakness and progressive muscle wasting. There is currently no cure and, whilst palliative treatment has improved, affected boys are normally confined to a wheelchair by 12 years of age and die from respiratory or cardiac complications in their twenties or thirties. Therapies currently being developed include mutation-specific treatments, DNA- and cell-based therapies, and drugs which aim to modulate cellular pathways or gene expression. This review aims to provide an overview of the different therapeutic approaches aimed at reconstructing the dystrophin-associated protein complex, including restoration of dystrophin expression and upregulation of the functional homologue, utrophin.
Collapse
Affiliation(s)
- Rebecca J Fairclough
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford UK
| | | | | |
Collapse
|
71
|
Ljubicic V, Miura P, Burt M, Boudreault L, Khogali S, Lunde JA, Renaud JM, Jasmin BJ. Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Hum Mol Genet 2011; 20:3478-93. [PMID: 21659335 DOI: 10.1093/hmg/ddr265] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A therapeutic approach for Duchenne muscular dystrophy (DMD) is to up-regulate utrophin in skeletal muscle in an effort to compensate for the lack of dystrophin. We previously hypothesized that promotion of the slow, oxidative myogenic program, which triggers utrophin up-regulation, can attenuate the dystrophic pathology in mdx animals. Since treatment of healthy mice with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) enhances oxidative capacity and elicits a fast-to-slow fiber-type transition, we evaluated the effects of chronic AMPK stimulation on skeletal muscle phenotype and utrophin expression in mdx mice. Daily AICAR administration (500 mg/kg/day, 30 days) of 5-7-week-old mdx animals induced an elevation in mitochondrial cytochrome c oxidase enzyme activity, an increase in myosin heavy-chain type IIa-positive fibers and slower twitch contraction kinetics in the fast, glycolytic extensor digitorum longus muscle. Utrophin expression was significantly enhanced in response to AICAR, which occurred coincident with an elevated β-dystroglycan expression along the sarcolemma. These adaptations were associated with an increase in sarcolemmal structural integrity under basal conditions, as well as during damaging eccentric contractions ex vivo. Notably, peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α) and silent information regulator two ortholog 1 protein contents were significantly higher in muscle from mdx mice compared with wild-type littermates and AICAR further increased PGC-1α expression. Our data show that AICAR-evoked muscle plasticity results in beneficial phenotypic adaptations in mdx mice and suggest that the contextually novel application of this compound for muscular dystrophy warrants further study.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Call JA, Ervasti JM, Lowe DA. TAT-μUtrophin mitigates the pathophysiology of dystrophin and utrophin double-knockout mice. J Appl Physiol (1985) 2011; 111:200-5. [PMID: 21565990 DOI: 10.1152/japplphysiol.00248.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we demonstrated functional substitution of dystrophin by TAT-μUtrophin (TAT-μUtr) in dystrophin-deficient mdx mice. Herein, we addressed whether TAT-μUtr could improve the phenotype of dystrophin and utrophin double-knockout (mdx:utr(-/-)) mice. Specifically, we quantitatively compared survival and quality of life assessments in mdx:utr(-/-) mice receiving TAT-μUtr protein administration against placebo-treated mdx:utr(-/-) mice (PBS). Additionally, skeletal muscles from TAT-μUtr and PBS mice were tested in vivo and ex vivo for strength and susceptibility to eccentric contraction-induced injury. We found the TAT-μUtr treatment extended life span 45% compared with mice administered PBS. This was attributed to significantly increased food consumption (3.1 vs. 1.8 g/24 h) due to improved ability to search for food as daily cage activities were greater in TAT-μUtr mice (e.g., 364 vs. 201 m ambulation/24 h). The extensor digitorum longus muscles of TAT-μUtr-treated double-knockout mice also displayed increased force-generating capacity ex vivo (8.3 vs. 6.4 N/cm(2)) and decreased susceptibility to injury ex vivo and in vivo. These data indicate that the functional benefits of TAT-μUtr replacement treatment extend to the mdx:utr(-/-) double-knockout mouse and support its development as a therapy to mitigate muscle weakness in patients with Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Jarrod A Call
- Program in Physical Therapy and Rehabilitation Sciences, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
73
|
Tinsley JM, Fairclough RJ, Storer R, Wilkes FJ, Potter AC, Squire SE, Powell DS, Cozzoli A, Capogrosso RF, Lambert A, Wilson FX, Wren SP, De Luca A, Davies KE. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS One 2011; 6:e19189. [PMID: 21573153 PMCID: PMC3089598 DOI: 10.1371/journal.pone.0019189] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/22/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a lethal, progressive muscle wasting disease caused by a loss of sarcolemmal bound dystrophin, which results in the death of the muscle fibers leading to the gradual depletion of skeletal muscle. There is significant evidence demonstrating that increasing levels of the dystrophin-related protein, utrophin, in mouse models results in sarcolemmal bound utrophin and prevents the muscular dystrophy pathology. The aim of this work was to develop a small molecule which increases the levels of utrophin in muscle and thus has therapeutic potential. METHODOLOGY AND PRINCIPAL FINDINGS We describe the in vivo activity of SMT C1100; the first orally bioavailable small molecule utrophin upregulator. Once-a-day daily-dosing with SMT C1100 reduces a number of the pathological effects of dystrophin deficiency. Treatment results in reduced pathology, better muscle physiology leading to an increase in overall strength, and an ability to resist fatigue after forced exercise; a surrogate for the six minute walk test currently recommended as the pivotal outcome measure in human trials for DMD. CONCLUSIONS AND SIGNIFICANCE This study demonstrates proof-of-principle for the use of in vitro screening methods in allowing identification of pharmacological agents for utrophin transcriptional upregulation. The best compound identified, SMT C1100, demonstrated significant disease modifying effects in DMD models. Our data warrant the full evaluation of this compound in clinical trials in DMD patients.
Collapse
Affiliation(s)
| | - Rebecca J. Fairclough
- MRC Functional Genomics Unit, Department of Physiology Anatomy and
Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Allyson C. Potter
- MRC Functional Genomics Unit, Department of Physiology Anatomy and
Genetics, University of Oxford, Oxford, United Kingdom
| | - Sarah E. Squire
- MRC Functional Genomics Unit, Department of Physiology Anatomy and
Genetics, University of Oxford, Oxford, United Kingdom
| | - Dave S. Powell
- MRC Functional Genomics Unit, Department of Physiology Anatomy and
Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Cozzoli
- Unit of Pharmacology, Department of Pharmaco-biology, University of Bari
“A. Moro”, Bari, Italy
| | - Roberta F. Capogrosso
- Unit of Pharmacology, Department of Pharmaco-biology, University of Bari
“A. Moro”, Bari, Italy
| | | | | | | | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmaco-biology, University of Bari
“A. Moro”, Bari, Italy
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology Anatomy and
Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (JMT); (KED)
| |
Collapse
|
74
|
Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 2011; 19:830-40. [PMID: 21468001 DOI: 10.1038/mt.2011.59] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease affecting about one in every 3,500 boys. This X-linked pathology is due to the absence of dystrophin in muscle fibers. This lack of dystrophin leads to the progressive muscle degeneration that is often responsible for the death of the DMD patients during the third decade of their life. There are currently no curative treatments for this disease but different therapeutic approaches are being studied. Gene therapy consists of introducing a transgene coding for full-length or a truncated version of dystrophin complementary DNA (cDNA) in muscles, whereas pharmaceutical therapy includes the use of chemical/biochemical substances to restore dystrophin expression or alleviate the DMD phenotype. Over the past years, many potential drugs were explored. This led to several clinical trials for gentamicin and ataluren (PTC124) allowing stop codon read-through. An alternative approach is to induce the expression of an internally deleted, partially functional dystrophin protein through exon skipping. The vectors and the methods used in gene therapy have been continually improving in order to obtain greater encapsidation capacity and better transduction efficiency. The most promising experimental approaches using pharmaceutical and gene therapies are reviewed in this article.
Collapse
|
75
|
George Carlson C, Bruemmer K, Sesti J, Stefanski C, Curtis H, Ucran J, Lachey J, Seehra JS. Soluble activin receptor type IIB increases forward pulling tension in the mdx mouse. Muscle Nerve 2011; 43:694-9. [PMID: 21462203 DOI: 10.1002/mus.21944] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 11/11/2022]
Abstract
INTRODUCTION In this study we investigated the action of RAP-031, a soluble activin receptor type IIB (ActRIIB) comprised of a form of the ActRIIB extracellular domain linked to a murine Fc, and the NF-κB inhibitor, ursodeoxycholic acid (UDCA), on the whole body strength of mdx mice. METHODS The whole body tension (WBT) method of assessing the forward pulling tension (FPT) exerted by dystrophic (mdx) mice was used. RESULTS RAP-031 produced a 41% increase in body mass and a 42.5% increase in FPT without altering the FPT normalized for body mass (WBT). Coadministration of RAP-031 with UDCA produced increases in FPT that were associated with an increase in WBT. CONCLUSIONS Myostatin inhibition increases muscle mass without altering the fundamental weakness characteristic of dystrophic muscle. Cotreatment with an NF-κB inhibitor potentiates the effects of myostatin inhibition in improving FPT in mdx mice.
Collapse
Affiliation(s)
- C George Carlson
- Department of Physiology, Kirksville College Osteopathic Medicine, AT Still University, Kirksville, Missouri 63501, USA.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Jørgensen LH, Blain A, Greally E, Laval SH, Blamire AM, Davison BJ, Brinkmeier H, MacGowan GA, Schrøder HD, Bushby K, Straub V, Lochmüller H. Long-term blocking of calcium channels in mdx mice results in differential effects on heart and skeletal muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:273-83. [PMID: 21224064 PMCID: PMC3016598 DOI: 10.1016/j.ajpath.2010.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/19/2010] [Accepted: 09/21/2010] [Indexed: 02/01/2023]
Abstract
The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset of dystrophic symptoms in the limb muscle of young mdx mice, but did not prevent degeneration and regeneration events occurring later in the disease course. Long-term treatment had a positive effect on limb muscle pathology, reduced fibrosis, increased sarcolemmal stability, and promoted muscle regeneration in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight the importance of analyzing several time points throughout the life of the treated mice, as well as analyzing many tissues, to get a complete picture of treatment efficacy.
Collapse
Affiliation(s)
- Louise H. Jørgensen
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Alison Blain
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Greally
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Steve H. Laval
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew M. Blamire
- Institute of Cellular Medicine and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Benjamin J. Davison
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, Ernst Moritz Arndt University of Greifswald, Karlsburg, Germany
| | - Guy A. MacGowan
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Henrik D. Schrøder
- Department of Clinical Pathology, University of Southern Denmark, Odense C, Denmark
| | - Kate Bushby
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hanns Lochmüller
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Address reprint requests to Professor Hanns Lochmüller, MD, Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| |
Collapse
|
77
|
Crisp A, Yin H, Goyenvalle A, Betts C, Moulton HM, Seow Y, Babbs A, Merritt T, Saleh AF, Gait MJ, Stuckey DJ, Clarke K, Davies KE, Wood MJA. Diaphragm rescue alone prevents heart dysfunction in dystrophic mice. Hum Mol Genet 2010; 20:413-21. [PMID: 21062902 DOI: 10.1093/hmg/ddq477] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused, in most cases, by the complete absence of the 427 kDa cytoskeletal protein, dystrophin. There is no effective treatment, and affected individuals die from respiratory failure and cardiomyopathy by age 30. Here, we investigated whether cardiomyopathy could be prevented in animal models of DMD by increasing diaphragm utrophin or dystrophin expression and thereby restoring diaphragm function. In a transgenic mdx mouse, where utrophin was over expressed in the skeletal muscle and the diaphragm, but not in the heart, we found cardiac function, specifically right and left ventricular ejection fraction as measured using in vivo magnetic resonance imaging, was restored to wild-type levels. In mdx mice treated with a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) that resulted in high levels of dystrophin restoration in the skeletal muscle and the diaphragm only, cardiac function was also restored to wild-type levels. In dystrophin/utrophin-deficient double-knockout (dKO) mice, a more severely affected animal model of DMD, treatment with a PPMO again produced high levels of dystrophin only in the skeletal muscle and the diaphragm, and once more restored cardiac function to wild-type levels. In the dKO mouse, there was no difference in heart function between treatment of the diaphragm plus the heart and treatment of the diaphragm alone. Restoration of diaphragm and other respiratory muscle function, irrespective of the method used, was sufficient to prevent cardiomyopathy in dystrophic mice. This novel mechanism of treating respiratory muscles to prevent cardiomyopathy in dystrophic mice warrants further investigation for its implications on the need to directly treat the heart in DMD.
Collapse
Affiliation(s)
- Alastair Crisp
- MRC Annex Building, MRC Clinical Sciences Centre, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Durko M, Allen C, Nalbantoglu J, Karpati G. CT-GalNAc transferase overexpression in adult mice is associated with extrasynaptic utrophin in skeletal muscle fibres. J Muscle Res Cell Motil 2010; 31:181-93. [DOI: 10.1007/s10974-010-9222-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|
79
|
Soluble TNF-α receptor secretion from healthy or dystrophic mice after AAV6-mediated muscle gene transfer. Gene Ther 2010; 17:1400-10. [PMID: 20596058 DOI: 10.1038/gt.2010.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscle is an attractive target because it is easily accessible; it also offers a permissive environment for adeno-associated virus (AAV)-mediated gene transfer and has an abundant blood vascular supply providing an efficient transport system for the secretion of proteins. However, gene therapy of dystrophic muscle may be more difficult than that of healthy tissue because of degenerative-regenerative processes, and also because of the inflammatory context. In this study we followed the expression levels of secreted inhibitors of the proinflammatory tumor necrosis factor (TNF) cytokine after intramuscular (i.m.) injection of AAV6 into dystrophic mdx and healthy C57BL/10 mice. We used two chimeric proteins, namely, the human or murine TNF-soluble receptor I fused with the murine heavy immunoglobulin chain. We conducted an AAV6 dose-response study and determined the kinetics of transgene expression. In addition, we followed the antibody response against the transgenes and studied their expression pattern in the muscle. Our results show that transduction efficiency is reduced in dystrophic muscles as compared with healthy ones. Furthermore, we found that the immune response against the secreted protein is stronger in mdx mice. Together, our results underscore that the pathological state of the muscle has to be taken into consideration when designing gene therapy approaches.
Collapse
|
80
|
Abstract
The muscular dystrophies are a group of neuromuscular disorders associated with muscle weakness and wasting, which in many forms can lead to loss of ambulation and premature death. A number of muscular dystrophies are associated with loss of proteins required for the maintenance of muscle membrane integrity, in particular with proteins that comprise the dystrophin-associated glycoprotein (DAG) complex. Proper glycosylation of O-linked mannose chains on alpha-dystroglycan, a DAG member, is required for the binding of the extracellular matrix to dystroglycan and for proper DAG function. A number of congenital disorders of glycosylation have now been described where alpha-dystroglycan glycosylation is altered and where muscular dystrophy is a predominant phenotype. Glycosylation is also increasingly being appreciated as a genetic modifier of disease phenotypes in many forms of muscular dystrophy and as a target for the development of new therapies. Here we will review the mouse models available for the study of this group of diseases and outline the methodologies required to describe disease phenotypes.
Collapse
|
81
|
Di Certo MG, Corbi N, Strimpakos G, Onori A, Luvisetto S, Severini C, Guglielmotti A, Batassa EM, Pisani C, Floridi A, Benassi B, Fanciulli M, Magrelli A, Mattei E, Passananti C. The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice. Hum Mol Genet 2009; 19:752-60. [PMID: 19965907 DOI: 10.1093/hmg/ddp539] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The absence of the cytoskeletal protein dystrophin results in Duchenne muscular dystrophy (DMD). The utrophin protein is the best candidate for dystrophin replacement in DMD patients. To obtain therapeutic levels of utrophin expression in dystrophic muscle, we developed an alternative strategy based on the use of artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was recently engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment we generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. Here, we show that the artificial Jazz protein restores sarcolemmal integrity and prevents the development of the dystrophic disease in mdx mice. This exclusive animal model establishes the notion that utrophin-based therapy for DMD can be efficiently developed using ZF ATF technology and candidates Jazz as a novel therapeutic molecule for DMD therapy.
Collapse
Affiliation(s)
- Maria Grazia Di Certo
- Istituto di Neurobiologia e Medicina Molecolare, CNR, IRCCS Fondazione S. Lucia, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Miura P, Chakkalakal JV, Boudreault L, Bélanger G, Hébert RL, Renaud JM, Jasmin BJ. Pharmacological activation of PPARbeta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice. Hum Mol Genet 2009; 18:4640-9. [PMID: 19744959 DOI: 10.1093/hmg/ddp431] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A therapeutic strategy to treat Duchenne muscular dystrophy (DMD) involves identifying compounds that can elevate utrophin A expression in muscle fibers of affected patients. The dystrophin homologue utrophin A can functionally substitute for dystrophin when its levels are enhanced in the mdx mouse model of DMD. Utrophin A expression in skeletal muscle is regulated by mechanisms that promote the slow myofiber program. Since activation of peroxisome proliferator-activated receptor (PPAR) beta/delta promotes the slow oxidative phenotype in skeletal muscle, we initiated studies to determine whether pharmacological activation of PPARbeta/delta provides functional benefits to the mdx mouse. GW501516, a PPARbeta/delta agonist, was found to stimulate utrophin A mRNA levels in C2C12 muscle cells through an element in the utrophin A promoter. Expression of PPARbeta/delta was greater in skeletal muscles of mdx versus wild-type mice. We treated 5-7-week-old mdx mice with GW501516 for 4 weeks. This treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels leading to its increased expression at the sarcolemma. Expression of alpha1-syntrophin and beta-dystroglycan was restored to the sarcolemma. Improvement of mdx sarcolemmal integrity was evidenced by decreased intracellular IgM staining and decreased in vivo Evans blue dye (EBD) uptake. GW501516 treatment also conferred protection against eccentric contraction (ECC)-induced damage of mdx skeletal muscles, as shown by a decreased contraction-induced force drop and reduction of dye uptake during ECC. These results demonstrate that pharmacological activation of PPARbeta/delta might provide functional benefits to DMD patients through enhancement of utrophin A expression.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular & Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
83
|
Benabdellah F, Yu H, Brunelle A, Laprévote O, De La Porte S. MALDI reveals membrane lipid profile reversion in MDX mice. Neurobiol Dis 2009; 36:252-8. [PMID: 19632329 DOI: 10.1016/j.nbd.2009.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/25/2009] [Accepted: 07/16/2009] [Indexed: 11/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common and severe X-linked myopathy, is characterized by the lack of dystrophin, a sub-sarcolemmal protein necessary for normal muscle functions. In a previous study of the lipid content of skeletal muscles of dystrophic (mdx) mice, the animal model for DMD, by in situ Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry (MALDI-MS), an inversion of the phosphatidylcholine PC34:2/PC34:1 ion peaks intensity ratio was observed between destructured (abnormal fiber morphology) and structured (normal fiber morphology). A possible treatment for this dramatic disease is to introduce an exogenous nitric oxide (NO) donor into the organism, leading to an increase of utrophin and a regression of the dystrophic phenotype. In the present work, after confirmation by tandem mass spectrometry of the structure of these two phospholipids, their intensity ratio inversion was used to evidence a restoration of membrane lipid composition very similar to those of wild-type mice after the treatment of mdx mice with molsidomine, a NO donor. This was associated with the observation by immunohistology of an increase of the regeneration process in the mice.
Collapse
Affiliation(s)
- Farida Benabdellah
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
84
|
Jørgensen LH, Larochelle N, Orlopp K, Dunant P, Dudley RW, Stucka R, Thirion C, Walter MC, Laval SH, Lochmüller H. Efficient and Fast Functional Screening of Microdystrophin ConstructsIn VivoandIn Vitrofor Therapy of Duchenne Muscular Dystrophy. Hum Gene Ther 2009; 20:641-50. [DOI: 10.1089/hum.2008.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Louise H. Jørgensen
- Institute of Human Genetics, University of Newcastle, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Nancy Larochelle
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Kristian Orlopp
- Friedrich Baur Institute and Department of Neurology, Ludwig Maximilians University, Munich 81377, Germany
| | - Patrick Dunant
- Friedrich Baur Institute and Department of Neurology, Ludwig Maximilians University, Munich 81377, Germany
| | - Roy W.R. Dudley
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rolf Stucka
- Friedrich Baur Institute and Department of Neurology, Ludwig Maximilians University, Munich 81377, Germany
| | - Christian Thirion
- Friedrich Baur Institute and Department of Neurology, Ludwig Maximilians University, Munich 81377, Germany
| | - Maggie C. Walter
- Friedrich Baur Institute and Department of Neurology, Ludwig Maximilians University, Munich 81377, Germany
| | - Steven H. Laval
- Institute of Human Genetics, University of Newcastle, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Hanns Lochmüller
- Institute of Human Genetics, University of Newcastle, Newcastle upon Tyne NE1 3BZ, United Kingdom
- Friedrich Baur Institute and Department of Neurology, Ludwig Maximilians University, Munich 81377, Germany
| |
Collapse
|
85
|
Sonnemann KJ, Heun-Johnson H, Turner AJ, Baltgalvis KA, Lowe DA, Ervasti JM. Functional substitution by TAT-utrophin in dystrophin-deficient mice. PLoS Med 2009; 6:e1000083. [PMID: 19478831 PMCID: PMC2680620 DOI: 10.1371/journal.pmed.1000083] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 04/22/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or DeltaR4-21 "micro" utrophin (muUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice. METHODS AND FINDINGS Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT), and increased specific force production (9.7+/-1.1 N/cm(2) versus 12.8+/-0.9 N/cm(2); PBS versus TAT). CONCLUSIONS These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.
Collapse
Affiliation(s)
- Kevin J. Sonnemann
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hanke Heun-Johnson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Amy J. Turner
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristen A. Baltgalvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dawn A. Lowe
- Program in Physical Therapy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
86
|
Therapeutic approaches for the sarcomeric protein diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19181103 DOI: 10.1007/978-0-387-84847-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
No curative treatment currently exists for patients with skeletal myopathies caused by defects in sarcomeric proteins though symptomatic treatments including orthoses, night-time ventilation, or mechanical ventilation can provide major benefits. The molecular genetic discovery era has enabled many families to know which gene and precisely which gene defect their family, or in some cases only their affected child has. This knowledge has enormously increased the accuracy of genetic counselling and in some cases can enable prognosis, which helps families to make better-informed life decisions. However, symptomatic treatments and molecular genetics do not help the patient's skeletal muscle problems. The patients with skeletal muscle sarcomeric protein diseases, (from severely affected patients with shortened lifespan, through to the more mildly affected patients), would all benefit from more effective or curative treatments, as would their parents and families. This chapter outlines the experimental therapeutic strategies that have been investigated for other muscle diseases (predominantly the muscular dystrophies, towards which the majority of research emphasis has been focussed) and those that are beginning to be investigated for sarcomeric diseases. It analyses which of these approaches might be applicable to the different skeletal muscle sarcomeric protein diseases.
Collapse
|
87
|
Desantis A, Onori A, Di Certo MG, Mattei E, Fanciulli M, Passananti C, Corbi N. Novel activation domain derived from Che-1 cofactor coupled with the artificial protein Jazz drives utrophin upregulation. Neuromuscul Disord 2009; 19:158-62. [PMID: 19162479 DOI: 10.1016/j.nmd.2008.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/31/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Our aim is to upregulate the expression level of the dystrophin related gene utrophin in Duchenne muscular dystrophy, thus complementing the lack of dystrophin functions. To this end, we have engineered synthetic zinc finger based transcription factors. We have previously shown that the artificial three-zinc finger protein named Jazz fused with the Vp16 activation domain, is able to bind utrophin promoter A and to increase the endogenous level of utrophin in transgenic mice. Here, we report on an innovative artificial protein, named CJ7, that consists of Jazz DNA binding domain fused to a novel activation domain derived from the regulatory multivalent adaptor protein Che-1/AATF. This transcriptional activation domain is 100 amino acids in size and it is very powerful as compared to the Vp16 activation domain. We show that CJ7 protein efficiently promotes transcription and accumulation of the acetylated form of histone H3 on the genomic utrophin promoter locus.
Collapse
Affiliation(s)
- Agata Desantis
- Istituto di Biologia e Patologia Molecolari, CNR, c/o Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
88
|
Blaauw B, Mammucari C, Toniolo L, Agatea L, Abraham R, Sandri M, Reggiani C, Schiaffino S. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Hum Mol Genet 2008; 17:3686-96. [DOI: 10.1093/hmg/ddn264] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
89
|
Odom GL, Gregorevic P, Allen JM, Finn E, Chamberlain JS. Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice. Mol Ther 2008; 16:1539-45. [PMID: 18665159 DOI: 10.1038/mt.2008.149] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the most prevalent lethal genetic disorder in children, is caused by mutations in the 2.2-MB dystrophin gene. Absence of dystrophin and the dystrophin-glycoprotein complex (DGC) from the sarcolemma leads to severe muscle wasting and eventual respiratory and/or cardiac failure. There is presently no effective therapy for DMD. Several lines of evidence have suggested that methods to increase expression of utrophin, a dystrophin paralog, show promise as a treatment for DMD. Adeno-associated viral (AAV) vectors are a promising vehicle for gene transfer to muscle, but microutrophin transgenes small enough to be carried by AAV have not been tested for function. In this study, we intravenously administered recombinant AAV (rAAV2/6) harboring a murine codon-optimized microutrophin (DeltaR4-R21/DeltaCT) transgene to adult dystrophin(-/-)/utrophin(-/-) (mdx:utrn(-/-)) double-knockout mice. Five-month-old mice demonstrated localization of microutrophin to the sarcolemma in all the muscles tested. These muscles displayed restoration of the DGC, increased myofiber size, and a considerable improvement in physiological performance when compared with untreated mdx:utrn(-/-) mice. Overall, microutrophin delivery alleviated most of the pathophysiological abnormalities associated with muscular dystrophy in the mdx:utrn(-/-) mouse model. This approach may hold promise as a treatment option for DMD because it avoids the potential immune responses that are associated with the delivery of exogenous dystrophin.
Collapse
Affiliation(s)
- Guy L Odom
- Department of Neurology, Senator Paul D Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
90
|
De Luca A, Nico B, Rolland JF, Cozzoli A, Burdi R, Mangieri D, Giannuzzi V, Liantonio A, Cippone V, De Bellis M, Nicchia GP, Camerino GM, Frigeri A, Svelto M, Camerino DC. Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle. Neurobiol Dis 2008; 32:243-53. [PMID: 18694830 DOI: 10.1016/j.nbd.2008.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/10/2008] [Accepted: 07/03/2008] [Indexed: 11/08/2022] Open
Abstract
Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.
Collapse
Affiliation(s)
- Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Feng SW, Lu XL, Liu ZS, Zhang YN, Liu TY, Li JL, Yu MJ, Zeng Y, Zhang C. Dynamic distribution of bone marrow-derived mesenchymal stromal cells and change of pathology after infusing into mdx mice. Cytotherapy 2008; 10:254-64. [PMID: 18418771 DOI: 10.1080/14653240802020381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) are attractive candidates for the treatment of Duchenne muscular dystrophy (DMD) but how the donor MSC distribute in multiple organs and whether the increased dystrophin leads to a change in the pathology of mdx mice is still uncertain. In this research we detected the distribution of MSC and the pathology of mdx mice after MSC infusion. METHODS MSC were isolated from rat bone marrow (BM) and expanded in proliferation medium. MSC of the fifth passage were delivered intravenously into irradiated mdx mice. The distribution of MSC labeled by [3H]TdR into a recipient's organs was calculated by radioactivity. The expression of dystrophin was detected at weeks 4, 8, 12 and 16 after MSC transplantation by immunofluorescence staining, RT-PCR and Western blot. Serum creatine kinase (CK) and centrally nucleated fiber (CNF) were also detected to assess the change in pathology. RESULTS 24-48 h after transplantation, MSC were mainly found in the BM, liver and lung. The radioactivity in these organs decreased, whereas skeletal and myocardial muscle radioactivity increased gradually over time. In accordance with the increased radioactivity in skeletal muscle, the amount of dystrophin-positive myofibers increased. Furthermore, serum CK and CNF decreased slightly, suggesting specific pathophysiologic features of the dystrophic muscle were partially restored. DISCUSSION Upon certification of the distribution of transplanted MSC in irradiated mdx mice, we found evidence of myogenic differentiation of MSC in skeletal muscle. This research may help us understand the mechanism of therapy of MSC transplantation.
Collapse
Affiliation(s)
- S-W Feng
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Microarray analysis of mdx mice expressing high levels of utrophin: therapeutic implications for dystrophin deficiency. Neuromuscul Disord 2008; 18:239-47. [PMID: 18343112 DOI: 10.1016/j.nmd.2007.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/10/2007] [Accepted: 11/19/2007] [Indexed: 11/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disorder caused by dystrophin deficiency. Previous work suggested that increased expression of the dystrophin-related protein utrophin in the mdx mouse can reduce the dystrophic pathophysiology. Physiological tests showed that the transgenic mouse muscle functioned in a way similar to normal muscle. More recently, it has become possible to analyse disease pathways using microarrays, a sensitive method to evaluate the efficacy of a therapeutic approach. We thus examined the gene expression profile of mdx mouse muscle compared to wild-type mouse muscle and compared the data with that obtained from the transgenic line overexpressing utrophin. The data confirm that the expression of utrophin in the mdx mouse muscle results in a global gene expression profile more similar to that seen for the wild-type mouse. This study confirms that a strategy to up-regulate utrophin is likely to be beneficial in dystrophin deficiency.
Collapse
|
93
|
Onori A, Desantis A, Buontempo S, Di Certo MG, Fanciulli M, Salvatori L, Passananti C, Corbi N. The artificial 4-zinc-finger protein Bagly binds human utrophin promoter A at the endogenous chromosomal site and activates transcription. Biochem Cell Biol 2007; 85:358-65. [PMID: 17612630 DOI: 10.1139/o07-015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Our aim is to upregulate the expression of the dystrophin-related gene utrophin in Duchenne muscular dystrophy, in this way complementing the lack of dystrophin function. To achieve utrophin upregulation, we designed and engineered synthetic zinc-finger based transcription factors. We have previously shown that the artificial 3-zinc-finger protein Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from utrophin promoter A. Here we report a novel artificial 4-zinc-finger protein, Bagly, which binds with optimized affinity-specificity to a 12 bp DNA target sequence that is internal to human utrophin promoter A. Bagly was generated adding to Jazz protein an extra-fourth zinc finger, derived from transcription factor YY1. Importantly, the Bagly DNA target sequence is statistically present in the human genome only 210 times, about 60 fewer times than the 9 bp Jazz DNA target sequence. Thanks to its additional zinc-finger domain, Bagly protein shows enhanced transcriptional activity. Moreover, we demonstrated Bagly's effective access and binding to active chromatin in the chromosomal context and its ability to upregulate endogenous utrophin.
Collapse
Affiliation(s)
- Annalisa Onori
- Istituto di Biologia e Patologia Molecolari, CNR, c/o Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Mattei E, Corbi N, Di Certo MG, Strimpakos G, Severini C, Onori A, Desantis A, Libri V, Buontempo S, Floridi A, Fanciulli M, Baban D, Davies KE, Passananti C. Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS One 2007; 2:e774. [PMID: 17712422 PMCID: PMC1942121 DOI: 10.1371/journal.pone.0000774] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/23/2007] [Indexed: 12/27/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.
Collapse
Affiliation(s)
- Elisabetta Mattei
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
| | - Nicoletta Corbi
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Maria Grazia Di Certo
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Georgios Strimpakos
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
| | - Cinzia Severini
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
| | - Annalisa Onori
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Agata Desantis
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Valentina Libri
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Serena Buontempo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Aristide Floridi
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
- Laboratory B, Regina Elena Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
- Laboratory B, Regina Elena Cancer Institute, Rome, Italy
| | - Dilair Baban
- Department of Physiology, Anatomy and Genetics, Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Claudio Passananti
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
95
|
Xu R, Chandrasekharan K, Yoon JH, Camboni M, Martin PT. Overexpression of the cytotoxic T cell (CT) carbohydrate inhibits muscular dystrophy in the dyW mouse model of congenital muscular dystrophy 1A. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:181-99. [PMID: 17591965 PMCID: PMC1941597 DOI: 10.2353/ajpath.2007.060927] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of recent studies have demonstrated therapeutic effects of transgenes on the development of muscle pathology in the mdx mouse model for Duchenne muscular dystrophy, but none have been shown also to be effective in mouse models for laminin alpha2-deficient congenital muscular dystrophy (MDC1A). Here, we show that overexpression of the cytotoxic T cell (CT) GalNAc transferase (Galgt2) is effective in inhibiting the development of muscle pathology in the dy(W) mouse model of MDC1A, much as we had previously shown in mdx animals. Embryonic overexpression of Galgt2 in skeletal muscles using transgenic mice or postnatal overexpression using adeno-associated virus both reduced the extent of muscle pathology in dy(W)/dy(W) skeletal muscle. As with mdx mice, embryonic overexpression of the Galgt2 transgene in dy(W)/dy(W) myofibers inhibited muscle growth, whereas postnatal overexpression did not. Both embryonic and postnatal overexpression of Galgt2 in dy(W)/dy(W) muscle increased the expression of agrin, a protein that, in recombinant form, has been shown to ameliorate disease, whereas laminin alpha1, another disease modifier, was not expressed. Galgt2 over-expression also stimulated the glycosylation of a gly-colipid with the CT carbohydrate, and glycolipids accounted for most of the CT-reactive material in postnatal overexpression experiments. These experiments demonstrate that Galgt2 overexpression is effective in altering disease progression in skeletal muscles of dy(W) mice and should be considered as a therapeutic target in MDC1A.
Collapse
Affiliation(s)
- Rui Xu
- Center for Gene Therapy, Columbus Children's Research Institute, Department of Pediatrics, Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
96
|
Deol JR, Danialou G, Larochelle N, Bourget M, Moon JS, Liu AB, Gilbert R, Petrof BJ, Nalbantoglu J, Karpati G. Successful compensation for dystrophin deficiency by a helper-dependent adenovirus expressing full-length utrophin. Mol Ther 2007; 15:1767-74. [PMID: 17667948 DOI: 10.1038/sj.mt.6300260] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Helper-dependent adenovirus vector (AdV)-mediated full-length dystrophin expression leads to significant mitigation of the dystrophic phenotype of the mdx mouse. However, dystrophin, as a neoantigen, elicits antibody formation. As an alternative approach, we evaluated gene transfer of full-length murine utrophin, a functional homologue of dystrophin that is normally present only at the neuromuscular junction. A single injection in the tibialis anterior (TA) muscle of the helper-dependent adenovirus vector encoding utrophin provided very good transduction, with 58% of fibers demonstrating sarcolemmal utrophin expression in the neonates, and 35% utrophin-positive (Utr(+)) fibers in adults. The presence of utrophin prevented extensive necrosis in the neonates, halted further necrosis in the adults, and led to restoration of sarcolemmal expression of dystrophin-associated proteins up to 1 year after injection. Marked physiological improvement was observed in both neonates and adults. Neither increased humoral responses nor cellular immune responses were evident. However, there was a time-related decline of the initial high utrophin expression. Although viral DNA persisted in animals that were injected in the neonatal stage, viral DNA levels decreased in muscles of adult mice. These results demonstrate that although utrophin gene transfer leads to amelioration of the dystrophic phenotype, the effects are not sustained upon loss of utrophin expression.
Collapse
Affiliation(s)
- Jatinderpal R Deol
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Hopf FW, Turner PR, Steinhardt RA. Calcium misregulation and the pathogenesis of muscular dystrophy. Subcell Biochem 2007; 45:429-464. [PMID: 18193647 DOI: 10.1007/978-1-4020-6191-2_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although the exact nature of the relationship between calcium and the pathogenesis of Duchenne muscular dystrophy (DMD) is not fully understood, this is an important issue which has been addressed in several recent reviews (Alderton and Steinhardt, 2000a, Gailly, 2002, Allen et al., 2005). A key question when trying to understand the cellular basis of DMD is how the absence or low level of expression of dystrophin, a cytoskeletal protein, results in the slow but progressive necrosis of muscle fibres. Although loss of cytoskeletal and sarcolemmal integrity which results from the absence of dystrophin clearly plays a key role in the pathogenesis associated with DMD, a number of lines of evidence also establish a role for misregulation of calcium ions in the DMD pathology, particularly in the cytoplasmic space just under the sarcolemma. A number of calcium-permeable channels have been identified which can exhibit greater activity in dystrophic muscle cells, and exIsting evidence suggests that these may represent different variants of the same channel type (perhaps the transient receptor potential channel, TRPC). In addition, a prominent role for calcium-activated proteases in the DMD pathology has been established, as well as modulation of other intracellular regulatory proteins and signaling pathways. Whether dystrophin and its associated proteins have a direct role in the regulation of calcium ions, calcium channels or intracellular calcium stores, or indirectly alters calcium regulation through enhancement of membrane tearing, remains unclear. Here we focus on areas of consensus or divergence amongst the existing literature, and propose areas where future research would be especially valuable.
Collapse
Affiliation(s)
- F W Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton St., Suite 200, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
98
|
Whitehead NP, Yeung EW, Allen DG. MUSCLE DAMAGE IN MDX (DYSTROPHIC) MICE: ROLE OF CALCIUM AND REACTIVE OXYGEN SPECIES. Clin Exp Pharmacol Physiol 2006; 33:657-62. [PMID: 16789936 DOI: 10.1111/j.1440-1681.2006.04394.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease caused by a genetic mutation that leads to the complete absence of the cytoskeletal protein dystrophin in muscle fibres. 2. The present review provides an overview of some of the physiological pathways that may contribute to muscle damage and degeneration in DMD, based primarily on experimental findings in the mdx mouse, an animal model of this disease. 3. A rise in intracellular calcium is widely thought to be an important initiating event in the dystrophic pathogenesis. The pathway(s) leading to increased intracellular calcium in dystrophin deficient muscle is uncertain, but recent work from our laboratory provides evidence that stretch-activated channels are an important source of the calcium influx. Other possible routes of calcium entry are also discussed. 4. The consequences of elevated cytosolic calcium may include activation of proteases, such as calpain, and increased production of reactive oxygen species (ROS), which can cause protein and membrane damage. 5. Another possible cause of damage in dystrophic muscle involves inflammatory pathways, such as those mediated by neutrophils, macrophages and associated cytokines. There is recent evidence that increased ROS may be important in both the activation of and the damage caused by this inflammatory pathway in mdx muscle.
Collapse
Affiliation(s)
- Nicholas P Whitehead
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
99
|
Rooney JE, Welser JV, Dechert MA, Flintoff-Dye NL, Kaufman SJ, Burkin DJ. Severe muscular dystrophy in mice that lack dystrophin and alpha7 integrin. J Cell Sci 2006; 119:2185-95. [PMID: 16684813 DOI: 10.1242/jcs.02952] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dystrophin glycoprotein complex links laminin in the extracellular matrix to the cell cytoskeleton. Loss of dystrophin causes Duchenne muscular dystrophy, the most common human X-chromosome-linked genetic disease. The alpha7beta1 integrin is a second transmembrane laminin receptor expressed in skeletal muscle. Mutations in the alpha7 integrin gene cause congenital myopathy in humans and mice. The alpha7beta1 integrin is increased in the skeletal muscle of Duchenne muscular dystrophy patients and mdx mice. This observation has led to the suggestion that dystrophin and alpha7beta1 integrin have complementary functional and structural roles. To test this hypothesis, we generated mice lacking both dystrophin and alpha7 integrin (mdx/alpha7(-/-)). The mdx/alpha7(-/-) mice developed early-onset muscular dystrophy and died at 2-4 weeks of age. Muscle fibers from mdx/alpha7(-/-) mice exhibited extensive loss of membrane integrity, increased centrally located nuclei and inflammatory cell infiltrate, greater necrosis and increased muscle degeneration compared to mdx or alpha7-integrin null animals. In addition, loss of dystrophin and/or alpha7 integrin resulted in altered expression of laminin-alpha2 chain. These results point to complementary roles for dystrophin and alpha7beta1 integrin in maintaining the functional integrity of skeletal muscle.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/metabolism
- Integrin alpha Chains/deficiency
- Integrin alpha Chains/genetics
- Integrin alpha Chains/metabolism
- Laminin/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Regeneration
- Severity of Illness Index
- Survival Rate
Collapse
|
100
|
Kleopa KA, Drousiotou A, Mavrikiou E, Ormiston A, Kyriakides T. Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy. Hum Mol Genet 2006; 15:1623-8. [PMID: 16595608 DOI: 10.1093/hmg/ddl083] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although there is good experimental data that utrophin, the autosomal analog of dystrophin, can ameliorate the phenotype in dystrophinopathies, there is scant evidence from human data to support this hypothesis. We investigated in diagnostic muscle biopsies from 16 patients with Duchenne muscular dystrophy (DMD) the level of utrophin expression using quantitative immunoblot analysis. In 13 of 16 patients, in whom there was adequate follow-up data, utrophin expression was correlated to two clinical endpoints: age at reaching Hammersmith score of 30/40 and age at becoming wheelchair-bound. We found that utrophin expression increases with age in DMD and that there is a significant positive correlation between the quantity of utrophin at initial biopsy and time to becoming wheelchair-bound.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Division of Clinical Neurosciences, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|