51
|
Sui T, Liu D, Liu T, Deng J, Chen M, Xu Y, Song Y, Ouyang H, Lai L, Li Z. LMNA-mutated Rabbits: A Model of Premature Aging Syndrome with Muscular Dystrophy and Dilated Cardiomyopathy. Aging Dis 2019; 10:102-115. [PMID: 30705772 PMCID: PMC6345340 DOI: 10.14336/ad.2018.0209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
Premature aging syndromes are rare genetic disorders mimicking clinical and molecular features of aging. Products of the LMNA gene, primarily lamin A and C, are major components of the nuclear lamina. A recently identified group of premature aging syndromes was related to mutations of the LMNA gene. Although LMNA disorders have been identified in premature aging syndromes, affect specifically the skeletal muscles, cardiac muscles, and lipodystrophy, understanding the pathogenic mechanisms still need to be elucidated. Here, to establish a rabbit knockout (KO) model of premature aging syndromes, we performed precise LMNA targeting in rabbits via co-injection of Cas9/sgRNA mRNA into zygotes. The LMNA-KO rabbits exhibited reduced locomotion activity with abnormal stiff walking posture and a shortened stature, all of them died within 22 days. In addition, cardiomyopathy, muscular dystrophy, bone and joint abnormalities, as well as lipodystrophy were observed in LMNA-KO rabbits. In conclusion, the novel rabbit LMNA-KO model, displayed typical features of histopathological defects that are observed in premature aging syndromes, and may be utilized as a valuable resource for understanding the pathophysiological mechanisms of premature aging syndromes and elucidating mysteries of the normal process of aging in humans.
Collapse
Affiliation(s)
- Tingting Sui
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Di Liu
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Tingjun Liu
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Jichao Deng
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Mao Chen
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yuanyuan Xu
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yuning Song
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China.,2Key Laboratory of Regenerative Biology, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
52
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
53
|
Yu XX, Zhong JZ, Guan HL, Zhang M, Lan D. [Clinical and genetic features of limb-girdle muscular dystrophy type 1B: a case report]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:1015-1019. [PMID: 30572990 PMCID: PMC7389491 DOI: 10.7499/j.issn.1008-8830.2018.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
This article reports a case of limb-girdle muscular dystrophy type 1B (LGMD1B) caused by a novel splicing heterozygous mutation in the LMNA gene. The proband presented with progressive aggravation of weakness in walking. There was no atrophy of the scapular muscles and the lower-extremity proximal muscles, with normal muscle tension of the extremities, grade 4 muscle strength in the upper and lower extremities, and positive Gower sign. The level of creatine kinase was 779 U/L. Muscle hematoxylin-eosin staining showed muscular dystrophy, and there was no significant reduction in the expression of Lamin A protein. Second-generation sequencing revealed a novel splicing heterozygous mutation, c.810+2T>C, in the LMNA gene, while this locus was normal in his parents. GERP++RS software predicted that the mutation site was highly conservative. Human Splice Finder and Spliceman software predicted that the mutation might be a pathogenic mutation. ExPASy software predicted that the new amino acid sequence became shorter. There were two sequences of mRNA in the patient's muscle: one was the normal sequence, which accounted for 92.2%; the other was partial intron 4 retention, which was the abnormal splice variant accounting for 7.8%. LGMD1B is a type of autosomal dominant inherited myopathy caused by a mutation in the LMNA gene located on the autosomal 1q22. This study extends the mutation spectrum of the LMNA gene and provides help to the diagnosis of LGMD1B.
Collapse
Affiliation(s)
- Xin-Xiu Yu
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | | | | | | | | |
Collapse
|
54
|
GóMez-Andrés D, Díaz-Manera J, Alejaldre A, Pulido-Valdeolivas I, GonzáLez-Mera L, Olivé M, Vilchez JJ, De Munain AL, Paradas C, Muelas N, SáNchez-MontáÑez Á, Alonso-Jimenez A, De la Banda MGG, Dabaj I, Bonne G, Munell F, Carlier RY, Quijano-Roy S. Muscle imaging in laminopathies: Synthesis study identifies meaningful muscles for follow-up. Muscle Nerve 2018; 58:812-817. [PMID: 30066418 DOI: 10.1002/mus.26312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Particular fibroadipose infiltration patterns have been recently described by muscle imaging in congenital and later onset forms of LMNA-related muscular dystrophies (LMNA-RD). METHODS Scores for fibroadipose infiltration of 23 lower limb muscles in 34 patients with LMNA-RD were collected from heat maps of 2 previous studies. Scoring systems were homogenized. Relationships between muscle infiltration and disease duration and age of onset were modeled with random forests. RESULTS The pattern of infiltration differs according to disease duration but not to age of disease onset. The muscles whose progression best predicts disease duration were semitendinosus, biceps femoris long head, gluteus medius, and semimembranosus. DISCUSSION In LMNA-RD, our synthetic analysis of lower limb muscle infiltration did not find major differences between forms with different ages of onset but allowed the identification of muscles with characteristic infiltration during disease progression. Monitoring of these specific muscles by quantitative MRI may provide useful imaging biomarkers in LMNA-RD. Muscle Nerve 58:812-817, 2018.
Collapse
Affiliation(s)
- David GóMez-Andrés
- Neuromuscular Disorders Group, Child Neurology Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Aida Alejaldre
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain
| | - Laura GonzáLez-Mera
- Department of Neurology, Hospital de Viladecans, Barcelona, Spain.,Institute of Neuropathology, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Montse Olivé
- Institute of Neuropathology, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Juan José Vilchez
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain
| | - Adolfo LóPez De Munain
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain.,Neurosciences Area, Biodonostia Institute, CIBERNED, Donostia-San Sebastián, Spain
| | - Carmen Paradas
- Neuromuscular Disorders Unit, Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Nuria Muelas
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain
| | | | - Alicia Alonso-Jimenez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Marta Gómez García De la Banda
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Garches, France
| | - Ivana Dabaj
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Garches, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM UMRS974, Center for Research in Myology, Institut de Myologie, G. H. Pitié Salpêtrière, Paris, France
| | - Francina Munell
- Neuromuscular Disorders Group, Child Neurology Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Robert Y Carlier
- APHP, Radiology Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré. Paris Saclay Universities, UVSQ University of Versailles, UMR 1179 INSERM Garches, France
| | - Susana Quijano-Roy
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Paris Saclay Universities, UVSQ University of Versailles, UMR 1179 INSERM, Garches, France
| |
Collapse
|
55
|
Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 2018; 9:1533. [PMID: 30425656 PMCID: PMC6218675 DOI: 10.3389/fphys.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.
Collapse
Affiliation(s)
- Astrid Brull
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France.,Sanofi R&D, Chilly Mazarin, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Anne T Bertrand
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
56
|
Kang SM, Yoon MH, Park BJ. Laminopathies; Mutations on single gene and various human genetic diseases. BMB Rep 2018; 51:327-337. [PMID: 29764566 PMCID: PMC6089866 DOI: 10.5483/bmbrep.2018.51.7.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 01/13/2023] Open
Abstract
Lamin A and its alternative splicing product Lamin C are the key intermediate filaments (IFs) of the inner nuclear membrane intermediate filament. Lamin A/C forms the inner nuclear mesh with Lamin B and works as a frame with a nuclear shape. In addition to supporting the function of nucleus, nuclear lamins perform important roles such as holding the nuclear pore complex and chromatin. However, mutations on the Lamin A or Lamin B related proteins induce various types of human genetic disorders and diseases including premature aging syndromes, muscular dystrophy, lipodystrophy and neuropathy. In this review, we briefly overview the relevance of genetic mutations of Lamin A, human disorders and laminopathies. We also discuss a mouse model for genetic diseases. Finally, we describe the current treatment for laminopathies. [BMB Reports 2018; 51(7): 327-337].
Collapse
Affiliation(s)
- So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| |
Collapse
|
57
|
Lin HT, Liu X, Zhang W, Liu J, Zuo YH, Xiao JX, Zhu Y, Yuan Y, Wang ZX. Muscle Magnetic Resonance Imaging in Patients with Various Clinical Subtypes of LMNA-Related Muscular Dystrophy. Chin Med J (Engl) 2018; 131:1472-1479. [PMID: 29893365 PMCID: PMC6006825 DOI: 10.4103/0366-6999.233957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: LMNA-related muscular dystrophy can manifest in a wide variety of disorders, including Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy (LGMD), and LMNA-associated congenital muscular dystrophy (L-CMD). Muscle magnetic resonance imaging (MRI) has become a useful tool in the diagnostic workup of patients with muscle dystrophies. This study aimed to investigate whether there is a consistent pattern of MRI changes in patients with LMNA mutations in various muscle subtypes. Methods: Twenty-two patients with LMNA-related muscular dystrophies were enrolled in this study. MRI of the thigh and/or calf muscles was performed in them. The muscle MRI features of the three subtypes were compared by the Mann-Whitney U-test. The relationship between the clinical and MRI findings was also investigated by Spearman's rank analyses. Results: The present study included five EDMD, nine LGMD, and eight L-CMD patients. The thigh muscle MRI revealed that the fatty infiltration of the adductor magnus, semimembranosus, long and short heads of the biceps femoris, and vasti muscles, with relative sparing of the rectus femoris, was the predominant change observed in the EDMD, LGMD, and advanced-stage L-CMD phenotypes, although the involvement of the vasti muscles was not prominent in the early stage of L-CMD. At the level of the calf, six patients (one EDMD, four LGMD, and one L-CMD) also showed a similar pattern, in which the soleus and the medial and lateral gastrocnemius muscles were most frequently observed to have fatty infiltration. The fatty infiltration severity demonstrated higher scores associated with disease progression, with a corresponding rate of 1.483 + 0.075 × disease duration (X) (r = 0.444, P = 0.026). It was noteworthy that in six L-CMD patients with massive inflammatory cell infiltration in muscle pathology, no remarkable edema-like signals were observed in muscle MRI. Conclusions: EDMD, LGMD and advanced-staged L-CMD subtypes showed similar pattern of muscle MRI changes, while early-staged L-CMD showed somewhat different changes. Muscle MRI of L-CMD with a muscular dystrophy pattern in MRI provided important clues for differentiating it from childhood inflammatory myopathy. The fatty infiltration score could be used as a reliable biomarker for outcome measure of disease progression.
Collapse
Affiliation(s)
- Hui-Ting Lin
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Xiao Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yue-Huan Zuo
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiang-Xi Xiao
- Department of Radiology, Peking University First Hospital, Beijing 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhao-Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
58
|
Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018; 9:1277. [PMID: 30245638 PMCID: PMC6137955 DOI: 10.3389/fphys.2018.01277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the inner nuclear transmembrane protein emerin in the early 1990s, nuclear envelope (NE) components and related involvement in nuclei integrity and functionality have been highly investigated. The NE is composed of two distinct lipid bilayers described as the inner (INM) and outer (ONM) nuclear membrane. NE proteins can be specifically “integrated” in the INM (such as emerin and SUN proteins) or in the ONM such as nesprins. Additionally, flanked to the INM, the nuclear lamina, a proteinaceous meshwork mainly composed of lamins A and C completes NE composition. This network of proteins physically interplays to guarantee NE integrity and most importantly, shape the bridge between cytoplasmic cytoskeletons networks (such as microtubules and actin) and the genome, through the anchorage to the heterochromatin. The essential network driving the connection of nucleoskeleton with cytoskeleton takes place in the perinuclear space (the space between ONM and INM) with the contribution of the LINC complex (for Linker of Nucleoskeleton to Cytoskeleton), hosting KASH and SUN proteins interactions. This close interplay between compartments has been related to diverse functions from nuclear integrity, activity and positioning through mechanotransduction pathways. At the same time, mutations in NE components genes coding for proteins such as lamins or nesprins, had been associated with a wide range of congenital diseases including cardiac and muscular diseases. Although most of these NE associated proteins are ubiquitously expressed, a large number of tissue-specific disorders have been associated with diverse pathogenic mutations. Thus, diagnosis and molecular explanation of this group of diseases, commonly called “nuclear envelopathies,” is currently challenging. This review aims, first, to give a better understanding of diverse functions of the LINC complex components, from the point of view of lamins and nesprins. Second, to summarize human congenital diseases with a special focus on muscle and heart abnormalities, caused by mutations in genes coding for these two types of NE associated proteins.
Collapse
Affiliation(s)
- Alexandre Janin
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Vincent Gache
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
59
|
Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med (Berl) 2018; 96:993-1024. [PMID: 30128729 DOI: 10.1007/s00109-018-1685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies. Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and highlight the recent significant achievements in the field of translational cardiovascular genetics.
Collapse
|
60
|
Frankel D, Delecourt V, Harhouri K, De Sandre-Giovannoli A, Lévy N, Kaspi E, Roll P. MicroRNAs in hereditary and sporadic premature aging syndromes and other laminopathies. Aging Cell 2018; 17:e12766. [PMID: 29696758 PMCID: PMC6052405 DOI: 10.1111/acel.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary and sporadic laminopathies are caused by mutations in genes encoding lamins, their partners, or the metalloprotease ZMPSTE24/FACE1. Depending on the clinical phenotype, they are classified as tissue‐specific or systemic diseases. The latter mostly manifest with several accelerated aging features, as in Hutchinson–Gilford progeria syndrome (HGPS) and other progeroid syndromes. MicroRNAs are small noncoding RNAs described as powerful regulators of gene expression, mainly by degrading target mRNAs or by inhibiting their translation. In recent years, the role of these small RNAs has become an object of study in laminopathies using in vitro or in vivo murine models as well as cells/tissues of patients. To date, few miRNAs have been reported to exert protective effects in laminopathies, including miR‐9, which prevents progerin accumulation in HGPS neurons. The recent literature has described the potential implication of several other miRNAs in the pathophysiology of laminopathies, mostly by exerting deleterious effects. This review provides an overview of the current knowledge of the functional relevance and molecular insights of miRNAs in laminopathies. Furthermore, we discuss how these discoveries could help to better understand these diseases at the molecular level and could pave the way toward identifying new potential therapeutic targets and strategies based on miRNA modulation.
Collapse
Affiliation(s)
- Diane Frankel
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| | | | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Département de Génétique Médicale; Marseille France
| | - Nicolas Lévy
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Département de Génétique Médicale; Marseille France
| | - Elise Kaspi
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| | - Patrice Roll
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| |
Collapse
|
61
|
Tsikitis M, Galata Z, Mavroidis M, Psarras S, Capetanaki Y. Intermediate filaments in cardiomyopathy. Biophys Rev 2018; 10:1007-1031. [PMID: 30027462 DOI: 10.1007/s12551-018-0443-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece.
| |
Collapse
|
62
|
Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys Rev 2018; 10:1033-1051. [PMID: 29869195 PMCID: PMC6082319 DOI: 10.1007/s12551-018-0431-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex couples the nuclear lamina to the cytoskeleton. The LINC complex and its associated proteins play diverse roles in cells, ranging from genome organization, nuclear morphology, gene expression, to mechanical stability. The importance of a functional LINC complex is highlighted by the large number of mutations in genes encoding LINC complex proteins that lead to skeletal and cardiac myopathies. In this review, the structure, function, and interactions between components of the LINC complex will be described. Mutations that are known to cause cardiomyopathy in patients will be discussed alongside their respective mouse models. Furthermore, future challenges for the field and emerging technologies to investigate LINC complex function will be discussed.
Collapse
|
63
|
Prioritization of Variants Detected by Next Generation Sequencing According to the Mutation Tolerance and Mutational Architecture of the Corresponding Genes. Int J Mol Sci 2018; 19:ijms19061584. [PMID: 29861492 PMCID: PMC6032105 DOI: 10.3390/ijms19061584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
The biggest challenge geneticists face when applying next-generation sequencing technology to the diagnosis of rare diseases is determining which rare variants, from the dozens or hundreds detected, are potentially implicated in the patient’s phenotype. Thus, variant prioritization is an essential step in the process of rare disease diagnosis. In addition to conducting the usual in-silico analyses to predict variant pathogenicity (based on nucleotide/amino-acid conservation and the differences between the physicochemical features of the amino-acid change), three important concepts should be borne in mind. The first is the “mutation tolerance” of the genes in which variants are located. This describes the susceptibility of a given gene to any functional mutation and depends on the strength of purifying selection acting against it. The second is the “mutational architecture” of each gene. This describes the type and location of mutations previously identified in the gene, and their association with different phenotypes or degrees of severity. The third is the mode of inheritance (inherited vs. de novo) of the variants detected. Here, we discuss the importance of each of these concepts for variant prioritization in the diagnosis of rare diseases. Using real data, we show how genes, rather than variants, can be prioritized by calculating a gene-specific mutation tolerance score. We also illustrate the influence of mutational architecture on variant prioritization using five paradigmatic examples. Finally, we discuss the importance of familial variant analysis as final step in variant prioritization.
Collapse
|
64
|
Perovanovic J, Hoffman EP. Mechanisms of allelic and clinical heterogeneity of lamin A/C phenotypes. Physiol Genomics 2018; 50:694-704. [PMID: 29750601 PMCID: PMC6335092 DOI: 10.1152/physiolgenomics.00128.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the lamin A/C (LMNA) gene cause a broad range of clinical syndromes that show tissue-restricted abnormalities of post mitotic tissues, such as muscle, nerve, heart, and adipose tissue. Mutations in other nuclear envelope proteins cause clinically overlapping disorders. The majority of mutations are dominant single amino acid changes (toxic protein produced by the single mutant gene), and patients are heterozygous with both normal and abnormal proteins. Experimental support has been provided for different models of cellular pathogenesis in nuclear envelope diseases, including changes in heterochromatin formation at the nuclear membrane (epigenomics), changes in the timing of steps during terminal differentiation of cells, and structural abnormalities of the nuclear membrane. These models are not mutually exclusive and may be important in different cells at different times of development. Recent experiments using fusion proteins of normal and mutant lamin A/C proteins fused to a bacterial adenine methyltransferase (DamID) provided compelling evidence of mutation-specific perturbation of epigenomic imprinting during terminal differentiation. These gain-of-function properties include lineage-specific ineffective genomic silencing during exit from the cell cycle (heterochromatinization), as well as promiscuous initiation of silencing at incorrect places in the genome. To date, these findings have been limited to a few muscular dystrophy and lipodystrophy LMNA mutations but seem shared with a distinct nuclear envelope disease, emerin-deficient muscular dystrophy. The dominant-negative structural model and gain-of-function epigenomic models for distinct LMNA mutations are not mutually exclusive, and it is likely that both models contribute to aspects of the many complex clinical phenotypes observed.
Collapse
Affiliation(s)
- Jelena Perovanovic
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health , Bethesda, Maryland
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York , Binghamton New York
| |
Collapse
|
65
|
Brady GF, Kwan R, Cunha JB, Elenbaas JS, Omary MB. Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology 2018; 154:1602-1619.e1. [PMID: 29549040 PMCID: PMC6038707 DOI: 10.1053/j.gastro.2018.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
The nuclear lamina is a multi-protein lattice composed of A- and B-type lamins and their associated proteins. This protein lattice associates with heterochromatin and integral inner nuclear membrane proteins, providing links among the genome, nucleoskeleton, and cytoskeleton. In the 1990s, mutations in EMD and LMNA were linked to Emery-Dreifuss muscular dystrophy. Since then, the number of diseases attributed to nuclear lamina defects, including laminopathies and other disorders, has increased to include more than 20 distinct genetic syndromes. Studies of patients and mouse genetic models have pointed to important roles for lamins and their associated proteins in the function of gastrointestinal organs, including liver and pancreas. We review the interactions and functions of the lamina in relation to the nuclear envelope and genome, the ways in which its dysfunction is thought to contribute to human disease, and possible avenues for targeted therapies.
Collapse
Affiliation(s)
- Graham F. Brady
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,To whom correspondence should be addressed: University of Michigan Medical School, Division of Gastroenterology, Department of Internal Medicine, 1137 Catherine St., Ann Arbor, MI 48109-5622.
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S. Elenbaas
- Medical Scientist Training Program, Washington University, St Louis, Missouri
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Ǻbo Akademi University, Turku, Finland
| |
Collapse
|
66
|
Fayssoil A. Risk stratification in laminopathies and Emery Dreifuss muscular dystrophy. Neurol Int 2018; 10:7468. [PMID: 29844887 PMCID: PMC5937217 DOI: 10.4081/ni.2018.7468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 11/23/2022] Open
Abstract
Laminopathies are genetic disorders due to gene mutation encoding for proteins of the nuclear envelope. Patients are at risk of conduction defect, arrhythmia, sudden death and heart failure. The authors summarize predictive factors for cardiac events reported in the literature in this group of disease.
Collapse
Affiliation(s)
- Abdallah Fayssoil
- CHU Raymond Poincaré et Université Versailles Saint Quentin en Yvelines, Garches, France
| |
Collapse
|
67
|
Yu Y, Lin Y, Takasaki Y, Wang C, Kimura H, Xing J, Ishizuka K, Toyama M, Kushima I, Mori D, Arioka Y, Uno Y, Shiino T, Nakamura Y, Okada T, Morikawa M, Ikeda M, Iwata N, Okahisa Y, Takaki M, Sakamoto S, Someya T, Egawa J, Usami M, Kodaira M, Yoshimi A, Oya-Ito T, Aleksic B, Ohno K, Ozaki N. Rare loss of function mutations in N-methyl-D-aspartate glutamate receptors and their contributions to schizophrenia susceptibility. Transl Psychiatry 2018; 8:12. [PMID: 29317596 PMCID: PMC5802496 DOI: 10.1038/s41398-017-0061-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022] Open
Abstract
In schizophrenia (SCZ) and autism spectrum disorder (ASD), the dysregulation of glutamate transmission through N-methyl-D-aspartate receptors (NMDARs) has been implicated as a potential etiological mechanism. Previous studies have accumulated evidence supporting NMDAR-encoding genes' role in etiology of SCZ and ASD. We performed a screening study for exonic regions of GRIN1, GRIN2A, GRIN2C, GRIN2D, GRIN3A, and GRIN3B, which encode NMDAR subunits, in 562 participates (370 SCZ and 192 ASD). Forty rare variants were identified including 38 missense, 1 frameshift mutation in GRIN2C and 1 splice site mutation in GRIN2D. We conducted in silico analysis for all variants and detected seven missense variants with deleterious prediction. De novo analysis was conducted if pedigree samples were available. The splice site mutation in GRIN2D is predicted to result in intron retention by minigene assay. Furthermore, the frameshift mutation in GRIN2C and splice site mutation in GRIN2D were genotyped in an independent sample set comprising 1877 SCZ cases, 382 ASD cases, and 2040 controls. Both of them were revealed to be singleton. Our study gives evidence in support of the view that ultra-rare variants with loss of function (frameshift, nonsense or splice site) in NMDARs genes may contribute to possible risk of SCZ.
Collapse
Affiliation(s)
- Yanjie Yu
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingni Lin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuto Takasaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jingrui Xing
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho Toyama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Tomoko Shiino
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuko Okahisa
- Department of Neuropsychiatry Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Manabu Takaki
- Department of Neuropsychiatry Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Sakamoto
- Department of Neuropsychiatry Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry Kohnodai Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masaki Kodaira
- Department of Child and Adolescent Psychiatry Kohnodai Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Tomoko Oya-Ito
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Nutrition, Shubun University, Ichinomiya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW Nuclear envelope links to a wide range of disorders, including several myopathies and neuropathies over the past 2 decades, has spurred research leading to a completely changed view of this important cellular structure and its functions. However, the many functions now assigned to the nuclear envelope make it increasingly hard to determine which functions underlie these disorders. RECENT FINDINGS New nuclear envelope functions in genome organization, regulation and repair, signaling, and nuclear and cellular mechanics have been added to its classical barrier function. Arguments can be made for any of these functions mediating abnormality in nuclear envelope disorders and data exist supporting many. Moreover, transient and/or distal nuclear envelope connections to other cellular proteins and structures may increase the complexity of these disorders. SUMMARY Although the increased understanding of nuclear envelope functions has made it harder to distinguish specific causes of nuclear envelope disorders, this is because it has greatly expanded the spectrum of possible mechanisms underlying them. This change in perspective applies well beyond the known nuclear envelope disorders, potentially implicating the nuclear envelope in a much wider range of myopathies and neuropathies.
Collapse
|
69
|
Montenegro RM, Costa-Riquetto AD, Fernandes VO, Montenegro APDR, de Santana LS, Jorge AADL, Karbage LBDAS, Aguiar LB, Carvalho FHC, Teles MG, d'Alva CB. Homozygous and Heterozygous Nuclear Lamin A p.R582C Mutation: Different Lipodystrophic Phenotypes in the Same Kindred. Front Endocrinol (Lausanne) 2018; 9:458. [PMID: 30177912 PMCID: PMC6110164 DOI: 10.3389/fendo.2018.00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 02/01/2023] Open
Abstract
Background: Dunnigan-type familial partial lipodystrophy (FPLD2) is a rare autosomal dominant disease caused by heterozygous mutations in the LMNA gene that results in regional loss of subcutaneous adipose tissue with onset in puberty. However, a generalized lipodystrophy phenotype has also been associated with heterozygous mutations in this gene, demonstrating the noticeable phenotypic heterogeneity of this disease. Methods: We report and describe clinical and metabolic features of four patients from the same family with the p.R582C LMNA mutation, three homozygous and one in the heterozygous state that present with three distinct lipodystrophic phenotypes. Results: Case description: The proband was a 12-year-old girl who developed severe subcutaneous fat atrophy in limbs and abdomen followed by a remarkable dorsocervical fat accumulation in adulthood along with diabetes at age 23. The proband's sister was a phenotypically normal girl who developed hypertriglyceridemia at age 8, progressive features of partial lipodystrophy at age 11, and diabetes at age 22. The proband's mother was first examined at age 32, presenting diabetes and a severe generalized lipodystrophic phenotype; she developed kidney failure at age 41 and died due to diabetic complications. The proband's father was a 50-year-old man with abdominal fat concentration that was initially considered phenotypically normal. Massively parallel sequencing using a platform of genes related to genetic lipodystrophies, followed by Sanger sequencing, revealed the transversion c.1744C>T at exon 11 of the LMNA gene (p.R582C) in the homozygous (mother and daughters) and heterozygous (father) states. Conclusion: We documented three distinct phenotypes of the homozygous and heterozygous p. R582C LMNA mutation in the same kindred, illustrating that FPLD2 linked to mutations in this gene is a disease of great clinical heterogeneity, possibly due to associated environmental or genetic factors.
Collapse
Affiliation(s)
- Renan Magalhães Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
- *Correspondence: Renan Magalhães Montenegro Jr.
| | - Aline Dantas Costa-Riquetto
- Monogenic Diabetes Group, Genetic Endocrinology Unit (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Virgínia Oliveira Fernandes
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ana Paula Dias Rangel Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Lucas Santos de Santana
- Monogenic Diabetes Group, Genetic Endocrinology Unit (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alexander Augusto de Lima Jorge
- Monogenic Diabetes Group, Genetic Endocrinology Unit (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lia Beatriz de Azevedo Souza Karbage
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Lindenberg Barbosa Aguiar
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Francisco Herlânio Costa Carvalho
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Milena Gurgel Teles
- Monogenic Diabetes Group, Genetic Endocrinology Unit (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Catarina Brasil d'Alva
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
70
|
Dhawan PS, Liewluck T, Knapik J, Milone M. Myofibrillar myopathy due to dominant LMNA mutations: A report of 2 cases. Muscle Nerve 2017; 57:E124-E126. [PMID: 29211919 DOI: 10.1002/mus.26036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Priya S Dhawan
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph Knapik
- Department of Neurology and Rehabilitation, Saint Mary's Regional Medical Center, Enid, Oklahoma, USA
| | | |
Collapse
|
71
|
Cortese A, Laurà M, Casali C, Nishino I, Hayashi YK, Magri S, Taroni F, Stuani C, Saveri P, Moggio M, Ripolone M, Prelle A, Pisciotta C, Sagnelli A, Pichiecchio A, Reilly MM, Buratti E, Pareyson D. Altered TDP-43-dependent splicing in HSPB8-related distal hereditary motor neuropathy and myofibrillar myopathy. Eur J Neurol 2017; 25:154-163. [PMID: 29029362 DOI: 10.1111/ene.13478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Mutations in the small heat-shock protein 22 gene (HSPB8) have been associated with Charcot-Marie-Tooth disease type 2L, distal hereditary motor neuropathy (dHMN) type IIa and, more recently, distal myopathy/myofibrillar myopathy (MFM) with protein aggregates and TDP-43 inclusions. The aim was to report a novel family with HSPB8K141E -related dHMN/MFM and to investigate, in a patient muscle biopsy, whether the presence of protein aggregates was paralleled by altered TDP-43 function. METHODS We reviewed clinical and genetic data. We assessed TDP-43 expression by qPCR and alternative splicing of four previously validated direct TDP-43 target exons in four genes by reverse transcriptase-polymerase chain reaction. RESULTS The triplets and their mother presented in the second to third decade of life with progressive weakness affecting distal and proximal lower limb and truncal muscles. Nerve conduction study showed a motor axonal neuropathy. The clinical features, moderately raised creatin kinase levels, selective pattern of muscle involvement on magnetic resonance imaging and pathological changes on muscle biopsy, including the presence of protein aggregates, supported the diagnosis of a contemporary primary muscle involvement. In affected muscle tissue we observed a consistent alteration of TDP-43-dependent splicing in three out of four TDP-43-target transcripts (POLDIP3, FNIP1 and BRD8), as well as a significant decrease of TDP-43 mRNA levels. CONCLUSIONS Our study confirmed the role of mutated HSPB8 as a cause of a combined neuromuscular disorder encompassing dHMN and MFM with protein aggregates. We identified impaired RNA metabolism, secondary to TDP-43 loss of function, as a possible pathological mechanism of HSPB8K141E toxicity, leading to muscle and nerve degeneration.
Collapse
Affiliation(s)
- A Cortese
- C. Mondino National Neurological Institute Foundation, IRCCS, Pavia, Italy.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - M Laurà
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - C Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - I Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan
| | - Y K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - S Magri
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - F Taroni
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - C Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - P Saveri
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - M Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - M Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - A Prelle
- Department of Neurology, Ospedale Maggiore, Crema, Italy
| | - C Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - A Sagnelli
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - A Pichiecchio
- C. Mondino National Neurological Institute Foundation, IRCCS, Pavia, Italy
| | - M M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - E Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - D Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| |
Collapse
|
72
|
Nishiuchi S, Makiyama T, Aiba T, Nakajima K, Hirose S, Kohjitani H, Yamamoto Y, Harita T, Hayano M, Wuriyanghai Y, Chen J, Sasaki K, Yagihara N, Ishikawa T, Onoue K, Murakoshi N, Watanabe I, Ohkubo K, Watanabe H, Ohno S, Doi T, Shizuta S, Minamino T, Saito Y, Oginosawa Y, Nogami A, Aonuma K, Kusano K, Makita N, Shimizu W, Horie M, Kimura T. Gene-Based Risk Stratification for Cardiac Disorders in
LMNA
Mutation Carriers. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001603. [DOI: 10.1161/circgenetics.116.001603] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/25/2017] [Indexed: 01/01/2023]
Abstract
Background—
Mutations in
LMNA
(
lamin A/C
), which encodes lamin A and C, typically cause age-dependent cardiac phenotypes, including dilated cardiomyopathy, cardiac conduction disturbance, atrial fibrillation, and malignant ventricular arrhythmias. Although the type of
LMNA
mutations have been reported to be associated with susceptibility to malignant ventricular arrhythmias, the gene-based risk stratification for cardiac complications remains unexplored.
Methods and Results—
The multicenter cohort included 77
LMNA
mutation carriers from 45 families; cardiac disorders were retrospectively analyzed. The mean age of patients when they underwent genetic testing was 45±17, and they were followed for a median 49 months. Of the 77 carriers, 71 (92%) were phenotypically affected and showed cardiac conduction disturbance (81%), low left ventricular ejection fraction (<50%; 45%), atrial arrhythmias (58%), and malignant ventricular arrhythmias (26%). During the follow-up period, 9 (12%) died, either from end-stage heart failure (n=7) or suddenly (n=2). Genetic analysis showed truncation mutations in 58 patients from 31 families and missense mutations in 19 patients from 14 families. The onset of cardiac disorders indicated that subjects with truncation mutations had an earlier occurrence of cardiac conduction disturbance and low left ventricular ejection fraction, than those with missense mutations. In addition, the truncation mutation was found to be a risk factor for the early onset of cardiac conduction disturbance and the occurrence of atrial arrhythmias and low left ventricular ejection fraction, as estimated using multivariable analyses.
Conclusions—
The truncation mutations were associated with manifestation of cardiac phenotypes in
LMNA
-related cardiomyopathy, suggesting that genetic analysis might be useful for diagnosis and risk stratification.
Collapse
|
73
|
Cell signaling abnormalities in cardiomyopathy caused by lamin A/C gene mutations. Biochem Soc Trans 2017; 46:37-42. [PMID: 29196611 DOI: 10.1042/bst20170236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/13/2023]
Abstract
Mutations in the lamin A/C gene (LMNA) encoding intermediate filament proteins associated with the inner nuclear membrane cause diseases known as laminopathies. Most LMNA mutations cause dilated cardiomyopathy with variable skeletal muscular dystrophy. Cell signaling abnormalities have been discovered in hearts of mouse models of cardiomyopathy caused by LMNA mutations that contribute to pathogenesis. These include abnormally increased signaling by extracellular signal-regulated kinase 1 and kinase 2 and other mitogen-activated protein kinases, protein kinase B/mammalian target of rapamycin complex 1 and transforming growth factor-β. Preclinical research suggests that specific inhibitors of these abnormally activated cell signaling pathways may be useful in treating human patients with this disease.
Collapse
|
74
|
Shin JY, Méndez-López I, Hong M, Wang Y, Tanji K, Wu W, Shugol L, Krauss RS, Dauer WT, Worman HJ. Lamina-associated polypeptide 1 is dispensable for embryonic myogenesis but required for postnatal skeletal muscle growth. Hum Mol Genet 2017; 26:65-78. [PMID: 27798115 DOI: 10.1093/hmg/ddw368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Lamina-associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that has been implicated in striated muscle maintenance. Mutations in its gene have been linked to muscular dystrophy and cardiomyopathy. As germline deletion of the gene encoding LAP1 is perinatal lethal, we explored its potential role in myogenic differentiation and development by generating a conditional knockout mouse in which the protein is depleted from muscle progenitors at embryonic day 8.5 (Myf5-Lap1CKO mice). Although cultured myoblasts lacking LAP1 demonstrated defective terminal differentiation and altered expression of muscle regulatory factors, embryonic myogenesis and formation of skeletal muscle occurred in both mice with a Lap1 germline deletion and Myf5-Lap1CKO mice. However, skeletal muscle fibres were hypotrophic and their nuclei were morphologically abnormal with a wider perinuclear space than normal myonuclei. Myf5-Lap1CKO mouse skeletal muscle contained fewer satellite cells than normal and these cells had evidence of reduced myogenic potential. Abnormalities in signalling pathways required for postnatal hypertrophic growth were also observed in skeletal muscles of these mice. Our results demonstrate that early embryonic depletion of LAP1 does not impair myogenesis but that it is necessary for postnatal skeletal muscle growth.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Iván Méndez-López
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Mingi Hong
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuexia Wang
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Wu
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Leana Shugol
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William T Dauer
- Department of Neurology.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Howard J Worman
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
75
|
Madej-Pilarczyk A, Marchel M, Ochman K, Cegielska J, Steckiewicz R. Low-symptomatic skeletal muscle disease in patients with a cardiac disease - Diagnostic approach in skeletal muscle laminopathies. Neurol Neurochir Pol 2017; 52:174-180. [PMID: 28987496 DOI: 10.1016/j.pjnns.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/27/2022]
Abstract
Mild skeletal muscle symptoms might be accompanied with severe cardiac disease, sometimes indicating a serious inherited disorder. Very often it is a cardiologist who refers a patient with cardiomyopathy and/or cardiac arrhythmia and discrete muscle disease for neurological consultation, which helps to establish a proper diagnosis. Here we present three families in which a diagnosis of skeletal muscle laminopathy was made after careful examination of the members, who presented with cardiac arrhythmia and/or heart failure and a mild skeletal muscle disease, which together with positive family history allowed to direct the molecular diagnostics and then provide appropriate treatment and counseling.
Collapse
Affiliation(s)
- Agnieszka Madej-Pilarczyk
- Neuromuscular Unit, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland.
| | - Michał Marchel
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, Warsaw, Poland
| | - Karolina Ochman
- Clinics and Medical Laboratories INVICTA, Genetics Clinic, Gdansk, Poland
| | - Joanna Cegielska
- Department of Neurology, Medical University of Warsaw, Bielanski Hospital, Warsaw, Poland
| | - Roman Steckiewicz
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, Warsaw, Poland
| |
Collapse
|
76
|
Francisco ARG, Santos Gonçalves I, Veiga F, Mendes Pedro M, Pinto FJ, Brito D. Complex phenotype linked to a mutation in exon 11 of the lamin A/C gene: Hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. Rev Port Cardiol 2017; 36:669.e1-669.e4. [DOI: 10.1016/j.repc.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 10/18/2022] Open
|
77
|
Francisco ARG, Santos Gonçalves I, Veiga F, Mendes Pedro M, Pinto FJ, Brito D. Complex phenotype linked to a mutation in exon 11 of the lamin A/C gene: Hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
78
|
Janin A, Bauer D, Ratti F, Millat G, Méjat A. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J Rare Dis 2017; 12:147. [PMID: 28854936 PMCID: PMC5577761 DOI: 10.1186/s13023-017-0698-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Collapse
Affiliation(s)
- Alexandre Janin
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Delphine Bauer
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Francesca Ratti
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Gilles Millat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Méjat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France. .,CNRS UMR 5310, F-69622, Villeurbanne, France. .,INSERM U1217, F-69622, Villeurbanne, France. .,Nuclear Architecture Team, Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France. .,Groupement Hospitalier Est - Centre de Biologie Est - Laboratoire de Cardiogénétique, 59 Boulevard Pinel, 69677, Bron, France.
| |
Collapse
|
79
|
Holmes-Hampton GP, Crooks DR, Haller RG, Guo S, Freier SM, Monia BP, Rouault TA. Use of antisense oligonucleotides to correct the splicing error in ISCU myopathy patient cell lines. Hum Mol Genet 2017; 25:5178-5187. [PMID: 28007899 DOI: 10.1093/hmg/ddw338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/30/2016] [Indexed: 11/12/2022] Open
Abstract
ISCU myopathy is an inherited disease that primarily affects individuals of northern Swedish descent who share a single point mutation in the fourth intron of the ISCU gene. The current study shows correction of specific phenotypes associated with disease following treatment with an antisense oligonucleotide (ASO) targeted to the site of the mutation. We have shown that ASO treatment diminished aberrant splicing and increased ISCU protein levels in both patient fibroblasts and patient myotubes in a concentration dependent fashion. Upon ASO treatment, levels of SDHB in patient myotubular cell lines increased to levels observed in control myotubular cell lines. Additionally, we have shown that both patient fibroblast and myotubular cell lines displayed an increase in complex II activity with a concomitant decrease in succinate levels in patient myotubular cell lines after ASO treatment. Mitochondrial and cytosolic aconitase activities increased significantly following ASO treatment in patient myotubes. The current study suggests that ASO treatment may serve as a viable approach to correcting ISCU myopathy in patients.
Collapse
Affiliation(s)
- Gregory P Holmes-Hampton
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA, Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, USA
| | - Shuling Guo
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Susan M Freier
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Brett P Monia
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
80
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
81
|
Wang X, Zabell A, Koh W, Tang WHW. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:21. [PMID: 28299614 DOI: 10.1007/s11936-017-0520-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A major gene associated with DCM with cardiac conduction system disease is lamin A/C (LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear structure support, DNA repair, cell signaling pathway mediation, and chromatin organization. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy (EDMD) and, since then, has been found in association with a wide spectrum of diseases termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac effects like dysrhythmias, development of congestive heart failure, and potential need of a pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity for further investigation to better understand LMNA mutations, and potential treatment options ranging from clinical and therapeutic to cellular and molecular techniques.
Collapse
Affiliation(s)
- Xi Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Allyson Zabell
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Wonshill Koh
- Children's Hospital of Pittsburgh, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
82
|
Wu W, Chordia MD, Hart BP, Kumarasinghe ES, Ji MK, Bhargava A, Lawlor MW, Shin JY, Sera F, Homma S, Muchir A, Khire UR, Worman HJ. Macrocyclic MEK1/2 inhibitor with efficacy in a mouse model of cardiomyopathy caused by lamin A/C gene mutation. Bioorg Med Chem 2017; 25:1004-1013. [PMID: 28011205 PMCID: PMC5291759 DOI: 10.1016/j.bmc.2016.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
Abstract
Signaling mediated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) is involved in numerous cellular processes. Mitogen-activated protein kinase kinases (MEK1/2) catalyze the phosphorylation of ERK1/2, converting it into an active kinase that regulates the expression of numerous genes and cellular processes. Inhibitors of MEK1/2 have demonstrated preclinical and clinical efficacy in certain cancers and types of cardiomyopathy. We report the synthesis of a novel, allosteric, macrocyclic MEK1/2 inhibitor that potently inhibits ERK1/2 activity in cultured cells and tissues of mice after systemic administration. Mice with dilated cardiomyopathy caused by a lamin A/C gene mutation have abnormally increased cardiac ERK1/2 activity. In these mice, this novel MEK1/2 inhibitor is well tolerated, improves left ventricular systolic function, decreases left ventricular fibrosis, has beneficial effects on skeletal muscle structure and pathology and prolongs survival. The novel MEK1/2 inhibitor described herein may therefore find clinical utility in the treatment of this rare cardiomyopathy, other types of cardiomyopathy and cancers in humans.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States; Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Mahendra D Chordia
- Cheminpharma LLC, 23 Business Park Drive, Branford, CT 06405, United States
| | - Barry P Hart
- AlloMek Therapeutics LLC, 400 Farmington Avenue, Farmington, CT 06032, United States
| | | | - Min K Ji
- Cheminpharma LLC, 23 Business Park Drive, Branford, CT 06405, United States
| | - Ajay Bhargava
- Shakti BioResearch LLC, 1 Bradley Road, Suite 401, Woodbridge, CT 06525, United States
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, United States
| | - Ji-Yeon Shin
- Department of Medicine, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States; Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Fusako Sera
- Department of Medicine, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Shunichi Homma
- Department of Medicine, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Antoine Muchir
- Department of Medicine, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States; Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Uday R Khire
- Cheminpharma LLC, 23 Business Park Drive, Branford, CT 06405, United States; AlloMek Therapeutics LLC, 400 Farmington Avenue, Farmington, CT 06032, United States.
| | - Howard J Worman
- Department of Medicine, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States; Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, United States.
| |
Collapse
|
83
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
84
|
Pecorari I, Puzzi L, Sbaizero O. Atomic force microscopy and lamins: A review study towards future, combined investigations. Microsc Res Tech 2016; 80:97-108. [PMID: 27859883 DOI: 10.1002/jemt.22801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
In the last decades, atomic force microscopy (AFM) underwent a rapid and stunning development, especially for studying mechanical properties of biological samples. The numerous discoveries relying to this approach, have increased the credit of AFM as a versatile tool, and potentially eligible as a diagnostic equipment. Meanwhile, it has become strikingly evident that lamins are involved on the onset and development of certain diseases, including cancer, Hutchinson-Gilford progeria syndrome, cardiovascular pathologies, and muscular dystrophy. A new category of pathologies has been defined, the laminopathies, which are caused by mutations in the gene encoding for A-type lamins. As the majority of medical issues, lamins, and all their related aspects can be considered as a quite complex problem. Indeed, there are many facets to explore, and this definitely requires a multidisciplinary approach. One of the most intriguing aspects concerning lamins is their remarkable contribute to cells mechanics. Over the years, this has led to the speculation of the so-called "structural hypothesis", which attempts to elucidate the etiology and some features of the laminopathies. Among the various techniques tried to figure out the role of lamins in the cells mechanics, the AFM has been already successfully applied, proving its versatility. Therefore, the present work aims both to highlight the qualities of AFM and to review the most relevant knowledge about lamins, in order to promote the study of the latter, taking advantage from the former. Microsc. Res. Tech. 80:97-108, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| |
Collapse
|
85
|
Le Dour C, Wu W, Béréziat V, Capeau J, Vigouroux C, Worman HJ. Extracellular matrix remodeling and transforming growth factor-β signaling abnormalities induced by lamin A/C variants that cause lipodystrophy. J Lipid Res 2016; 58:151-163. [PMID: 27845687 DOI: 10.1194/jlr.m071381] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/01/2016] [Indexed: 02/01/2023] Open
Abstract
Mutations in the lamin A/C gene encoding nuclear lamins A and C (lamin A/C) cause familial partial lipodystrophy type 2 (FPLD2) and related lipodystrophy syndromes. These are mainly characterized by redistribution of adipose tissue associated with insulin resistance. Several reports suggest that alterations in the extracellular matrix of adipose tissue leading to fibrosis play a role in the pathophysiology of lipodystrophy syndromes. However, the extent of extracellular matrix alterations in FPLD2 remains unknown. We show significantly increased fibrosis and altered expression of genes encoding extracellular matrix proteins in cervical subcutaneous adipose tissue from a human subject with FLPD2. Similar extracellular matrix alterations occur in adipose tissue of transgenic mice expressing an FPLD2-causing human lamin A variant and in cultured fibroblasts from human subjects with FPLD2 and related lipodystrophies. These abnormalities are associated with increased transforming growth factor-β signaling and defects in matrix metalloproteinase 9 activity. Our data demonstrate that lamin A/C gene mutations responsible for FPLD2 and related lipodystrophies are associated with transforming growth factor-β activation and an extracellular matrix imbalance in adipose tissue, suggesting that targeting these alterations could be the basis of novel therapies.
Collapse
Affiliation(s)
- Caroline Le Dour
- Departments of Medicine College of Physicians and Surgeons, Columbia University, New York, NY.,Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Wei Wu
- Departments of Medicine College of Physicians and Surgeons, Columbia University, New York, NY.,Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Véronique Béréziat
- Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, INSERM UMR, Pierre-and-Marie Curie University, Université Paris, Sorbonne Universités, Paris, France
| | - Jacqueline Capeau
- Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, INSERM UMR, Pierre-and-Marie Curie University, Université Paris, Sorbonne Universités, Paris, France.,Department of Biochemistry and Hormonology, Assistance Publique-Hopitaux de Paris, Hôpital Tenon, Paris, France
| | - Corinne Vigouroux
- Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, INSERM UMR, Pierre-and-Marie Curie University, Université Paris, Sorbonne Universités, Paris, France.,Departments of Molecular Biology and Endocrinology, Assistance Publique-Hopitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Howard J Worman
- Departments of Medicine College of Physicians and Surgeons, Columbia University, New York, NY .,Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
86
|
Abstract
One of the original hypotheses of organismal longevity posits that aging is the natural result of entropy on the cells, tissues, and organs of the animal—a slow, inexorable slide into nonfunctionality caused by stochastic degradation of its parts. We now have evidence that aging is instead at least in part genetically regulated. Many mutations have been discovered to extend lifespan in organisms of all complexities, from yeast to mammals. The study of metazoan model organisms, such as Caenorhabditis elegans, has been instrumental in understanding the role of genetics in the cell biology of aging. Longevity mutants across the spectrum of model organisms demonstrate that rates of aging are regulated through genetic control of cellular processes. The regulation and subsequent breakdown of cellular processes represent a programmatic decision by the cell to either continue or abandon maintenance procedures with age. Our understanding of cell biological processes involved in regulating aging have been particularly informed by longevity mutants and treatments, such as reduced insulin/IGF-1 signaling and dietary restriction, which are critical in determining the distinction between causes of and responses to aging and have revealed a set of downstream targets that participate in a range of cell biological activities. Here we briefly review some of these important cellular processes.
Collapse
Affiliation(s)
- Race DiLoreto
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Coleen T Murphy
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| |
Collapse
|
87
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
88
|
Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features. Cells 2016; 5:cells5030033. [PMID: 27529282 PMCID: PMC5040975 DOI: 10.3390/cells5030033] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases.
Collapse
|
89
|
Cattin ME, Ferry A, Vignaud A, Mougenot N, Jacquet A, Wahbi K, Bertrand AT, Bonne G. Mutation in lamin A/C sensitizes the myocardium to exercise-induced mechanical stress but has no effect on skeletal muscles in mouse. Neuromuscul Disord 2016; 26:490-9. [DOI: 10.1016/j.nmd.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
|
90
|
Taylor MRG, Robinson ML, Mestroni L. Analysis of Genetic Variations of Lamin A/C Gene (LMNA) by Denaturing High-Performance Liquid Chromatography. ACTA ACUST UNITED AC 2016; 9:625-8. [PMID: 15475483 DOI: 10.1177/1087057104266393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human LMNA gene, when mutated, has been shown to cause at least 7 human diseases: dilated cardiomyopathy, Emery Dreifuss muscular dystrophy, limb girdle muscular dystrophy, familial partial lipodystrophy, Charcot Marie tooth disease type II, mandibuloacral dysplasia, and Hutchinson-Gilford Progeria (OMIM #176670). This article describes a high-throughput method for screening the human lamin A/C ( LMNA) gene for genetic mutations and sequence variation using denaturing high-performance liquid chromatography (DHPLC). In the present study, 76 patients with dilated cardiomyopathy were screened for mutations using DHPLC and sequence analysis. Abnormal elution profiles were identified and sequenced on an ABI 377 automatic sequencer. Heterozygous LMNA mutations were detected in 8% of the affected patients. In addition, a number of intronic and exonic single nucleotide polymorphisms were identified. LMNA mutations are clinically relevant in at least 6 human diseases. This study provides a protocol for high-throughput LMNA analysis applicable both in the research and in the clinical diagnostic setting.
Collapse
|
91
|
Fuller HR, Graham LC, Llavero Hurtado M, Wishart TM. Understanding the molecular consequences of inherited muscular dystrophies: advancements through proteomic experimentation. Expert Rev Proteomics 2016; 13:659-71. [PMID: 27329572 DOI: 10.1080/14789450.2016.1202768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Proteomic techniques offer insights into the molecular perturbations occurring in muscular-dystrophies (MD). Revisiting published datasets can highlight conserved downstream molecular alterations, which may be worth re-assessing to determine whether their experimental manipulation is capable of modulating disease severity. AREAS COVERED Here, we review the MD literature, highlighting conserved molecular insights warranting mechanistic investigation for therapeutic potential. We also describe a workflow currently proving effective for efficient identification of biomarkers & therapeutic targets in other neurodegenerative conditions, upon which future MD proteomic investigations could be modelled. Expert commentary: Studying disease models can be useful for identifying biomarkers and model specific degenerative cascades, but rarely offer translatable mechanistic insights into disease pathology. Conversely, direct analysis of human samples undergoing degeneration presents challenges derived from complex chronic degenerative molecular processes. This requires a carefully planed & reproducible experimental paradigm accounting for patient selection through to grouping by disease severity and ending with proteomic data filtering and processing.
Collapse
Affiliation(s)
- Heidi R Fuller
- a Wolfson Centre for Inherited Neuromuscular Disease , RJAH Orthopaedic Hospital , Oswestry , UK
- b Institute for Science and Technology in Medicine , Keele University , Staffordshire , UK
| | - Laura C Graham
- c Euan MacDonald Centre for Motor Neurone Disease Research , University of Edinburgh , Edinburgh , UK
- d Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh , UK
| | - Maica Llavero Hurtado
- c Euan MacDonald Centre for Motor Neurone Disease Research , University of Edinburgh , Edinburgh , UK
- d Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh , UK
| | - Thomas M Wishart
- c Euan MacDonald Centre for Motor Neurone Disease Research , University of Edinburgh , Edinburgh , UK
- d Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
92
|
SENP1-modulated sumoylation regulates retinoblastoma protein (RB) and Lamin A/C interaction and stabilization. Oncogene 2016; 35:6429-6438. [PMID: 27270425 DOI: 10.1038/onc.2016.177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/03/2016] [Accepted: 04/03/2016] [Indexed: 12/13/2022]
Abstract
The retinoblastoma tumor suppressor protein (RB) plays a critical role in cell proliferation and differentiation and its inactivation is a frequent underlying factor in tumorigenesis. While the regulation of RB function by phosphorylation is well studied, proteasome-mediated RB protein degradation is emerging as an important regulatory mechanism. Although our understanding of RB turnover is currently limited, there is evidence that the nuclear lamina filament protein Lamin A/C protects RB from proteasomal degradation. Here we show that SUMO1 conjugation of RB and Lamin A/C is modulated by the SUMO protease SENP1 and that sumoylation of both proteins is required for their interaction. Importantly, this SUMO1-dependent complex protects both RB and Lamin A/C from proteasomal turnover.
Collapse
|
93
|
Macquart C, Ben Yaou R, Muchir A, Wahbi K, Bonne G. Clinical features and therapeutic strategies for managing the striated muscle laminopathies. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1180975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Coline Macquart
- Center of Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- INSERM, UMRS 974, Paris, France
- CNRS, FRE 3617, Paris, France
- Institut de Myologie, Paris, France
| | - Rabah Ben Yaou
- Center of Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- INSERM, UMRS 974, Paris, France
- CNRS, FRE 3617, Paris, France
- Institut de Myologie, Paris, France
- Centre de Référence de Maladies Neuromusculaires Paris-Est, AP-HP, Groupe Hospitalier-Universitaire La Pitié-Salpêtrière, Paris, France
| | - Antoine Muchir
- Center of Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- INSERM, UMRS 974, Paris, France
- CNRS, FRE 3617, Paris, France
- Institut de Myologie, Paris, France
| | - Karim Wahbi
- Center of Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- INSERM, UMRS 974, Paris, France
- CNRS, FRE 3617, Paris, France
- Institut de Myologie, Paris, France
- Service de cardiologie, AP-HP, Groupe Hospitalier Cochin-Broca-Hôtel Dieu, Paris, France
| | - Gisèle Bonne
- Center of Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- INSERM, UMRS 974, Paris, France
- CNRS, FRE 3617, Paris, France
- Institut de Myologie, Paris, France
| |
Collapse
|
94
|
Massalska D, Zimowski JG, Bijok J, Kucińska-Chahwan A, Łusakowska A, Jakiel G, Roszkowski T. Prenatal diagnosis of congenital myopathies and muscular dystrophies. Clin Genet 2016; 90:199-210. [PMID: 27197572 DOI: 10.1111/cge.12801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/14/2022]
Abstract
Congenital myopathies and muscular dystrophies constitute a genetically and phenotypically heterogeneous group of rare inherited diseases characterized by muscle weakness and atrophy, motor delay and respiratory insufficiency. To date, curative care is not available for these diseases, which may severely affect both life-span and quality of life. We discuss prenatal diagnosis and genetic counseling for families at risk, as well as diagnostic possibilities in sporadic cases.
Collapse
Affiliation(s)
- D Massalska
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - J G Zimowski
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - J Bijok
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Kucińska-Chahwan
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Łusakowska
- Department of Neurology, Medical University of Warsaw, Poland
| | - G Jakiel
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - T Roszkowski
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
95
|
Furuta M, Sumi-Akamaru H, Takahashi MP, Hayashi YK, Nishino I, Mochizuki H. An elderly-onset limb girdle muscular dystrophy type 1B (LGMD1B) with pseudo-hypertrophy of paraspinal muscles. Neuromuscul Disord 2016; 26:593-7. [PMID: 27220833 DOI: 10.1016/j.nmd.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/02/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Mutations in LMNA, encoding A-type lamins, lead to diverse disorders, collectively called "laminopathies," which affect the striated muscle, cardiac muscle, adipose tissue, skin, peripheral nerve, and premature aging. We describe a patient with limb-girdle muscular dystrophy type 1B (LGMD1B) carrying a heterozygous p.Arg377His mutation in LMNA, in whom skeletal muscle symptom onset was at the age of 65 years. Her weakness started at the erector spinae muscles, which showed marked pseudo-hypertrophy even at the age of 72 years. Her first episode of syncope was at 44 years; however, aberrant cardiac conduction was not revealed until 60 years. The p.Arg377His mutation has been previously reported in several familial LMNA-associated myopathies, most of which showed muscle weakness before the 6th decade. This is the first report of pseudo-hypertrophy of paravertebral muscles in LMNA-associated myopathies. The pseudo-hypertrophy of paravertebral muscles and the elderly-onset of muscle weakness make this case unique and reportable.
Collapse
Affiliation(s)
- Mitsuru Furuta
- Department of Neurology, Osaka University Graduate School of Medicine, D-4 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisae Sumi-Akamaru
- Department of Neurology, Osaka University Graduate School of Medicine, D-4 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, D-4 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, D-4 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
96
|
Malkawi A, Pirianov G, Torsney E, Chetter I, Sakalihasan N, Loftus IM, Nordon I, Huggins C, Charolidi N, Thompson M, Xu XY, Cockerill GW. Increased Expression of Lamin A/C Correlate with Regions of High Wall Stress in Abdominal Aortic Aneurysms. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2016; 3:152-66. [PMID: 27175366 DOI: 10.12945/j.aorta.2015.14.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/18/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Since aortic diameter is the most -significant risk factor for rupture, we sought to identify stress-dependent changes in gene expression to illuminate novel molecular processes in aneurysm rupture. MATERIALS AND METHODS We constructed finite element maps of abdominal computerized tomography scans (CTs) of seven abdominal aortic aneurysm (AAA) patients to map wall stress. Paired biopsies from high- and low-stress areas were collected at surgery using vascular landmarks as coordinates. Differential gene expression was evaluated by Illumina Array analysis, using the whole genome DNA-mediated, annealing, selection, extension, and ligation (DASL) gene chip (n = 3 paired samples). RESULTS The sole significant candidate from this analysis, Lamin A/C, was validated at the protein level, using western blotting. Lamin A/C expression in the inferior mesenteric vein (IMV) of AAA patients was compared to a control group and in aortic smooth muscle cells in culture in response to physiological pulsatile stretch. -Areas of high wall stress (n = 7) correlate to those -regions which have the thinnest walls [778 µm (585-1120 µm)] in comparison to areas of lowest wall stress [1620 µm (962-2919 µm)]. Induced expression of Lamin A/C -correlated with areas of high wall stress from AAAs but was not significantly induced in the IMV from AAA patients compared to controls (n = 16). Stress-induced expression of Lamin A/C was mimicked by exposing aortic smooth muscle cells to prolonged pulsatile stretch. CONCLUSION Lamin A/C protein is specifically increased in areas of high wall stress in AAA from patients, but is not increased on other vascular beds of aneurysm patients, suggesting that its elevation may be a compensatory response to the pathobiology leading to aneurysms.
Collapse
Affiliation(s)
- Amir Malkawi
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Grisha Pirianov
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Evelyn Torsney
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Ian Chetter
- Centre for Cardiovascular & Metabolic Research, York Hull Medical School, Hull, UK
| | - Natzi Sakalihasan
- Department of Cardiovascular Surgery, University Hospital of Liege, Liege, Belgium
| | - Ian M Loftus
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Ian Nordon
- Department of Vascular Surgery, University Hospital Southampton, Southampton, UK
| | - Christopher Huggins
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Nicoletta Charolidi
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Matt Thompson
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Xie Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Gillian W Cockerill
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
97
|
Thompson R, Straub V. Limb-girdle muscular dystrophies - international collaborations for translational research. Nat Rev Neurol 2016; 12:294-309. [PMID: 27033376 DOI: 10.1038/nrneurol.2016.35] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a diverse group of genetic neuromuscular conditions that usually manifest in the proximal muscles of the hip and shoulder girdles. Since the identification of the first gene associated with the phenotype in 1994, an extensive body of research has identified the genetic defects responsible for over 30 LGMD subtypes, revealed an increasingly varied phenotypic spectrum, and exposed the need to move towards a systems-based understanding of the molecular pathways affected. New sequencing technologies, including whole-exome and whole-genome sequencing, are continuing to expand the range of genes and phenotypes associated with the LGMDs, and new computational approaches are helping clinicians to adapt to this new genomic medicine paradigm. However, 60 years on from the first description of LGMD, no curative therapies exist, and systematic exploration of the natural history is still lacking. To enable rapid translation of basic research to the clinic, well-phenotyped and genetically characterized patient cohorts are a necessity, and appropriate outcome measures and biomarkers must be developed through natural history studies. Here, we review the international collaborations that are addressing these translational research issues, and the lessons learned from large-scale LGMD sequencing programmes.
Collapse
Affiliation(s)
- Rachel Thompson
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
98
|
Abstract
Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or "signalosomes" are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2, and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy.
Collapse
|
99
|
Gómez-Andrés D, Dabaj I, Mompoint D, Hankiewicz K, Azzi V, Ioos C, Romero NB, Ben Yaou R, Bergounioux J, Bonne G, Richard P, Estournet B, Yves-Carlier R, Quijano-Roy S. Pediatric laminopathies: Whole-body magnetic resonance imaging fingerprint and comparison with Sepn1
myopathy. Muscle Nerve 2016; 54:192-202. [DOI: 10.1002/mus.25018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/04/2015] [Accepted: 12/13/2015] [Indexed: 01/15/2023]
Affiliation(s)
- David Gómez-Andrés
- Servicio de Pediatría, Hospital Universitario Infanta Sofía, Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid, TRADESMA; IdiPaz, Madrid España
- Assistance Publique des Hôpitaux de Paris, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
- Centre de Référence de Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye, Réseau National Français de la Filière Neuromusculaire (FILNEMUS)
| | - Ivana Dabaj
- Assistance Publique des Hôpitaux de Paris, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
- Centre de Référence de Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye, Réseau National Français de la Filière Neuromusculaire (FILNEMUS)
| | - Dominique Mompoint
- Assistance Publique des Hôpitaux de Paris, Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital R. Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
| | - Karolina Hankiewicz
- Centre de Référence de Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye, Réseau National Français de la Filière Neuromusculaire (FILNEMUS)
| | - Viviane Azzi
- Assistance Publique des Hôpitaux de Paris, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
| | - Christine Ioos
- Assistance Publique des Hôpitaux de Paris, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
| | - Norma B. Romero
- Institut de Myologie, Groupe Hospitalier-Universitaire La Pitié-Salpêtrìre, Assistance Publique des Hôpitaux de Paris, Université Pierre et Marie Curie-Paris VI; Paris France
| | - Rabah Ben Yaou
- Institut de Myologie, Groupe Hospitalier-Universitaire La Pitié-Salpêtrìre, Assistance Publique des Hôpitaux de Paris, Sorbonne Universités; UPMC Universitaire Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology Paris France
| | - Jean Bergounioux
- Assistance Publique des Hôpitaux de Paris, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
| | - Giséle Bonne
- Institut de Myologie, Groupe Hospitalier-Universitaire La Pitié-Salpêtrìre, Assistance Publique des Hôpitaux de Paris, Sorbonne Universités; UPMC Universitaire Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology Paris France
| | - Pascale Richard
- Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Equipe “Génomique et Physiopathologie des Maladies Cardiovasculaires, Institute of Cardiometabolism and Nutrition”; Paris France
| | - Brigitte Estournet
- Assistance Publique des Hôpitaux de Paris, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
- Centre de Référence de Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye, Réseau National Français de la Filière Neuromusculaire (FILNEMUS)
| | - Robert Yves-Carlier
- Assistance Publique des Hôpitaux de Paris, Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital R. Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
- Centre de Référence de Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye, Réseau National Français de la Filière Neuromusculaire (FILNEMUS)
| | - Susana Quijano-Roy
- Assistance Publique des Hôpitaux de Paris, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Université de Versailles-St Quentin, U1179 UVSQ-INSERM; France
- Centre de Référence de Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye, Réseau National Français de la Filière Neuromusculaire (FILNEMUS)
| |
Collapse
|
100
|
Abstract
Lamins are intermediate filament proteins able to polymerise and form an organised meshwork underlying the inner nuclear membrane in most differentiated somatic cells. Mutations in the LMNA gene, which encodes the two major lamin A and C isoforms, cause a diverse range of diseases, called laminopathies, including dilated cardiomyopathy, associated with a poor prognosis and high rate of sudden death due to conduction defect and early ventricular arrhythmia. Identification of mutations in LMNA gene in clinical practice is rapidly increasing, as well as comprehensive cardiac and genetic family screening. As a consequence, cardiologists are more and more frequently faced to difficult questions regarding optimal management of patients and relatives, especially timing for prophylactic cardioverter defibrillator. This review focuses on recent data useful for the clinician, as well as therapeutic perspectives both in human and animal models.
Collapse
Affiliation(s)
- Philippe Charron
- AP-HP, Hôpital Pitié-Salpêtrière, Centre de référence maladies cardiaques héréditaires, Paris, France; 2. UPMC Université Paris VI, INSERM UMR-S956.,Paris, France
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gisèle Bonne
- INSERM U974; UPMC Université Paris 6; CNRS UMR 7215; Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| |
Collapse
|