51
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
52
|
Studying the cerebellar DNA damage response in the tissue culture dish. Mech Ageing Dev 2013; 134:496-505. [DOI: 10.1016/j.mad.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022]
|
53
|
Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks. DNA Repair (Amst) 2013; 12:791-9. [PMID: 23953933 DOI: 10.1016/j.dnarep.2013.07.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/13/2023]
Abstract
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.
Collapse
|
54
|
|
55
|
Cheema AK, Varghese RS, Timofeeva O, Zhang L, Kirilyuk A, Zandkarimi F, Kaur P, Ressom HW, Jung M, Dritschilo A. Functional proteomics analysis to study ATM dependent signaling in response to ionizing radiation. Radiat Res 2013; 179:674-683. [PMID: 23642045 DOI: 10.1667/rr3198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ataxia telangiectasia (AT) is a human genetic disease characterized by radiation sensitivity, impaired neuronal development and predisposition to cancer. Using a genetically defined model cell system consisting of cells expressing a kinase dead or a kinase proficient ATM gene product, we previously reported systemic alterations in major metabolic pathways that translate at the gene expression, protein and small molecule metabolite levels. Here, we report ionizing radiation induced stress response signaling arising from perturbations in the ATM gene, by employing a functional proteomics approach. Functional pathway analysis shows robust translational and post-translational responses under ATM proficient conditions, which include enrichment of proteins in the Ephrin receptor and axonal guidance signaling pathways. These molecular networks offer a hypothesis generating function for further investigations of cellular stress responses.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC.,Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Rency S Varghese
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Olga Timofeeva
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Lihua Zhang
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Alexander Kirilyuk
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | | | - Prabhjit Kaur
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Habtom W Ressom
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Mira Jung
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Anatoly Dritschilo
- Department of Oncology, Georgetown University Medical Center, Washington, DC.,Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
56
|
Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14:197-210. [DOI: 10.1038/nrm3546] [Citation(s) in RCA: 1186] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
57
|
Quarantelli M, Giardino G, Prinster A, Aloj G, Carotenuto B, Cirillo E, Marsili A, Salvatore E, Del Giudice E, Pignata C. Steroid treatment in Ataxia-Telangiectasia induces alterations of functional magnetic resonance imaging during prono-supination task. Eur J Paediatr Neurol 2013; 17:135-40. [PMID: 22763152 DOI: 10.1016/j.ejpn.2012.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ataxia-Teleangiectasia (A-T) is a rare neurodegenerative disorder characterized by progressive cerebellar degeneration. Till few years ago only supportive care was available to improve the neurological function in A-T patients. Even though A-T remains an incurable disease, we recently demonstrated a drug dependent amelioration of neurological signs in A-T patients during a short-term treatment with oral betamethasone. AIMS The aim of this study is to evaluate whether the steroid induced motor performance changes in A-T are associated with functional magnetic resonance imaging (fMRI) modifications. This represents a preliminary pilot study, which requires a validation on a larger cohort of patients. METHODS Six A-T patients received a 10-days cycle of oral betamethasone at 0.03 mg/kg/day. fMRI studies were carried out at T0 and at the end of the cycle. The neurological evaluation was performed through the Scale for the Assessment and Rating of Ataxia (SARA) quantification. The fMRI protocol was a block design with alternating epochs of rest and prono-supination of the dominant (right) hand. RESULTS The voxel-based comparison showed a remarkable increase in the number of activated voxels within the motor cortex under the on-therapy condition as compared with the cortical activity under baseline condition in the 2 patients who completed the study protocol. CONCLUSIONS Changes in motor performance in A-T patients treated with betamethasone are coupled with an increase in the activation in relevant cortical areas, thus suggesting that in A-T patients steroid treatment could improve motor performance facilitating cortical compensatory mechanisms.
Collapse
Affiliation(s)
- Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Novel connections between DNA replication, telomere homeostasis, and the DNA damage response revealed by a genome-wide screen for TEL1/ATM interactions in Saccharomyces cerevisiae. Genetics 2013; 193:1117-33. [PMID: 23378069 DOI: 10.1534/genetics.113.149849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tel1 is the budding yeast ortholog of the mammalian tumor suppressor and DNA damage response (DDR) kinase ATM. However, tel1-Δ cells, unlike ATM-deficient cells, do not exhibit sensitivity to DNA-damaging agents, but do display shortened (but stably maintained) telomere lengths. Neither the extent to which Tel1p functions in the DDR nor the mechanism by which Tel1 contributes to telomere metabolism is well understood. To address the first question, we present the results from a comprehensive genome-wide screen for genetic interactions with tel1-Δ that cause sensitivity to methyl methanesulfonate (MMS) and/or ionizing radiation, along with follow-up characterizations of the 13 interactions yielded by this screen. Surprisingly, many of the tel1-Δ interactions that confer DNA damage sensitivity also exacerbate the short telomere phenotype, suggesting a connection between these two phenomena. Restoration of normal telomere length in the tel1-Δ xxx-Δ mutants results in only minor suppression of the DNA damage sensitivity, demonstrating that the sensitivity of these mutants must also involve mechanisms independent of telomere length. In support of a model for increased replication stress in the tel1-Δ xxx-Δ mutants, we show that depletion of dNTP pools through pretreatment with hydroxyurea renders tel1-Δ cells (but not wild type) MMS-sensitive, demonstrating that, under certain conditions, Tel1p does indeed play a critical role in the DDR.
Collapse
|
59
|
Kim HS, Kim MA, Hodgson D, Harbron C, Wellings R, O'Connor MJ, Womack C, Yin X, Bang YJ, Im SA, Lee BL, Kim WH. Concordance of ATM (ataxia telangiectasia mutated) immunohistochemistry between biopsy or metastatic tumor samples and primary tumors in gastric cancer patients. Pathobiology 2013; 80:127-37. [PMID: 23328638 DOI: 10.1159/000346034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
ATM (ataxia telangiectasia mutated) is one of several DNA repair proteins that are suggested to sensitize tumor cells to the poly(ADP-ribose) polymerase inhibitor olaparib when deficient. The aim of this study was to assess the spatiotemporal concordance of ATM immunohistochemistry (IHC) in gastric cancer in order to determine if measurements made at the level of various sample types and times could be inferred as having the potential to be relevant to treatment decisions made at the patient level. Two independent cohorts composed of 591 gastric cancer patients divided into a gastrectomy cohort (n = 450) and a metastasis cohort (n = 141) were used in this study. A total of 2,705 ATM IHC samples were examined, including 450 whole tissue, 3 sets of 450 tissue microarray (TMA), 301 biopsy, 222 metastatic tumor and 2 additional whole tissue samples of 50 cases from the gastrectomy cohort, and 141 pairs of primary and metastatic tumors from the metastasis cohort. The prevalence of ATM negativity was 13.1% in biopsies, 13.9, 15.1, and 16.0% in TMAs and 15.9% in whole tissue samples of the gastrectomy cohort, and 21.4% in primary tumor and 21.5% in metastatic tumor samples of the metastasis cohort. coefficients were 0.341 for biopsy, 0.572 as the average of 3 TMAs and 0.415 for the largely synchronous metastatic tumors of the gastrectomy cohort, and 0.153 for the largely asynchronous metastatic tumors of the metastasis cohort. Using whole tissue sections from tumor resections or primary tumor, respectively, as the reference standards, specificity and sensitivity were 91.6 and 41.0% for biopsy, 93.9 and 61.9% as the average of 3 TMAs, and 86.6 and 58.8% for metastatic tumors of the gastrectomy cohort and 81.7 and 33.3% for metastatic tumors of the metastasis cohort, respectively. Although we have demonstrated that the IHC assay for ATM was robust and reproducible in gastric tumor samples, we have also found that measurements were subject to significant discordance across multiple sample types from the same patient. Further work will be necessary to determine if classification may be made more consistent by multiple sampling. However, the lack of agreement between primary and asynchronous metastatic samples suggests that such sampling would need to be performed at the time of any treatment decision.
Collapse
Affiliation(s)
- Hee Sung Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Zhang T, Penicud K, Bruhn C, Loizou JI, Kanu N, Wang ZQ, Behrens A. Competition between NBS1 and ATMIN controls ATM signaling pathway choice. Cell Rep 2012; 2:1498-504. [PMID: 23219553 DOI: 10.1016/j.celrep.2012.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/14/2012] [Accepted: 11/02/2012] [Indexed: 01/04/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) protein kinase activation by DNA double-strand breaks (DSBs) requires the Mre11-Rad50-NBS1 (MRN) complex, whereas ATM interactor (ATMIN) protein is required for ATM signaling induced by changes in chromatin structure. We show here that NBS1 and ATMIN proteins compete for ATM binding and that this mechanism controls ATM function. DSB-induced ATM substrate phosphorylation was increased in atmin mutant cells. Conversely, NBS1 deficiency resulted in increased ATMIN-dependent ATM signaling. Thus, the absence of one cofactor increased flux through the alternative pathway. Notably, ATMIN deficiency rescued the cellular lethality of NBS1-deficient cells, and NBS1/ATMIN double deficiency resulted in complete abrogation of ATM signaling and profound radiosensitivity. Hence, ATMIN and NBS1 mediate all ATM signaling by DSBs, and increased ATMIN-dependent ATM signaling explains the different phenotypes of nbs1- and atm-mutant cells. Thus, the antagonism and redundancy of ATMIN and NBS1 constitute a crucial regulatory mechanism for ATM signaling and function.
Collapse
Affiliation(s)
- Tianyi Zhang
- Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | | | | | | | | | |
Collapse
|
61
|
Pietzner J, Baer PC, Duecker RP, Merscher MB, Satzger-Prodinger C, Bechmann I, Wietelmann A, Del Turco D, Doering C, Kuci S, Bader P, Schirmer S, Zielen S, Schubert R. Bone marrow transplantation improves the outcome of Atm-deficient mice through the migration of ATM-competent cells. Hum Mol Genet 2012; 22:493-507. [DOI: 10.1093/hmg/dds448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
62
|
The Chemical Interplay between Nitric Oxide and Mitochondrial Cytochrome c Oxidase: Reactions, Effectors and Pathophysiology. Int J Cell Biol 2012; 2012:571067. [PMID: 22811713 PMCID: PMC3395247 DOI: 10.1155/2012/571067] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/23/2012] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) reacts with Complex I and cytochrome c oxidase (CcOX, Complex IV), inducing detrimental or cytoprotective effects. Two alternative reaction pathways (PWs) have been described whereby NO reacts with CcOX, producing either a relatively labile nitrite-bound derivative (CcOX-NO2
−, PW1) or a more stable nitrosyl-derivative (CcOX-NO, PW2). The two derivatives are both inhibited, displaying different persistency and O2 competitiveness. In the mitochondrion, during turnover with O2, one pathway prevails over the other one depending on NO, cytochrome c2+ and O2 concentration. High cytochrome c2+, and low O2 proved to be crucial in favoring CcOX nitrosylation, whereas under-standard cell-culture conditions formation of the nitrite derivative prevails. All together, these findings suggest that NO can modulate physiologically the mitochondrial respiratory/OXPHOS efficiency, eventually being converted to nitrite by CcOX, without cell detrimental effects. It is worthy to point out that nitrite, far from being a simple oxidation byproduct, represents a source of NO particularly important in view of the NO cell homeostasis, the NO production depends on the NO synthases whose activity is controlled by different stimuli/effectors; relevant to its bioavailability, NO is also produced by recycling cell/body nitrite. Bioenergetic parameters, such as mitochondrial ΔΨ, lactate, and ATP production, have been assayed in several cell lines, in the presence of endogenous or exogenous NO and the evidence collected suggests a crucial interplay between CcOX and NO with important energetic implications.
Collapse
|
63
|
Nayler S, Gatei M, Kozlov S, Gatti R, Mar JC, Wells CA, Lavin M, Wolvetang E. Induced pluripotent stem cells from ataxia-telangiectasia recapitulate the cellular phenotype. Stem Cells Transl Med 2012. [PMID: 23197857 DOI: 10.5966/sctm.2012-0024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pluripotent stem cells can differentiate into every cell type of the human body. Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) therefore provides an opportunity to gain insight into the molecular and cellular basis of disease. Because the cellular DNA damage response poses a barrier to reprogramming, generation of iPSCs from patients with chromosomal instability syndromes has thus far proven to be difficult. Here we demonstrate that fibroblasts from patients with ataxia-telangiectasia (A-T), a disorder characterized by chromosomal instability, progressive neurodegeneration, high risk of cancer, and immunodeficiency, can be reprogrammed to bona fide iPSCs, albeit at a reduced efficiency. A-T iPSCs display defective radiation-induced signaling, radiosensitivity, and cell cycle checkpoint defects. Bioinformatic analysis of gene expression in the A-T iPSCs identifies abnormalities in DNA damage signaling pathways, as well as changes in mitochondrial and pentose phosphate pathways. A-T iPSCs can be differentiated into functional neurons and thus represent a suitable model system to investigate A-T-associated neurodegeneration. Collectively, our data show that iPSCs can be generated from a chromosomal instability syndrome and that these cells can be used to discover early developmental consequences of ATM deficiency, such as altered mitochondrial function, that may be relevant to A-T pathogenesis and amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Sam Nayler
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Ye J, Qi Y, Wang W, Sun F, Wei Q, Su T, Zhou W, Jiang Y, Yuan W, Cai J, Cui B, Ning G. Lower expression of ATM and gene deletion is more frequent in adrenocortical carcinomas than adrenocortical adenomas. Endocrine 2012; 41:479-86. [PMID: 22311173 DOI: 10.1007/s12020-012-9593-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/24/2011] [Indexed: 11/24/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy accounting for approximately 0.02-0.2% of all cancer deaths. The molecular pathogenesis of ACC has been the hot topic of recent reviews but it is still poorly understood. It is imperative to have a better understanding on the pathophysiology of ACC so as to establish precise diagnosis and effective treatment. This study aims to identify the molecular markers between ACCs and adrenocortical adenomas (ACAs). With MLPA, we checked on 10 ACA and 9 ACC tissue samples. The MLPA results showed deletion on chromosomes 18q, 11q, 11p, and 13q and duplication on chromosomes 3q, 4q, 6p, and 19p. There was a significant difference in the number of aberration copies of the ataxia telangiectasia-mutated (ATM) gene located on chromosome 11q22-q23 between ACCs and ACAs. Five out of 9 (56%) ACC specimens had deletion of ATM (P = 0.011). RT-PCR result then demonstrated that ATM mRNA level is lower in ACCs than in ACAs (P < 0.001). In addition, immunohistochemistry (IHC) study of the 19 ACA and 18 ACC samples confirmed lower expression of ATM protein in ACCs than in ACAs (P < 0.001). The study demonstrated that ATM expression was diminished in ACC than in ACA, suggesting an important role of ATM in the tumorigenesis of ACC.
Collapse
Affiliation(s)
- Junna Ye
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, 197 RuiJin Er Lu, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Perlman SL, Boder Deceased E, Sedgewick RP, Gatti RA. Ataxia-telangiectasia. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:307-32. [PMID: 21827897 DOI: 10.1016/b978-0-444-51892-7.00019-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California at Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
66
|
Xu Y, Xu C, Price BD. Mechanistic links between ATM and histone methylation codes during DNA repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:263-88. [PMID: 22749149 DOI: 10.1016/b978-0-12-387665-2.00010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ataxia telangiectasia-mutated (ATM) protein kinase is the master regulator of the DNA double-strand break (DSB) repair pathway. The activation of ATM involves its recruitment to the DSB through interaction with the mre11-rad50-nbs1 complex, followed by the acetylation of ATM by the Tip60 acetyltransferase. This acetylation of ATM within its regulatory domain is essential for activating ATM's kinase activity. Further work has now revealed that Tip60 is activated through direct interaction between Tip60's chromodomain and histone H3 trimethylated on lysine 9 (H3K9me3). The loading of Tip60 onto the chromatin at DSBs therefore represents the primary mechanism for activation of Tip60's acetyltransferase activity in response to DNA damage. The ability of H3K9me3 at DSBs to regulate the activity of Tip60 and the subsequent activation of ATM emphasizes the crucial role played by chromatin architecture in regulating DSB repair. Further, histone methylation and chromatin structure are disrupted in human cancers, implying that altered chromatin structure in tumor cells may impact DSB repair, increasing genomic instability and contributing to the progression of cancer.
Collapse
Affiliation(s)
- Ye Xu
- Division of Genome Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
67
|
Song L, Lin C, Wu Z, Gong H, Zeng Y, Wu J, Li M, Li J. miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS One 2011; 6:e25454. [PMID: 21980462 PMCID: PMC3181320 DOI: 10.1371/journal.pone.0025454] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/05/2011] [Indexed: 02/06/2023] Open
Abstract
The DNA damage response (DDR) encompasses multi-step processes by which cells evolve to sense DNA damage, transduce the signal and initiate the repair of damaged DNA. Ataxia Telangiectasia Mutated (ATM) Kinase, which functions as the primary sensor and transducer of DNA damage signal, has been demonstrated to play an important role in the DDR and cancer prevention. Hence, understanding the molecular mechanisms underlying the regulation of ATM has received much attention. Here, we found that miR-18a was upregulated in both cell lines and patients' tissue samples of breast cancer. Furthermore, we demonstrated that ectopically expressing miR-18a downregulated ATM expression by directly targeting the ATM-3'-UTR and abrogated the IR-induced cell cycle arrest. Similar to the effect of ATM siRNA, overexpressing miR-18a in breast cancer cells reduced the DNA damage repair ability and the efficiency of homologous recombination-based DNA repair (HRR) and sensitized cells to γ-irradiation (IR) treatment. However, inhibition of miR-18a led to augmentation of DNA damage repair, increase of HRR efficiency and reduced cellular radiosensitivity. Moreover, we showed that the phorsphorylation level and nuclear foci formation of H2AX and 53BP1, the downstream substrates of ATM kinase, were significantly deceased in miR-18a overexpressing cells. Taken together, our results uncover a new regulatory mechanism of ATM expression and suggest that miR-18a might be a novel therapeutic target.
Collapse
Affiliation(s)
- Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuyong Lin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiqiang Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Gong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Zeng
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengfeng Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
68
|
Goldgar DE, Healey S, Dowty JG, Da Silva L, Chen X, Spurdle AB, Terry MB, Daly MJ, Buys SM, Southey MC, Andrulis I, John EM, Khanna KK, Hopper JL, Oefner PJ, Lakhani S, Chenevix-Trench G. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 2011; 13:R73. [PMID: 21787400 PMCID: PMC3236337 DOI: 10.1186/bcr2919] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/23/2011] [Accepted: 07/25/2011] [Indexed: 01/20/2023] Open
Abstract
Introduction The ataxia-telangiectasia mutated (ATM) gene (MIM ID 208900) encodes a protein kinase that plays a significant role in the activation of cellular responses to DNA double-strand breaks through subsequent phosphorylation of central players in the DNA damage-response pathway. Recent studies have confirmed that some specific variants in the ATM gene are associated with increased breast cancer (BC) risk. However, the magnitude of risk and the subset of variants that are pathogenic for breast cancer remain unresolved. Methods To investigate the role of ATM in BC susceptibility, we studied 76 rare sequence variants in the ATM gene in a case-control family study of 2,570 cases of breast cancer and 1,448 controls. The variants were grouped into three categories based on their likely pathogenicity, as determined by in silico analysis and analyzed by conditional logistic regression. Likely pathogenic sequence variants were genotyped in 129 family members of 27 carrier probands (15 of which carried c.7271T > G), and modified segregation analysis was used to estimate the BC penetrance associated with these rare ATM variants. Results In the case-control analysis, we observed an odds ratio of 2.55 and 95% confidence interval (CI, 0.54 to 12.0) for the most likely deleterious variants. In the family-based analyses, the maximum-likelihood estimate of the increased risk associated with these variants was hazard ratio (HR) = 6.88 (95% CI, 2.33 to 20.3; P = 0.00008), corresponding to a 60% cumulative risk of BC by age 80 years. Analysis of loss of heterozygosity (LOH) in 18 breast tumors from women carrying likely pathogenic rare sequence variants revealed no consistent pattern of loss of the ATM variant. Conclusions The risk estimates from this study suggest that women carrying the pathogenic variant, ATM c.7271T > G, or truncating mutations demonstrate a significantly increased risk of breast cancer with a penetrance that appears similar to that conferred by germline mutations in BRCA2.
Collapse
Affiliation(s)
- David E Goldgar
- Department of Dermatology, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132-2101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Darlington Y, Nguyen TA, Moon SH, Herron A, Rao P, Zhu C, Lu X, Donehower LA. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice. Oncogene 2011; 31:1155-65. [PMID: 21765465 PMCID: PMC3197977 DOI: 10.1038/onc.2011.303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may have a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared with Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared with their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared with Atm null mice. Finally, doubly null mice were partially rescued from gametogenesis defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular.
Collapse
Affiliation(s)
- Y Darlington
- Interdepartmental Graduate Program in Cell and Molecular Biology, Houston, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Barzilai A. The neuro-glial-vascular interrelations in genomic instability symptoms. Mech Ageing Dev 2011; 132:395-404. [PMID: 21689674 DOI: 10.1016/j.mad.2011.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
A hallmark of neurodegenerative diseases is impairment of certain aspects of "brain functionality", which is defined as the total input and output of the brain's neural circuits and networks. A given neurodegenerative disorder is characterized by affected network organization and topology, cell numbers, cellular functionality, and the interactions between neural circuits. Neuroscientists generally view neurodegenerative disorders as diseases of neuronal cells; however, recent advances suggest a role for glial cells and an impaired vascular system in the etiology of certain neurodegenerative diseases. It is now clear that brain pathology is, to a very great extent, pathology of neurons, glia and the vascular system as these determine the degree of neuronal death as well as the outcome and scale of the neurological deficit. This review article is focused on the intricate interrelations among neurons, glia, the vascular system, neuronal cells, and the DNA damage response. Here I describe various aspects of neural and glial cell fate and the vascular system in genomic instability disorders including ataxia telangiectasia (A-T) and Nijmegen breakage syndrome.
Collapse
Affiliation(s)
- Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
71
|
Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, Carey JP, Nguyen KD, Zee DS. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol 2011; 105:3034-41. [DOI: 10.1152/jn.00721.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental animal models have suggested that the modulation of the amplitude and direction of vestibular reflexes are important functions of the vestibulocerebellum and contribute to the control of gaze and balance. These critical vestibular functions have been infrequently quantified in human cerebellar disease. In 13 subjects with ataxia telangiectasia (A-T), a disease associated with profound cerebellar cortical degeneration, we found abnormalities of several key vestibular reflexes. The vestibuloocular reflex (VOR) was measured by eye movement responses to changes in head rotation. The vestibulocollic reflex (VCR) was assessed with cervical vestibular-evoked myogenic potentials (cVEMPs), in which auditory clicks led to electromyographic activity of the sternocleidomastoid muscle. The VOR gain (eye velocity/head velocity) was increased in all subjects with A-T. An increase of the VCR, paralleling that of the VOR, was indirectly suggested by an increase in cVEMP amplitude. In A-T subjects, alignment of the axis of eye rotation was not with that of head rotation. Subjects with A-T thus manifested VOR cross-coupling, abnormal eye movements directed along axes orthogonal to that of head rotation. Degeneration of the Purkinje neurons in the vestibulocerebellum probably underlie these deficits. This study offers insights into how the vestibulocerebellum functions in healthy humans. It may also be of value to the design of treatment trials as a surrogate biomarker of cerebellar function that does not require controlling for motivation or occult changes in motor strategy on the part of experimental subjects.
Collapse
Affiliation(s)
- Aasef G. Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Sarah Marti
- Department of Neurology, Zürich University Hospital, Zürich, Switzerland; and
| | | | - Antonella Palla
- Department of Neurology, Zürich University Hospital, Zürich, Switzerland; and
| | | | - Dominik Straumann
- Department of Neurology, Zürich University Hospital, Zürich, Switzerland; and
| | - John P. Carey
- Otolaryngology, The Johns Hopkins University, Baltimore, Maryland
| | - Kimanh D. Nguyen
- Otolaryngology, The Johns Hopkins University, Baltimore, Maryland
| | - David S. Zee
- Departments of 3Neurology and
- Otolaryngology, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
72
|
Mao C, Chung VCH, He BF, Luo RC, Tang JL. Association between ATM 5557G>A polymorphism and breast cancer risk: a meta-analysis. Mol Biol Rep 2011; 39:1113-8. [PMID: 21603857 DOI: 10.1007/s11033-011-0839-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 05/05/2011] [Indexed: 12/14/2022]
Abstract
Epidemiological studies have evaluated the association between ATM 5557G>A (p.D1853N) polymorphism and breast cancer risk. However, the results remain conflicting rather than conclusive. To derive a more precise estimation of the relationship, we performed this meta-analysis. Systematic searches of PubMed and Medline databases were performed. A total of nine studies included 3155 cases and 2752 controls were identified. When all nine studies were pooled into the meta-analysis, there was no evidence for significant association between 5557G>A mutation and breast cancer risk(for G/A vs. G/G: OR = 1.05, 95% CI = 0.83-1.34; for A/A vs. G/G: OR = 0.77, 95% CI = 0.58-1.03; for dominant model: OR = 1.04, 95% CI = 0.82-1.31; for recessive model: OR = 0.87, 95% CI = 0.69-1.09). In the subgroup analyses by family history and ethnicity, significant associations were found among Amerindians (for G/A vs. G/G: OR = 2.19, 95% CI = 1.38-3.47; for dominant model: OR = 2.15, 95% CI = 1.37-3.38). In summary, the meta-analysis suggest that ATM 5557G>A polymorphism is associated with increased breast cancer risk among Amerindians. However, due to the small subjects included in analysis and the selection bias existed in some studies, the results for Amerindians should be interpreted with caution.
Collapse
Affiliation(s)
- Chen Mao
- Division of Epidemiology, School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
73
|
Abstract
Ataxia-telangiectasia (A-T) is a rare, neurodegenerative, inherited disease arising from mutations in the kinase A-T mutated (ATM), which promotes cell cycle checkpoints and DNA double-strand break repair. Puzzlingly, these ATM activities fail to fully explain A-T neuropathologies, which instead have links to stress induced by reactive oxygen species (ROS). However, a landmark discovery reveals an unexpected intersection of ROS and kinase signaling: ATM can be directly activated by oxidation to form a disulfide-linked dimer in a mechanism distinct from DNA damage activation. When combined with notable structural-based insights into the ATM homolog DNA-PK (DNA-protein kinase) and mTOR (mammalian target of rapamycin), these results suggest conformation and assembly mechanisms to signal oxidative stress through an ATM nodal point. These findings fundamentally affect our understanding of ROS and ATM signaling and of the A-T phenotype, with implications for altering signaling in cancer cells to increase sensitivities to current therapeutic interventions.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Skaggs Institute for Chemical Biology, Department of Molecular Biology, La Jolla, CA 92037, USA
| | | |
Collapse
|
74
|
Zühlke C, Kreuz F, Bürk K. [Clinical details and genetics of recessive ataxias]. DER NERVENARZT 2011; 82:447-458. [PMID: 20640395 DOI: 10.1007/s00115-010-3079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological diseases affecting both the central and the peripheral nervous systems. They are characterized by autosomal recessive inheritance, progressive ataxia and degeneration of the cerebellum and spinal cord. Onset is generally before the third decade of life. The most frequent of these rare disorders in the Caucasian population is Friedreich's ataxia followed by ataxias with oculomotor apraxia. ARCAs are caused by mutations at specific loci but not every affected gene is known to date. Clinical diagnosis can be confirmed by ancillary tests (biochemical, neuroimaging and electrophysiological investigations) and mutation analyses if the causative gene has been identified. Correct clinical and genetic diagnosis is necessary for prognosis, genetic counseling and pharmacological treatment. For the majority of ARCAs a curative treatment is not available.
Collapse
Affiliation(s)
- C Zühlke
- Institut für Humangenetik, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck.
| | | | | |
Collapse
|
75
|
|
76
|
Xie P, Li L, Xing G, Tian C, Yin Y, He F, Zhang L. ATM-mediated NuSAP phosphorylation induces mitotic arrest. Biochem Biophys Res Commun 2010; 404:413-8. [PMID: 21130744 DOI: 10.1016/j.bbrc.2010.11.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/27/2010] [Indexed: 01/27/2023]
Abstract
NuSAP is a microtubule-associated protein that plays an important role in spindle assembly. NuSAP deficiency in mice leads to early embryonic lethality. Spindle assembly in NuSAP-deficient cells is highly inefficient and chromosomes remain dispersed in the mitotic cytoplasm. ATM is a key kinase that phosphorylates a series of substrates to mediate G1/S control. However, the role of ATM at the G2/M phase is not well understood. Here we demonstrate that ectopic expression of NuSAP lead to mitotic arrest observably dependent on the kinase activity of ATM. When endogenous ATM was depleted or its kinase activity was inhibited, NuSAP could not cause mitotic arrest. We further show ATM interacts with NuSAP and phosphorylates NuSAP on Ser124. The phosphorylation and interaction occur specifically at G2/M-phase. Collectively, our work has uncovered an ATM-dependent checkpoint pathway that prevents mitotic progression by targeting a microtubule-associated protein, NuSAP.
Collapse
Affiliation(s)
- Ping Xie
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
77
|
H'mida-Ben Brahim D, M'zahem A, Assoum M, Bouhlal Y, Fattori F, Anheim M, Ali-Pacha L, Ferrat F, Chaouch M, Lagier-Tourenne C, Drouot N, Thibaut C, Benhassine T, Sifi Y, Stoppa-Lyonnet D, N'Guyen K, Poujet J, Hamri A, Hentati F, Amouri R, Santorelli FM, Tazir M, Koenig M. Molecular diagnosis of known recessive ataxias by homozygosity mapping with SNP arrays. J Neurol 2010; 258:56-67. [PMID: 20798953 DOI: 10.1007/s00415-010-5682-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 01/18/2023]
Abstract
The diagnosis of rare inherited diseases is becoming more and more complex as an increasing number of clinical conditions appear to be genetically heterogeneous. Multigenic inheritance also applies to the autosomal recessive progressive cerebellar ataxias (ARCAs), for which 14 genes have been identified and more are expected to be discovered. We used homozygosity mapping as a guide for identification of the defective locus in patients with ARCA born from consanguineous parents. Patients from 97 families were analyzed with GeneChip Mapping 10K or 50K SNP Affymetrix microarrays. We identified six families homozygous for regions containing the autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) gene, two families homozygous for the ataxia-telangiectasia gene (ATM), two families homozygous for the ataxia with oculomotor apraxia type 1 (AOA1) gene, and one family homozygous for the AOA type 2 (AOA2) gene. Upon direct gene testing, we were able to identify a disease-related mutation in all families but one of the two kindred homozygous at the ATM locus. Although linkage analyses pointed to a single locus on chromosome 11q22.1-q23.1 for this family, clinical features, normal levels of serum alpha-foetoprotein as well as absence of mutations in the ATM gene rather suggest the existence of an additional ARCA-related gene in that interval. While the use of homozygosity mapping was very effective at pointing to the correct gene, it also suggests that the majority of patients harbor mutations either in the genes of the rare forms of ARCA or in genes yet to be identified.
Collapse
Affiliation(s)
- D H'mida-Ben Brahim
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 67404, Illkirch, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Poehlmann A, Roessner A. Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract 2010; 206:591-601. [PMID: 20674189 DOI: 10.1016/j.prp.2010.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All forms of life on earth must cope with constant exposure to DNA-damaging agents that may promote cancer development. As a biological barrier, known as DNA damage response (DDR), cells are provided with both DNA repair mechanisms and highly conserved cell cycle checkpoints. The latter are responsible for the control of cell cycle phase progression with ATM, ATR, Chk1, and Chk2 as the main signaling molecules, thus dealing with both endogenous and exogenous sources of DNA damage. As cell cycle checkpoint and also DNA repair genes, such as BRCA1 and BRCA2, are frequently mutated, we here discuss their fundamental roles in the pathogenesis of human cancers. Importantly, as current evidence also suggests a role of MAPK's (mitogen activated protein kinases) in cell cycle checkpoint control, we describe in this review both the ATR/ATM-Chk1/Chk2 signaling pathways as well as the regulation of cell cycle checkpoints by MAPK's as molecular mechanisms in DDR, and how their dysfunction is related to cancer development. Moreover, since damage to DNA might be the common underlying mechanism for the positive outcome of chemotherapy, we also discuss targeting anticancer treatments on cell cycle checkpoints as an important issue emerging in drug discovery.
Collapse
Affiliation(s)
- Angela Poehlmann
- Department of Pathology, Otto-von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | |
Collapse
|
79
|
Derheimer FA, Kastan MB. Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 2010; 584:3675-81. [PMID: 20580718 DOI: 10.1016/j.febslet.2010.05.031] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/14/2010] [Indexed: 01/17/2023]
Abstract
The ability of our cells to maintain genomic integrity is fundamental for protection from cancer development. Central to this process is the ability of cells to recognize and repair DNA damage and progress through the cell cycle in a regulated and orderly manner. In addition, protection of chromosome ends through the proper assembly of telomeres prevents loss of genetic information and aberrant chromosome fusions. Cells derived from patients with ataxia-telangiectasia (A-T) show defects in cell cycle regulation, abnormal responses to DNA breakage, and chromosomal end-to-end fusions. The identification and characterization of the ATM (ataxia-telangiectasia, mutated) gene product has provided an essential tool for researchers in elucidating cellular mechanisms involved in cell cycle control, DNA repair, and chromosomal stability.
Collapse
Affiliation(s)
- Frederick A Derheimer
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
80
|
Hitomi M, Stacey DW. The checkpoint kinase ATM protects against stress-induced elevation of cyclin D1 and potential cell death in neurons. Cytometry A 2010; 77:524-33. [DOI: 10.1002/cyto.a.20885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
81
|
Rosen EM, Fan S, Rockwell S, Goldberg ID. The Molecular and Cellular Basis of Radiosensitivity: Implications for Understanding How Normal Tissues and Tumors Respond to Therapeutic Radiation. Cancer Invest 2010. [DOI: 10.1080/07357909909011718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
82
|
Bernstein JL, Haile RW, Stovall M, Boice JD, Shore RE, Langholz B, Thomas DC, Bernstein L, Lynch CF, Olsen JH, Malone KE, Mellemkjaer L, Borresen-Dale AL, Rosenstein BS, Teraoka SN, Diep AT, Smith SA, Capanu M, Reiner AS, Liang X, Gatti RA, Concannon P. Radiation exposure, the ATM Gene, and contralateral breast cancer in the women's environmental cancer and radiation epidemiology study. J Natl Cancer Inst 2010; 102:475-83. [PMID: 20305132 DOI: 10.1093/jnci/djq055] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ionizing radiation is a known mutagen and an established breast carcinogen. The ATM gene is a key regulator of cellular responses to the DNA damage induced by ionizing radiation. We investigated whether genetic variants in ATM play a clinically significant role in radiation-induced contralateral breast cancer in women. METHODS The Women's Environmental, Cancer, and Radiation Epidemiology Study is an international population-based case-control study nested within a cohort of 52,536 survivors of unilateral breast cancer diagnosed between 1985 and 2000. The 708 case subjects were women with contralateral breast cancer, and the 1397 control subjects were women with unilateral breast cancer matched to the case subjects on age, follow-up time, registry reporting region, and race and/or ethnicity. All women were interviewed and underwent full mutation screening of the entire ATM gene. Complete medical treatment history information was collected, and for all women who received radiotherapy, the radiation dose to the contralateral breast was reconstructed using radiotherapy records and radiation measurements. Rate ratios (RRs) and corresponding 95% confidence intervals (CIs) were estimated by using multivariable conditional logistic regression. All P values are two-sided. RESULTS Among women who carried a rare ATM missense variant (ie, one carried by <1% of the study participants) that was predicted to be deleterious, those who were exposed to radiation (mean radiation exposure = 1.2 Gy, SD = 0.7) had a statistically significantly higher risk of contralateral breast cancer compared with unexposed women who carried the wild-type genotype (0.01-0.99 Gy: RR = 2.8, 95% CI = 1.2 to 6.5; > or =1.0 Gy: RR = 3.3, 95% CI = 1.4 to 8.0) or compared with unexposed women who carried the same predicted deleterious missense variant (0.01-0.99 Gy: RR = 5.3, 95% CI = 1.6 to 17.3; > or =1.0 Gy: RR = 5.8, 95% CI = 1.8 to 19.0; P(trend) = .044). CONCLUSIONS Women who carry rare deleterious ATM missense variants and who are treated with radiation may have an elevated risk of developing contralateral breast cancer. However, the rarity of these deleterious missense variants in human populations implies that ATM mutations could account for only a small portion of second primary breast cancers.
Collapse
Affiliation(s)
- Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 307 E 63rd St Fl 3, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Berkun Y, Vilozni D, Levi Y, Borik S, Waldman D, Somech R, Nissenkorn A, Efrati O. Reversible airway obstruction in children with ataxia telangiectasia. Pediatr Pulmonol 2010; 45:230-5. [PMID: 20146367 DOI: 10.1002/ppul.21095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Lung disease is a significant cause of the short life span of ataxia telangiectasia (A-T) patients. Objective lung function measurements are difficult to achieve in A-T. AIM To assess lung function by spirometry in relation to the clinical characteristics of A-T patients followed up at the Israeli Ataxia Telangiectasia National Clinic. PATIENTS AND METHODS Medical and spirometry data were collected from 27 A-T patients during 2004-2007. Laboratory, nutritional condition, mode of treatment, pulmonary status, and malignancies were assessed. The spirometry values FVC, FEV(1), FEV(0.5), FEF(25-75), PEF and time rise to peak flow were analyzed individually and values were compared to those of healthy age-matched children. RESULTS Eleven patients (40.7%) were found to suffer from asthma according to clinical symptoms and response to bronchodilators. We found significant reduction in FEV(1) and FEV(0.5) (z-scores: -0.84 + or - 0.7 SD, -0.7 + or - 0.6 SD; P = 0.0014 and P = 0.003, respectively), in relation to healthy predicted values. FEF(25-75) was significantly lower than that in healthy children in 5 of 11 asthmatic patients. All 27 patients showed higher than healthy FEV(1)/FVC and FEV(0.5)/FVC ratios (z-scores 0.68 + or - 0.99 SD, P < 0.0015, and 2.12 + or - 1.50 SD, P < 0.0015, respectively). The rise time to peak flow was three-fold longer than that of healthy children. CONCLUSION Obstructive lung disease is common among A-T patients. Maximal peak flow reduction and prolonged rise time to peak flow may be the first signs of pulmonary involvement in these patients. Early treatment with anti-asthma therapy, bronchodilators, and steroids, may prevent further pulmonary deterioration and improve the prognosis of A-T patients.
Collapse
Affiliation(s)
- Yackov Berkun
- Ataxia Telangiectasia National Clinic, Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Medical School, Tel-Aviv University, Israel
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Ataxia-telangiectasia is an autosomal recessive disorder caused by mutation in the ATM gene. Hallmarks of the disease comprise progressive cerebellar ataxia, oculocutaneous telangiectasiae, cancer susceptibility, and variable humoral and cellular immunodeficiency. We report a patient who, because of the pattern of her immunodeficiency, was primarily diagnosed as an autosomal recessive hyper-IgM syndrome. Only a mild cerebellar ataxia was present at the age of 7 years then she developed a Wilms tumor (nephroblastoma). Conventional radiotherapy for the malignancy led to fatal consequences. Postmortem studies confirmed diagnosis of ataxia-telangiectasia.
Collapse
|
85
|
Pollard JM, Gatti RA. Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys 2009; 74:1323-31. [PMID: 19616740 PMCID: PMC2725446 DOI: 10.1016/j.ijrobp.2009.02.057] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
Abstract
Adverse reactions to radiotherapy represent a confounding phenomenon in radiation oncology. These reactions are rare, and many have been associated with individuals with DNA repair disorders such as ataxia-telangiectasia and Nijmegen Breakage syndrome. A paucity of published data is available detailing such circumstances. This overview describes four exemplary situations, a comprehensive list of 32 additional cases, and some insights gleaned from this overall experience. Fanconi anemia was associated with more than one-half of the reports. The lowest dose given to a patient that resulted in a reaction was 3 Gy, given to an ataxia-telangiectasia patient. Most patients died within months of exposure. It is clear that the patients discussed in this report had complicated illnesses, in addition to cancer, and the radiotherapy administered was most likely their best option. However, the underlying DNA repair defects make conventional radiation doses dangerous. Our findings support previous wisdom that radiotherapy should either be avoided or the doses should be selected with great care in the case of these radiosensitive genotypes, which must be recognized by their characteristic phenotypes, until more rapid, reliable, and functional assays of DNA repair become available.
Collapse
Affiliation(s)
- Julianne M Pollard
- Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
86
|
Fu L, Gao Z, Zhang X, Tsang YH, Goh HK, Geng H, Shimizu N, Tsuchiyama J, Srivastava G, Tao Q. Frequent concomitant epigenetic silencing of the stress-responsive tumor suppressor gene CADM1, and its interacting partner DAL-1 in nasal NK/T-cell lymphoma. Int J Cancer 2009; 124:1572-8. [PMID: 19115211 DOI: 10.1002/ijc.24123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nasal NK/T-cell lymphoma (NL) is a rare but clinically important entity of lymphoma. Its preferential incidence in Orientals but not Caucasians suggests possible genetic predisposition. 11q deletion is common in NL, indicating certain tumor suppressor genes (TSGs) at this locus involved in its pathogenesis. We investigated the expression and methylation of an 11q23.2 TSG, CADM1 (or TSLC1), and its partner DAL-1 (or EPB41L3) in NL. Methylation and silencing of CADM1 were detected in 2 NL and 4 of 8 (50%) of non-Hodgkin lymphoma (NHL) cell lines, but not in normal NK cells and normal PBMC. Absence of CADM1 protein was also detected in NL cell lines. 5-aza-2'-deoxycytidine (Aza) demethylation or genetic knockout of both DNMT1 and 3B genes restored CADM1 and DAL-1 expression. CADM1 methylation was further detected in 36 of 45 (80%) of NL tumors. Concomitantly, DAL-1 was epigenetically inactivated in NL cell lines and virtually all the tumors with methylated CADM1. A significant correlation between the methylation of both genes was found (p < 0.0001). Homozygous deletion of CADM1 was detected in only 3 of 18 (17%) of tumors. The stress-response of CADM1 was abolished when its promoter becomes methylated. Our results demonstrate a frequent, predominant epigenetic silencing of CADM1 and DAL-1 in NL, which likely play a synergic role in NL pathogenesis.
Collapse
Affiliation(s)
- Li Fu
- Johns Hopkins Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Barnett GC, West CML, Dunning AM, Elliott RM, Coles CE, Pharoah PDP, Burnet NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 2009; 9:134-42. [PMID: 19148183 PMCID: PMC2670578 DOI: 10.1038/nrc2587] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A key challenge in radiotherapy is to maximize radiation doses to cancer cells while minimizing damage to surrounding healthy tissue. As severe toxicity in a minority of patients limits the doses that can be safely given to the majority, there is interest in developing a test to measure an individual's radiosensitivity before treatment. Variation in sensitivity to radiation is an inherited genetic trait and recent progress in genotyping raises the possibility of genome-wide studies to characterize genetic profiles that predict patient response to radiotherapy.
Collapse
Affiliation(s)
- Gillian C Barnett
- Department of Oncology, University of Cambridge, Oncology Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
88
|
Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008; 9:759-69. [PMID: 18813293 DOI: 10.1038/nrm2514] [Citation(s) in RCA: 660] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
First described over 80 years ago, ataxia-telangiectasia (A-T) was defined as a clinical entity 50 years ago. Although not encountered by most clinicians, it is a paradigm for cancer predisposition and neurodegenerative disorders and has a central role in our understanding of the DNA-damage response, signal transduction and cell-cycle control. The discovery of the protein A-T mutated (ATM) that is deficient in A-T paved the way for rapid progress on understanding how ATM functions with a host of other proteins to protect against genome instability and reduce the risk of cancer and other pathologies.
Collapse
|
89
|
Honda M, Takagi M, Chessa L, Morio T, Mizuatni S. Rapid diagnosis of ataxia-telangiectasia by flow cytometric monitoring of DNA damage-dependent ATM phosphorylation. Leukemia 2008; 23:409-14. [DOI: 10.1038/leu.2008.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
di Masi A. May a missense mutation be more deleterious than a truncating mutation? IUBMB Life 2008; 60:79-81. [PMID: 18379996 DOI: 10.1002/iub.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
91
|
Biton S, Barzilai A, Shiloh Y. The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst) 2008; 7:1028-38. [PMID: 18456574 DOI: 10.1016/j.dnarep.2008.03.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human genomic instability syndromes affect the nervous system to different degrees of severity, attesting to the vulnerability of the CNS to perturbations of genomic integrity and the DNA damage response (DDR). Ataxia-telangiectasia (A-T) is a typical genomic instability syndrome whose major characteristic is progressive neuronal degeneration but is also associated with immunodeficiency, cancer predisposition and acute sensitivity to ionizing radiation and radiomimetic chemicals. A-T is caused by loss or inactivation of the ATM protein kinase, which mobilizes the complex, multi-branched cellular response to double strand breaks in the DNA by phosphorylating numerous DDR players. The link between ATM's function in the DDR and the neuronal demise in A-T has been questioned in the past. However, recent studies of the ATM-mediated DDR in neurons suggest that the neurological phenotype in A-T is indeed caused by deficiency in this function, similar to other features of the disease. Still, major issues concerning this phenotype remain open, including the presumed differences between the DDR in post-mitotic neurons and proliferating cells, the nature of the damage that accumulates in the DNA of ATM-deficient neurons under normal life conditions, the mode of death of ATM-deficient neurons, and the lack of a major neuronal phenotype in the mouse model of A-T. A-T remains a prototype disease for the study of the DDR's role in CNS development and maintenance.
Collapse
Affiliation(s)
- Sharon Biton
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
92
|
Sivasubramaniam S, Sun X, Pan YR, Wang S, Lee EYHP. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev 2008; 22:587-600. [PMID: 18283122 DOI: 10.1101/gad.1627708] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The activation of the ataxia telangiectasia mutated (ATM) and ATM/Rad3-related (ATR) kinases triggers a diverse cellular response including the initiation of DNA damage-induced cell cycle checkpoints. Mediator of DNA Damage Checkpoint protein, MDC1, and H2AX are chromatin remodeling factors required for the recruitment of DNA repair proteins to the DNA damage sites. We identified a novel mediator protein, Cep164 (KIAA1052), that interacts with both ATR and ATM. Cep164 is phosphorylated upon replication stress, ultraviolet radiation (UV), and ionizing radiation (IR). Ser186 of Cep164 is phosphorylated by ATR/ATM in vitro and in vivo. The phosphorylation of Ser186 is not affected by RPA knockdown but is severely hampered by MDC1 knockdown. siRNA-mediated silencing of Cep164 significantly reduces DNA damage-induced phosphorylation of RPA, H2AX, MDC1, CHK2, and CHK1, but not NBS1. Analyses of Cep164 knockdown cells demonstrate a critical role of Cep164 in G2/M checkpoint and nuclear divisions. These findings reveal that Cep164 is a key player in the DNA damage-activated signaling cascade.
Collapse
Affiliation(s)
- Sudhakar Sivasubramaniam
- Department of Biological Chemistry and Department of Developmental and Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
93
|
Detection of ATM Gene Mutations in Young Lung Cancer Patients: A Population-based Control Study. Arch Med Res 2008; 39:226-31. [DOI: 10.1016/j.arcmed.2007.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/24/2007] [Indexed: 12/31/2022]
|
94
|
Du L, Lai CH, Concannon P, Gatti RA. Rapid screen for truncating ATM mutations by PTT-ELISA. Mutat Res 2008; 640:139-44. [PMID: 18321536 DOI: 10.1016/j.mrfmmm.2008.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/29/2007] [Accepted: 01/10/2008] [Indexed: 11/19/2022]
Abstract
Mutations in the ataxia-telangiectasia mutated (ATM) gene are responsible for the autosomal recessive genetic disorder, ataxia-telangiectasia (A-T). Approximately 80% of ATM mutations found in A-T patients results in truncations, which can be detected by Protein Truncation Test (PTT). Conventional PTT uses SDS-PAGE electrophoresis to detect mobility of radiolabeled truncated protein fragments. In this study, we developed a non-radioactive Protein Truncation Test which utilizes an enzyme-linked immunosorbent assay (PTT-ELISA) to detect ATM mutations in eight overlapping fragments. N- and C-terminal epitopes (c-myc and V5, respectively) were introduced into transcription/translation products, which could then be detected by Sandwich ELISA. Using this assay, we screened 9 newly diagnosed A-T patients consecutively. Of the 18 expected mutations, 14 truncating mutations were independently identified by cDNA direct sequencing and/or DNA dHPLC analysis. PTT-ELISA detected all of these 14. Four mutations were novel. The PTT-ELISA provides a rapid method for detecting truncating mutations in large genes and should be considered prior to using more laborious or costly methods, such as direct sequencing.
Collapse
Affiliation(s)
- Liutao Du
- Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine at UCLA, CA 90095, United States
| | | | | | | |
Collapse
|
95
|
Ahmed KM, Li JJ. ATM-NF-kappaB connection as a target for tumor radiosensitization. Curr Cancer Drug Targets 2008; 7:335-42. [PMID: 17979628 DOI: 10.2174/156800907780809769] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ionizing radiation (IR) plays a key role in both areas of carcinogenesis and anticancer radiotherapy. The ATM (ataxia-telangiectasia mutated) protein, a sensor to IR and other DNA-damaging agents, activates a wide variety of effectors involved in multiple signaling pathways, cell cycle checkpoints, DNA repair and apoptosis. Accumulated evidence also indicates that the transcription factor NF-kappaB (nuclear factor-kappaB) plays a critical role in cellular protection against a variety of genotoxic agents including IR, and inhibition of NF-kappaB leads to radiosensitization in radioresistant cancer cells. NF-kappaB was found to be defective in cells from patients with A-T (ataxia-telangiectasia) who are highly sensitive to DNA damage induced by IR and UV lights. Cells derived from A-T individuals are hypersensitive to killing by IR. Both ATM and NF-kappaB deficiencies result in increased sensitivity to DNA double strand breaks. Therefore, identification of the molecular linkage between the kinase ATM and NF-kappaB signaling in tumor response to therapeutic IR will lead to a better understanding of cellular response to IR, and will promise novel molecular targets for therapy-associated tumor resistance. This review article focuses on recent findings related to the relationship between ATM and NF-kappaB in response to IR. Also, the association of ATM with the NF-kappaB subunit p65 in adaptive radiation response, recently observed in our lab, is also discussed.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Division of Molecular Radiobiology, Purdue University School of Health Sciences, Purdue Cancer Center, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
96
|
Lee JH, Paull TT. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 2007; 26:7741-8. [PMID: 18066086 DOI: 10.1038/sj.onc.1210872] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ataxia-telangiectasia-mutated (ATM) protein kinase is rapidly and specifically activated in response to DNA double-strand breaks in eukaryotic cells. In this review, we summarize recent insights into the mechanism of ATM activation, focusing on the role of the Mre11/Rad50/Nbs1 (MRN) complex in this process. We also compare observations of the ATM activation process in different biological systems and highlight potential candidates for cellular factors that may participate in regulating ATM activity in human cells.
Collapse
Affiliation(s)
- J-H Lee
- Department of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
97
|
Masci A, Mastronicola D, Arese M, Piane M, De Amicis A, Blanck TJJ, Chessa L, Sarti P. Control of cell respiration by nitric oxide in Ataxia Telangiectasia lymphoblastoid cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:66-73. [PMID: 18047827 DOI: 10.1016/j.bbabio.2007.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 01/21/2023]
Abstract
Ataxia Telangiectasia (AT) patients are particularly sensitive to oxidative-nitrosative stress. Nitric oxide (NO) controls mitochondrial respiration via the reversible inhibition of complex IV. The mitochondrial response to NO of AT lymphoblastoid cells was investigated. Cells isolated from three patients and three intrafamilial healthy controls were selected showing within each group a normal diploid karyotype and homogeneous telomere length. Different complex IV NO-inhibition patterns were induced by varying the electron flux through the respiratory chain, using exogenous cell membrane permeable electron donors. Under conditions of high electron flux the mitochondrial NO inhibition of respiration was greater in AT than in control cells (P< or =0.05). This property appears peculiar to AT, and correlates well to the higher concentration of cytochrome c detected in the AT cells. This finding is discussed on the basis of the proposed mechanism of reaction of NO with complex IV. It is suggested that the peculiar response of AT mitochondria to NO stress may be relevant to the mitochondrial metabolism of AT patients.
Collapse
Affiliation(s)
- Alessandra Masci
- Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Alterman N, Fattal-Valevski A, Moyal L, Crawford TO, Lederman HM, Ziv Y, Shiloh Y. Ataxia-telangiectasia: mild neurological presentation despite null ATM mutation and severe cellular phenotype. Am J Med Genet A 2007; 143A:1827-34. [PMID: 17632790 DOI: 10.1002/ajmg.a.31853] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by progressive neurodegeneration, immunodeficiency, susceptibility to cancer, genomic instability, and sensitivity to ionizing radiation. A-T is caused by mutations that eliminate or inactivate the nuclear protein kinase ATM, the chief activator of the cellular response to double strand breaks (DSBs) in the DNA. Mild A-T is usually caused by ATM mutations that leave residual amounts of active ATM. We studied two siblings with mild A-T, as defined by clinical examination and a quantitative A-T neurological index. Surprisingly, no ATM was detected in the patients' cells, and sequence analysis revealed that they were homozygous for a truncating ATM mutation (5653delA) that is expected to lead to the classical, severe neurological presentation. Moreover, the cellular phenotype of these patients was indistinguishable from that of classical A-T: all the tested parameters of the DSB response were severely defective as in typical A-T. This analysis shows that the severity of the neurological component of A-T is determined not only by ATM mutations but also by other influences yet to be found.
Collapse
Affiliation(s)
- Neora Alterman
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
99
|
Ray D, Terao Y, Nimbalkar D, Hirai H, Osmundson EC, Zou X, Franks R, Christov K, Kiyokawa H. Hemizygous disruption of Cdc25A inhibits cellular transformation and mammary tumorigenesis in mice. Cancer Res 2007; 67:6605-11. [PMID: 17638870 DOI: 10.1158/0008-5472.can-06-4815] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CDC25A phosphatase activates multiple cyclin-dependent kinases (CDK) during cell cycle progression. Inactivation of CDC25A by ubiquitin-mediated degradation is a major mechanism of DNA damage-induced S-G(2) checkpoint. Although increased CDC25A expression has been reported in various human cancer tissues, it remains unclear whether CDC25A activation is a critical rate-limiting step of carcinogenesis. To assess the role for CDC25A in cell cycle control and carcinogenesis, we used a Cdc25A-null mouse strain we recently generated. Whereas Cdc25A(-/-) mice exhibit early embryonic lethality, Cdc25A(+/-) mice show no appreciable developmental defect. Cdc25A(+/-) mouse embryonic fibroblasts (MEF) exhibit normal kinetics of cell cycle progression at early passages, modestly enhanced G(2) checkpoint response to DNA damage, and shortened proliferative life span, compared with wild-type MEFs. Importantly, Cdc25A(+/-) MEFs are significantly resistant to malignant transformation induced by coexpression of H-ras(V12) and a dominant negative p53 mutant. The rate-limiting role for CDC25A in transformation is further supported by decreased transformation efficiency in MCF-10A human mammary epithelial cells stably expressing CDC25A small interfering RNA. Consistently, Cdc25A(+/-) mice show substantially prolonged latency in mammary tumorigenesis induced by MMTV-H-ras or MMTV-neu transgene, whereas MMTV-myc-induced tumorigenesis is not significantly affected by Cdc25A heterozygosity. Mammary tissues of Cdc25A(+/-);MMTV-neu mice before tumor development display less proliferative response to the oncogene with increased tyrosine phosphorylation of CDK1/2, but show no significant change in apoptosis. These results suggest that Cdc25A plays a rate-limiting role in transformation and tumor initiation mediated by ras activation.
Collapse
Affiliation(s)
- Dipankar Ray
- Department of Molecular Pharmacology and Biological Chemistry, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Bennetts JS, Rendtorff ND, Simpson F, Tranebjaerg L, Wicking C. The coding region of TP53INP2, a gene expressed in the developing nervous system, is not altered in a family with autosomal recessive non-progressive infantile ataxia on chromosome 20q11-q13. Dev Dyn 2007; 236:843-52. [PMID: 17238154 DOI: 10.1002/dvdy.21064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The locus for autosomal recessive infantile cerebellar ataxia (CLA3 or SCAR6) has been mapped to chromosome 20q11-q13 in a single Norwegian pedigree. We identified a relatively uncharacterised mouse gene Tp53inp2, and showed that its human orthologue mapped within this candidate interval. Tp53inp2 appears to encode a mammalian-specific protein with homology to the two Tp53inp1 isoforms that respond to cellular stress and interact with p53. We show that Tp53inp2 expression is highly restricted during mouse embryogenesis, with strong expression in the developing brain and spinal cord, as well as in the sensory and motor neuron tracts of the peripheral nervous system. Given this expression pattern, the neurological phenotype of CLA3 and the chromosomal localisation of TP53INP2, we searched the coding region for mutations in samples from individuals from the CLA3 pedigree. Our failure to detect causative mutations suggests that alterations in the coding region of TP53INP2 are not responsible for ataxia in this family, although we cannot rule out changes in non-coding elements of this gene.
Collapse
|