51
|
Abstract
The recessive disorder poikiloderma with neutropenia (PN) is caused by mutations in the C16orf57 gene that encodes the highly conserved USB1 protein. Here, we present the 1.1 Å resolution crystal structure of human USB1, defining it as a member of the LigT-like superfamily of 2H phosphoesterases. We show that human USB1 is a distributive 3'-5' exoribonuclease that posttranscriptionally removes uridine and adenosine nucleosides from the 3' end of spliceosomal U6 small nuclear RNA (snRNA), directly catalyzing terminal 2', 3' cyclic phosphate formation. USB1 measures the appropriate length of the U6 oligo(U) tail by reading the position of a key adenine nucleotide (A102) and pausing 5 uridine residues downstream.We show that the 3' ends of U6 snRNA in PN patient lymphoblasts are elongated and unexpectedly carry nontemplated 3' oligo(A) tails that are characteristic of nuclear RNA surveillance targets. Thus, our study reveals a novel quality control pathway in which posttranscriptional 3'-end processing by USB1 protects U6 snRNA from targeting and destruction by the nuclear exosome. Our data implicate aberrant oligoadenylation of U6 snRNA in the pathogenesis of the leukemia predisposition disorder PN.
Collapse
|
52
|
Rodgers W, Ancliff P, Ponting CP, Sanchez-Pulido L, Burns S, Hayman M, Kimonis V, Sebire N, Bulstrode N, Harper JI. Squamous cell carcinoma in a child with Clericuzio-type poikiloderma with neutropenia. Br J Dermatol 2012; 168:665-7. [PMID: 22924337 DOI: 10.1111/bjd.12016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Carrillo J, Martínez P, Solera J, Moratilla C, González A, Manguán-García C, Aymerich M, Canal L, del Campo M, Dapena J, Escoda L, García-Sagredo J, Martín-Sala S, Rives S, Sevilla J, Sastre L, Perona R. High resolution melting analysis for the identification of novel mutations in DKC1 and TERT genes in patients with dyskeratosis congenita. Blood Cells Mol Dis 2012; 49:140-6. [DOI: 10.1016/j.bcmd.2012.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/23/2012] [Indexed: 12/27/2022]
|
54
|
Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3'-to-5' RNA exonuclease processing U6 small nuclear RNA. Cell Rep 2012; 2:855-65. [PMID: 23022480 DOI: 10.1016/j.celrep.2012.08.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 01/09/2023] Open
Abstract
Clericuzio-type poikiloderma with neutropenia (PN) is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA) posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3' end polyuridine tails that are longer than those in normal cells and lack a terminal 2',3' cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3'-to-5' RNA exonuclease that removes uridines from U6 3' ends, generating terminal 2',3' cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3' end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.
Collapse
|
55
|
Mroczek S, Krwawicz J, Kutner J, Lazniewski M, Kuciński I, Ginalski K, Dziembowski A. C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3' end modification. Genes Dev 2012; 26:1911-25. [PMID: 22899009 DOI: 10.1101/gad.193169.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
C16orf57 encodes a human protein of unknown function, and mutations in the gene occur in poikiloderma with neutropenia (PN), which is a rare, autosomal recessive disease. Interestingly, mutations in C16orf57 were also observed among patients diagnosed with Rothmund-Thomson syndrome (RTS) and dyskeratosis congenita (DC), which are caused by mutations in genes involved in DNA repair and telomere maintenance. A genetic screen in Saccharomyces cerevisiae revealed that the yeast ortholog of C16orf57, USB1 (YLR132C), is essential for U6 small nuclear RNA (snRNA) biogenesis and cell viability. Usb1 depletion destabilized U6 snRNA, leading to splicing defects and cell growth defects, which was suppressed by the presence of multiple copies of the U6 snRNA gene SNR6. Moreover, Usb1 is essential for the generation of a unique feature of U6 snRNA; namely, the 3'-terminal phosphate. RNAi experiments in human cells followed by biochemical and functional analyses confirmed that, similar to yeast, C16orf57 encodes a protein involved in the 2',3'-cyclic phosphate formation at the 3' end of U6 snRNA. Advanced bioinformatics predicted that C16orf57 encodes a phosphodiesterase whose putative catalytic activity is essential for its function in vivo. Our results predict an unexpected molecular basis for PN, DC, and RTS and provide insight into U6 snRNA 3' end formation.
Collapse
Affiliation(s)
- Seweryn Mroczek
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
56
|
Walne AJ, Bhagat T, Kirwan M, Gitiaux C, Desguerre I, Leonard N, Nogales E, Vulliamy T, Dokal IS. Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 2012; 98:334-8. [PMID: 22899577 DOI: 10.3324/haematol.2012.071068] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dyskeratosis congenita and its variants have overlapping phenotypes with many disorders including Coats plus, and their underlying pathology is thought to be one of defective telomere maintenance. Recently, biallelic CTC1 mutations have been described in patients with syndromes overlapping Coats plus. CTC1, STN1 and TEN1 are part of the telomere-capping complex involved in maintaining telomeric structural integrity. Based on phenotypic overlap we screened 73 genetically uncharacterized patients with dyskeratosis congenita and related bone marrow failure syndromes for mutations in this complex. Biallelic CTC1 mutations were identified in 6 patients but none in either STN1 or TEN1. We have expanded the phenotypic spectrum associated with CTC1 mutations and report that intracranial and retinal abnormalities are not a defining feature, as well as showing that the effect of these mutations on telomere length is variable. The study also demonstrates the lack of disease-causing mutations in other components of the telomere-capping complex.
Collapse
|
57
|
Aslan D, Akata RF, Holme H, Vulliamy T, Dokal I. Limbal stem cell deficiency in patients with inherited stem cell disorder of dyskeratosis congenita. Int Ophthalmol 2012; 32:615-22. [PMID: 22814958 DOI: 10.1007/s10792-012-9611-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/07/2012] [Indexed: 01/30/2023]
Abstract
The aim of this study is to present the limbal stem cell deficiency (LSCD) cases with features resembling dyskeratosis congenita (DC), a heritable disease of stem cells principally caused by telomerase deficiency. The clinical, laboratory and molecular findings of four cases are presented. A complete systemic examination was performed in a standardized manner for each patient. Laboratory measurements included investigations of the tests used for screening DC. All eight known disease-causing genes in DC (DKC1, TERC, TERT, NOP10, NHP2, TINF2, C16orf57, and TCAB1) were screened for mutations. The family members of the cases were also assessed, when possible. In all four patients, multisystem involvement was present, along with the disorder affecting corneal LSCs. The affected tissues were mainly the skin and its adnexa, the oral cavity and the hematopoietic system, which are rapidly renewing tissues, consistent with the presence of a stem cell disorder. Similarly affected cases were seen in different generations in families, suggesting an underlying inherited disorder. No mutation was detected in any of the known disease-causing genes in these patients. Based on the presented cases and with the contribution of the review of previously reported DC cases available, we suggest that DC is one of the inherited causes of LSCD and that those cases presenting with LSCD might represent a subgroup of DC caused by mutations in an as yet undefined gene.
Collapse
Affiliation(s)
- Deniz Aslan
- Section of Hematology, Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
58
|
Touzot F, Le Guen T, de Villartay JP, Revy P. Nouvelles formes de dyskératoses congénitales. Med Sci (Paris) 2012; 28:618-24. [DOI: 10.1051/medsci/2012286015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
59
|
|
60
|
Samarasinghe S, Webb DKH. How I manage aplastic anaemia in children. Br J Haematol 2012; 157:26-40. [PMID: 22348483 DOI: 10.1111/j.1365-2141.2012.09058.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/09/2012] [Indexed: 01/09/2023]
Abstract
Aplastic anaemia (AA) is a rare heterogeneous condition in children. 15-20% of cases are constitutional and correct diagnosis of these inherited causes of AA is important for appropriate management. For idiopathic severe aplastic anaemia, a matched sibling donor (MSD) haematopoietic stem cell transplant (HSCT) is the treatment of choice. If a MSD is not available, the options include immunosuppressive therapy (IST) or unrelated donor HSCT. IST with horse anti-thymocyte globulin (ATG) is superior to rabbit ATG and has good long-term results. In contrast, IST with rabbit ATG has an overall response of only 30-40%. Due to improvements in outcome over the last two decades in matched unrelated donor (MUD) HSCT, results are now similar to that of MSD HSCT. The decision to proceed with IST with ATG or MUD HSCT will depend on the likelihood of finding a MUD and the differing risks and benefits that each therapy provides.
Collapse
Affiliation(s)
- Sujith Samarasinghe
- Paediatric Haematopoietic Stem Cell Transplant Unit, Department of Adolescent and Paediatric Haematology and Oncology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK.
| | | |
Collapse
|
61
|
Touzot F, Gaillard L, Vasquez N, Le Guen T, Bertrand Y, Bourhis J, Leblanc T, Fischer A, Soulier J, de Villartay JP, Revy P. Heterogeneous telomere defects in patients with severe forms of dyskeratosis congenita. J Allergy Clin Immunol 2012; 129:473-82, 482.e1-3. [DOI: 10.1016/j.jaci.2011.09.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/14/2011] [Accepted: 09/22/2011] [Indexed: 10/15/2022]
|
62
|
Zhang Y, Morimoto K, Danilova N, Zhang B, Lin S. Zebrafish models for dyskeratosis congenita reveal critical roles of p53 activation contributing to hematopoietic defects through RNA processing. PLoS One 2012; 7:e30188. [PMID: 22299032 PMCID: PMC3267717 DOI: 10.1371/journal.pone.0030188] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/14/2011] [Indexed: 11/19/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare bone marrow failure syndrome in which hematopoietic defects are the main cause of mortality. The most studied gene responsible for DC pathogenesis is DKC1 while mutations in several other genes encoding components of the H/ACA RNP telomerase complex, which is involved in ribosomal RNA(rRNA) processing and telomere maintenance, have also been implicated. GAR1/nola1 is one of the four core proteins of the H/ACA RNP complex. Through comparative analysis of morpholino oligonucleotide induced knockdown of dkc1 and a retrovirus insertion induced mutation of GAR1/nola1 in zebrafish, we demonstrate that hematopoietic defects are specifically recapitulated in these models and that these defects are significantly reduced in a p53 null mutant background. We further show that changes in telomerase activity are undetectable at the early stages of DC pathogenesis but rRNA processing is clearly defective. Our data therefore support a model that deficiency in dkc1 and nola1 in the H/ACA RNP complex likely contributes to the hematopoietic phenotype through p53 activation associated with rRNA processing defects rather than telomerase deficiency during the initial stage of DC pathogenesis.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | | | | | | | | |
Collapse
|
63
|
Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations. Orphanet J Rare Dis 2012; 7:7. [PMID: 22269211 PMCID: PMC3315733 DOI: 10.1186/1750-1172-7-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/23/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Poikiloderma with Neutropenia (PN) is a rare autosomal recessive genodermatosis caused by C16orf57 mutations. To date 17 mutations have been identified in 31 PN patients. RESULTS We characterize six PN patients expanding the clinical phenotype of the syndrome and the mutational repertoire of the gene. We detect the two novel C16orf57 mutations, c.232C>T and c.265+2T>G, as well as the already reported c.179delC, c.531delA and c.693+1G>T mutations. cDNA analysis evidences the presence of aberrant transcripts, and bioinformatic prediction of C16orf57 protein structure gauges the mutations effects on the folded protein chain. Computational analysis of the C16orf57 protein shows two conserved H-X-S/T-X tetrapeptide motifs marking the active site of a two-fold pseudosymmetric structure recalling the 2H phosphoesterase superfamily. Based on this model C16orf57 is likely a 2H-active site enzyme functioning in RNA processing, as a presumptive RNA ligase. According to bioinformatic prediction, all known C16orf57 mutations, including the novel mutations herein described, impair the protein structure by either removing one or both tetrapeptide motifs or by destroying the symmetry of the native folding.Finally, we analyse the geographical distribution of the recurrent mutations that depicts clusters featuring a founder effect. CONCLUSIONS In cohorts of patients clinically affected by genodermatoses with overlapping symptoms, the molecular screening of C16orf57 gene seems the proper way to address the correct diagnosis of PN, enabling the syndrome-specific oncosurveillance. The bioinformatic prediction of the C16orf57 protein structure denotes a very basic enzymatic function consistent with a housekeeping function. Detection of aberrant transcripts, also in cells from PN patients carrying early truncated mutations, suggests they might be translatable. Tissue-specific sensitivity to the lack of functionally correct protein accounts for the main cutaneous and haematological clinical signs of PN patients.
Collapse
|
64
|
Piard J, Holder-Espinasse M, Aral B, Gigot N, Rio M, Tardieu M, Puzenat E, Goldenberg A, Toutain A, Franques J, MacDermot K, Bessis D, Boute O, Callier P, Gueneau L, Huet F, Vabres P, Catteau B, Faivre L, Thauvin-Robinet C. Systematic search for neutropenia should be part of the first screening in patients with poikiloderma. Eur J Med Genet 2012; 55:8-11. [DOI: 10.1016/j.ejmg.2011.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/18/2011] [Indexed: 11/28/2022]
|
65
|
Walne AJ, Dokal A, Plagnol V, Beswick R, Kirwan M, de la Fuente J, Vulliamy T, Dokal I. Exome sequencing identifies MPL as a causative gene in familial aplastic anemia. Haematologica 2011; 97:524-8. [PMID: 22180433 DOI: 10.3324/haematol.2011.052787] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The primary cause of aplastic anemia remains unknown in many patients. The aim of this study was to clarify the genetic cause of familial aplastic anemia. Genomic DNA of an affected individual from a multiplex consanguineous family was hybridized to a Nimblegen exome library before being sequenced on a GAIIx genome analyzer. Once the disease causing homozygous mutation had been confirmed in the consanguineous family, this gene was then analyzed for mutation in 33 uncharacterized index cases of aplastic anemia (<13 years) using denaturing HPLC. Abnormal traces were confirmed by direct sequencing. Exome sequencing identified a novel homozygous nonsense mutation in the thrombopoietin receptor gene MPL. An additional novel homozygous MPL mutation was identified in the screen of 33 aplastic anemia patients. This study shows for the first time a link between homozygous MPL mutations and familial aplastic anemia. It also highlights the important role of MPL in trilineage hematopoiesis.
Collapse
Affiliation(s)
- Amanda J Walne
- Centre for Paediatrics, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Mason PJ, Bessler M. The genetics of dyskeratosis congenita. Cancer Genet 2011; 204:635-45. [PMID: 22285015 PMCID: PMC3269008 DOI: 10.1016/j.cancergen.2011.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 01/18/2023]
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome associated with characteristic mucocutaneous features and a variable series of other somatic abnormalities. The disease is heterogeneous at the genetic and clinical levels. Determination of the genetic basis of DC has established that the disease is caused by a number of genes, all of which encode products involved in telomere maintenance, either as part of telomerase or as part of the shelterin complex that caps and protects telomeres. There is overlap at the genetic and clinical levels with other, more common conditions, including aplastic anemia (AA), pulmonary fibrosis (PF), and liver cirrhosis. Although part of the spectrum of disorders known to be associated with DC, it has emerged that mutations in telomere maintenance genes can lead to the development of AA and PF in the absence of other DC features. Here we discuss the genetics of DC and its relationship to disease presentation.
Collapse
Affiliation(s)
- Philip J Mason
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA.
| | | |
Collapse
|
67
|
Ghosh AK, Rossi ML, Singh DK, Dunn C, Ramamoorthy M, Croteau DL, Liu Y, Bohr VA. RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance. J Biol Chem 2011; 287:196-209. [PMID: 22039056 DOI: 10.1074/jbc.m111.295063] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomeres are structures at the ends of chromosomes and are composed of long tracks of short tandem repeat DNA sequences bound by a unique set of proteins (shelterin). Telomeric DNA is believed to form G-quadruplex and D-loop structures, which presents a challenge to the DNA replication and repair machinery. Although the RecQ helicases WRN and BLM are implicated in the resolution of telomeric secondary structures, very little is known about RECQL4, the RecQ helicase mutated in Rothmund-Thomson syndrome (RTS). Here, we report that RTS patient cells have elevated levels of fragile telomeric ends and that RECQL4-depleted human cells accumulate fragile sites, sister chromosome exchanges, and double strand breaks at telomeric sites. Further, RECQL4 localizes to telomeres and associates with shelterin proteins TRF1 and TRF2. Using recombinant proteins we showed that RECQL4 resolves telomeric D-loop structures with the help of shelterin proteins TRF1, TRF2, and POT1. We also found a novel functional synergistic interaction of this protein with WRN during D-loop unwinding. These data implicate RECQL4 in telomere maintenance.
Collapse
Affiliation(s)
- Avik K Ghosh
- Laboratory of Molecular Gerontology, Biomedical Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Marie L Rossi
- Laboratory of Molecular Gerontology, Biomedical Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, Biomedical Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Christopher Dunn
- Laboratory of Molecular Gerontology, Biomedical Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Mahesh Ramamoorthy
- Laboratory of Molecular Gerontology, Biomedical Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Yie Liu
- Laboratory of Molecular Gerontology, Biomedical Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224.
| |
Collapse
|
68
|
A zebrafish model of dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from ribosomal protein-mediated p53 stabilization. Blood 2011; 118:5458-65. [PMID: 21921046 DOI: 10.1182/blood-2011-04-351460] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dyskeratosis congenita (DC) is a bone marrow failure disorder characterized by shortened telomeres, defective stem cell maintenance, and highly heterogeneous phenotypes affecting predominantly tissues that require high rates of turnover. Here we present a mutant zebrafish line with decreased expression of nop10, one of the known H/ACA RNP complex genes with mutations linked to DC. We demonstrate that this nop10 loss results in 18S rRNA processing defects and collapse of the small ribosomal subunit, coupled to stabilization of the p53 tumor suppressor protein through small ribosomal proteins binding to Mdm2. These mutants also display a hematopoietic stem cell deficiency that is reversible on loss of p53 function. However, we detect no changes in telomere length in nop10 mutants. Our data support a model of DC whereupon in early development mutations involved in the H/ACA complex contribute to bone marrow failure through p53 deregulation and loss of initial stem cell numbers while their role in telomere maintenance does not contribute to DC until later in life.
Collapse
|
69
|
Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS One 2011; 6:e24383. [PMID: 21931702 PMCID: PMC3172236 DOI: 10.1371/journal.pone.0024383] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/05/2011] [Indexed: 11/24/2022] Open
Abstract
The bone marrow failure syndrome dyskeratosis congenita (DC) has been considered to be a disorder of telomere maintenance in which disease features arise due to accelerated shortening of telomeres. By screening core components of the telomerase and shelterin complexes in patients with DC and related bone marrow failure syndromes we have identified 24 novel mutations: 11 in the RNA component of telomerase (TERC), 8 in the reverse transcriptase component (TERT), 4 in dyskerin (DKC1) and 1 in TRF1-interacting nuclear factor 2 (TINF2). This has prompted us to review these genetic subtypes in terms of telomere length, telomerase activity and clinical presentation among 194 genetically characterised index cases recruited onto the registry in London. While those with DKC1 and TINF2 mutations present at a younger age and have more disease features than those with TERC or TERT mutations, there is no difference in telomere length between these groups. There is no difference in the age of onset and numbers of disease features seen in those with TERC and TERT mutations despite the fact that the latter show higher levels of telomerase activity in vitro. The incidence of aplastic anaemia is greater in patients with TERC or TINF2 mutations compared to patients with DKC1 mutations, and cancer incidence is highest in patients with TERC mutations. These data are the first to provide robust comparisons between different genetic subtypes of telomerase and shelterin mutations (the “telomereopathies”) and clearly demonstrate that disease severity is not explained by telomere length alone.
Collapse
|
70
|
Nelson ND, Bertuch AA. Dyskeratosis congenita as a disorder of telomere maintenance. Mutat Res 2011; 730:43-51. [PMID: 21745483 DOI: 10.1016/j.mrfmmm.2011.06.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/16/2011] [Accepted: 06/25/2011] [Indexed: 12/11/2022]
Abstract
Since 1998, there have been great advances in our understanding of the pathogenesis of dyskeratosis congenita (DC), a rare inherited bone marrow failure and cancer predisposition syndrome with prominent mucocutaneous abnormalities and features of premature aging. DC is now characterized molecularly by the presence of short age-adjusted telomeres. Mutations in seven genes have been unequivocally associated with DC, each with a role in telomere length maintenance. These observations, combined with knowledge that progressive telomere shortening can impose a proliferative barrier on dividing cells and contribute to chromosome instability, have led to the understanding that extreme telomere shortening drives the clinical features of DC. However, some of the genes implicated in DC encode proteins that are also components of H/ACA-ribonucleoprotein enzymes, which are responsible for the post-translational modification of ribosomal and spliceosomal RNAs, raising the question whether alterations in these activities play a role in the pathogenesis of DC. In addition, recent reports suggest that some cases of DC may not be characterized by short age-adjusted telomeres. This review will highlight our current knowledge of the telomere length defects in DC and the factors involved in its development.
Collapse
Affiliation(s)
- Nya D Nelson
- Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
71
|
|
72
|
Dereure O. [Mutations of C16orf57 gene have been identified in the poikiloderma-neutropenia syndrome and in a specific subset of congenital dyskeratosis with normal-length telomeres]. Ann Dermatol Venereol 2011; 138:362-3. [PMID: 21497268 DOI: 10.1016/j.annder.2011.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/26/2011] [Indexed: 11/25/2022]
Affiliation(s)
- O Dereure
- Service de dermatologie, hôpital Saint-Éloi, Montpellier, France.
| |
Collapse
|
73
|
Abstract
Dyskeratosis congenita (DC) is a multisystem inherited syndrome exhibiting marked clinical and genetic heterogeneity. In its classic form, it is characterized by mucocutaneous abnormalities, BM failure, and a predisposition to cancer. BM failure is the principal cause of premature mortality. Studies over the last 15 years have led to significant advances, with 8 DC genes (DKC1, TERC, TERT, NOP10, NHP2, TIN2, C16orf57, and TCAB1) having been characterized. Seven of these are important in telomere maintenance either because they encode components of the telomerase enzyme complex (DKC1, TERC, TERT, NOP10, NHP2, and TCAB1) or the shelterin complex (TINF2). DC is therefore principally a disease of defective telomere maintenance and patients usually have very short telomeres. The genetic advances have led to the unification of DC with several other disorders, including the severe multisystem disorders Hoyeraal-Hreidarsson and Revesz syndromes, as well as a subset of patients with aplastic anemia, myelodysplasia, leukemia, and idiopathic pulmonary fibrosis. This wide spectrum of diseases ranging from classic DC to aplastic anemia can be regarded as disorders of defective telomere maintenance-"the telomereopathies." These advances have increased our understanding of normal hematopoiesis and highlighted the important role of telomerase and telomeres in human biology. They are also facilitating the diagnosis (especially when presentation is atypical) and management of DC.
Collapse
Affiliation(s)
- Inderjeet Dokal
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
74
|
Clericuzio C, Harutyunyan K, Jin W, Erickson RP, Irvine AD, McLean WHI, Wen Y, Bagatell R, Griffin TA, Shwayder TA, Plon SE, Wang LL. Identification of a novel C16orf57 mutation in Athabaskan patients with Poikiloderma with Neutropenia. Am J Med Genet A 2010; 155A:337-42. [PMID: 21271650 DOI: 10.1002/ajmg.a.33807] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 10/25/2010] [Indexed: 01/09/2023]
Abstract
Poikiloderma with Neutropenia (PN), Clericuzio-Type (OMIM #604173) is characterized by poikiloderma, chronic neutropenia, recurrent sinopulmonary infections, bronchiectasis, and nail dystrophy. First described by Clericuzio in 1991 in 14 patients of Navajo descent, it has since also been described in non-Navajo patients. C16orf57 has recently been identified as a causative gene in PN. The purpose of our study was to describe a spectrum of C16orf57 mutations in a cohort of PN patients including five patients of Athabaskan (Navajo and Apache) ancestry. Eleven patients from eight kindreds were enrolled in an IRB-approved study at Baylor College of Medicine. Five patients were of Athabaskan ancestry. PCR amplification and sequencing of the entire coding region of the C16orf57 gene was performed on genomic DNA. We identified biallelic C16orf57 mutations in all 11 PN patients in our cohort. The seven new deleterious mutations consisted of deletion (2), nonsense (3), and splice site (2) mutations. The patients of Athabaskan ancestry all had a common deletion mutation (c.496delA) which was not found in the six non-Athabaskan patients. Mutations in the C16orf57 gene have been identified thus far in all patients studied with a clinical diagnosis of PN. We have identified seven new mutations in C16orf57 in PN patients. One of these is present in all patients of Athabaskan descent, suggesting that c.496delA represents the PN-causative mutation in this subpopulation.
Collapse
Affiliation(s)
- Carol Clericuzio
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|