51
|
Biological findings from the PheWAS catalog: focus on connective tissue-related disorders (pelvic floor dysfunction, abdominal hernia, varicose veins and hemorrhoids). Hum Genet 2016; 135:779-95. [DOI: 10.1007/s00439-016-1672-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/17/2016] [Indexed: 01/31/2023]
|
52
|
Bhatnagar V, Richard EL, Wu W, Nievergelt CM, Lipkowitz MS, Jeff J, Maihofer AX, Nigam SK. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin Kidney J 2016; 9:444-53. [PMID: 27274832 PMCID: PMC4886906 DOI: 10.1093/ckj/sfw010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Background In the setting of chronic kidney disease (CKD), altered extra-renal urate handling may be necessary to regulate plasma uric acid. The Remote Sensing and Signaling Hypothesis (Nigam S. What do drug transporters really do? Nat Rev Drug Discov 2015; 14: 29–44) suggests that multispecific solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters in different tissues are part of an inter-organ communication system that maintains levels of urate and other metabolites after organ injury. Methods Data from the Chronic Renal Insufficiency Cohort (CRIC; n = 3598) were used to study associations between serum uric acid and single nucleotide polymorphisms (SNPs) on the following uric acid transporters: ABCG2 (BRCP), SLC22A6 (OAT1), SLC22A8 (OAT3), SLC22A10 (OAT5), SLC22A11 (OAT4), SLC22A12 (URAT1), SLC22A13 (OAT10), SLC17A1-A3 (NPTs), SLC2A9 (GLUT9), ABCC2 (MRP2) and ABCC4 (MRP4). Regression models, controlling for principal components age, gender and renal function, were run separately for those of European (EA) and African ancestry (AA), and P-values corrected for multiple comparisons. A twin cohort with participants of EA and normal renal function was used for comparison. Results Among those of EA in CRIC, statistically significant signals were observed for SNPs in ABCG2 (rs4148157; beta-coefficient = 0.68; P = 4.78E-13) and SNPs in SLC2A9 (rs13125646; beta-coefficient = −0.30; P = 1.06E-5). Among those of AA, the strongest (but not statistically significant) signals were observed for SNPs in SLC2A9, followed by SNPs in ABCG2. In the twin study (normal renal function), only SNPs in SLC2A9 were significant (rs4481233; beta-coefficient=−0.45; P = 7.0E-6). In CRIC, weaker associations were also found for SLC17A3 (NPT4) and gender-specific associations found for SLC22A8 (OAT3), SLC22A11 (OAT4), and ABCC4 (MRP4). Conclusions In patients of EA with CKD (CRIC cohort), we found striking associations between uric acid and SNPs on ABCG2, a key transporter of uric acid by intestine. Compared with ABCG2, SLC2A9 played a much less significant role in this subset of patients with CKD. SNPs in other SLC (e.g. SLC22A8 or OAT3) and ABC (e.g. ABCC4 or MRP4) genes appear to make a weak gender-dependent contribution to uric acid homeostasis in CKD. As renal urate transport is affected in the setting of declining kidney function, extra-renal ABCG2 appears to play a compensatory role—a notion consistent with animal studies and the Remote Sensing and Signaling Hypothesis. Overall, the data indicate how different urate transporters become more or less important depending on renal function, ethnicity and gender. Therapies focused on enhancing ABCG2 urate handling may be helpful in the setting of CKD and hyperuricemia.
Collapse
Affiliation(s)
- Vibha Bhatnagar
- Department of Family Medicine and Public Health , School of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Erin L Richard
- Department of Family Medicine and Public Health , School of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Wei Wu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry , School of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Michael S Lipkowitz
- Division of Nephrology and Hypertension , Georgetown University Medical Center , Washington, DC , USA
| | - Janina Jeff
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Adam X Maihofer
- Department of Psychiatry , School of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
53
|
Wells A, Kopp N, Xu X, O'Brien DR, Yang W, Nehorai A, Adair-Kirk TL, Kopan R, Dougherty JD. The anatomical distribution of genetic associations. Nucleic Acids Res 2015; 43:10804-20. [PMID: 26586807 PMCID: PMC4678833 DOI: 10.1093/nar/gkv1262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/04/2015] [Indexed: 01/13/2023] Open
Abstract
Deeper understanding of the anatomical intermediaries for disease and other complex genetic traits is essential to understanding mechanisms and developing new interventions. Existing ontology tools provide functional, curated annotations for many genes and can be used to develop mechanistic hypotheses; yet information about the spatial expression of genes may be equally useful in interpreting results and forming novel hypotheses for a trait. Therefore, we developed an approach for statistically testing the relationship between gene expression across the body and sets of candidate genes from across the genome. We validated this tool and tested its utility on three applications. First, we show that the expression of genes in associated loci from GWA studies implicates specific tissues for 57 out of 98 traits. Second, we tested the ability of the tool to identify novel relationships between gene expression and phenotypes. Specifically, we experimentally confirmed an underappreciated prediction highlighted by our tool: that white blood cell count--a quantitative trait of the immune system--is genetically modulated by genes expressed in the skin. Finally, using gene lists derived from exome sequencing data, we show that human genes under selective constraint are disproportionately expressed in nervous system tissues.
Collapse
Affiliation(s)
- Alan Wells
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Kopp
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoxiao Xu
- The Preston M. Green Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130, USA
| | - David R O'Brien
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arye Nehorai
- The Preston M. Green Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130, USA
| | - Tracy L Adair-Kirk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - J D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
54
|
Shriner D, Kumkhaek C, Doumatey AP, Chen G, Bentley AR, Charles BA, Zhou J, Adeyemo A, Rodgers GP, Rotimi CN. Evolutionary context for the association of γ-globin, serum uric acid, and hypertension in African Americans. BMC MEDICAL GENETICS 2015; 16:103. [PMID: 26686224 PMCID: PMC4684912 DOI: 10.1186/s12881-015-0249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022]
Abstract
Background Hyperuricemia and associated cardio-metabolic disorders are more prevalent in African Americans than in European Americans. We used genome-wide admixture mapping and association testing to identify loci with ancestry effects on serum uric acid levels. Methods We analyzed 1,976 African Americans from Washington, D.C, including 1,322 individuals from 328 pedigrees and 654 unrelated individuals, enrolled in the Howard University Family Study. We performed admixture mapping and genome-wide association testing using ~800 k autosomal single-nucleotide polymorphisms (SNPs). We performed fine mapping by dense genotyping. We assessed functionality by a combination of bioinformatic annotation, reporter gene assays, and gel shift experiments. We also analyzed 12,641 individuals enrolled in the National Health and Nutrition Examination Survey. Results We detected a genome-wide significant locus on chromosome 11p15.4 at which serum uric acid levels increased with increasing African ancestry, independent of kidney function. Fine-mapping identified two independent signals in the β-globin locus. The ancestral allele at SNP rs2855126, located upstream of the hemoglobin, gamma A gene HBG1, was associated with increased serum uric acid levels and higher expression of a reporter gene relative to the derived allele. Hyperuricemia was associated with increased risk of hypertension in 3,767 African Americans (Odds Ratio = 2.48, p = 2.71 × 10− 19). Conclusions Given that increased expression of γ-globin leads to increased levels of fetal hemoglobin which confers protection against malaria, we hypothesize that evolution in Africa of protection against malaria may have occurred at the cost of increased serum uric acid levels, contributing to the high rates of hyperuricemia and associated cardio-metabolic disorders observed in African Americans. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0249-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Rm 4047, 12 South Dr., Bethesda, MD, 20892, USA.
| | - Chutima Kumkhaek
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Rm 4047, 12 South Dr., Bethesda, MD, 20892, USA.
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Rm 4047, 12 South Dr., Bethesda, MD, 20892, USA.
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Rm 4047, 12 South Dr., Bethesda, MD, 20892, USA.
| | - Bashira A Charles
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Rm 4047, 12 South Dr., Bethesda, MD, 20892, USA.
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Rm 4047, 12 South Dr., Bethesda, MD, 20892, USA.
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Rm 4047, 12 South Dr., Bethesda, MD, 20892, USA.
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Rm 4047, 12 South Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
55
|
Zhou ZW, Cui LL, Han L, Wang C, Song ZJ, Shen JW, Li ZQ, Chen JH, Wen ZJ, Wang XM, Shi YY, Li CG. Polymorphisms in GCKR, SLC17A1 and SLC22A12 were associated with phenotype gout in Han Chinese males: a case-control study. BMC MEDICAL GENETICS 2015; 16:66. [PMID: 26290326 PMCID: PMC4593200 DOI: 10.1186/s12881-015-0208-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/30/2015] [Indexed: 01/10/2023]
Abstract
Background Gout is a common arthritic disease resulting from elevated serum uric acid (SUA) level. A large meta-analysis including 28,141 individuals identified nine single nucleotide polymorphisms (SNPs) associated with altered SUA level in a Caucasian population. However, raised SUA level alone is not sufficient for the development of gout arthritis and most of these SNPs have not been studied in a Han Chinese population. Here, we performed a case–control association analysis to investigate the relationship between these SUA correlated SNPs and gout arthritis in Han Chinese. Methods A total of 622 ascertained gout p9atients and 917 healthy controls were genotyped. Genome-wide significant SNPs, rs12129861, rs780094, rs734553, rs742132, rs1183201, rs12356193, rs17300741 and rs505802 in the previous SUA study, were selected for our analysis. Results No deviation from the Hardy–Weinberg equilibrium was observed either in the case or control cohorts (corrected p > 0.05). Three SNPs, rs780094 (located in GCKR, corrected p = 1.78E−4, OR = 0.723), rs1183201 (located in SLC17A1, corrected p = 1.39E−7, OR = 0.572) and rs505802 (located in SLC22A12, corrected p = 0.007, OR = 0.747), were significantly associated with gout on allelic level independent of potential cofounding traits. While the remaining SNPs were not replicated. We also found significant associations of uric acid concentrations with these three SNPs (rs780094 in GCKR, corrected p = 3.94E−5; rs1183201 in SLC17A1, corrected p = 0.005; rs505802 in SLC22A12, corrected p = 0.003) and of triglycerides with rs780094 (located in GCKR, corrected p = 2.96E−4). Unfortunately, SNP-SNP interactions for these three significant SNPs were not detected (rs780094 vs rs1183201, p = 0.402; rs780094 vs rs505802, p = 0.434; rs1183201 vs rs505802, p = 0.143). Conclusions Three SUA correlated SNPs in Caucasian population, rs780094 in GCKR, rs1183201 in SLC17A1 and rs505802 in SLC22A12 were confirmed to be associated with gout arthritis and uric acid concentrations in Han Chinese males. Considering genetic differences among populations and complicated pathogenesis of gout arthritis, more validating tests in independent populations and relevant functional experiments are suggested in future.
Collapse
Affiliation(s)
- Zhao-Wei Zhou
- Shandong Gout Clinical Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China. .,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Ling-Ling Cui
- Shandong Gout Clinical Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China. .,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Lin Han
- Shandong Gout Clinical Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China. .,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Can Wang
- Shandong Gout Clinical Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China. .,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Zhi-Jian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jia-Wei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhi-Qiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jian-Hua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zu-Jia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xiao-Min Wang
- Shandong Gout Clinical Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China. .,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Yong-Yong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Chang-Gui Li
- Shandong Gout Clinical Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China. .,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
56
|
Woodward OM. ABCG2: the molecular mechanisms of urate secretion and gout. Am J Physiol Renal Physiol 2015; 309:F485-8. [PMID: 26136557 DOI: 10.1152/ajprenal.00242.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023] Open
Abstract
The human propensity for high levels of serum uric acid (SUA) is a trait that has defied explanation. Is it beneficial? Is it pathogenic? Its role in the human diseases like gout and kidney stones was discovered over a century ago [Richette P, Bardin T. Lancet 375: 318-328, 2010; Rivard C, Thomas J, Lanaspa MA, Johnson RJ. Rheumatology (Oxford) 52: 421-426, 2013], but today emerging new genetic and epidemiological techniques have revived an age-old debate over whether high uric acid levels (hyperuricemia) independently increase risk for diseases like hypertension and chronic kidney disease [Feig DI. J Clin Hypertens (Greenwich) 14: 346-352, 2012; Feig DI, Madero M, Jalal DI, Sanchez-Lozada LG, Johnson RJ. J Pediatr 162: 896-902, 2013; Feig DI, Soletsky B, Johnson RJ. JAMA 300: 924-932, 2008; Wang J, Qin T, Chen J, Li Y, Wang L, Huang H, Li J. PLoS One 9: e114259, 2014; Zhu P, Liu Y, Han L, Xu G, Ran JM. PLoS One 9: e100801, 2014]. Part of the mystery of the role uric acid plays in human health stems from our lack of understanding of how humans regulate uric acid homeostasis, an understanding that could shed light on the historic role of uric acid in human adaptation and its present role in human pathogenesis. This review will highlight the recent work to identify the first important human uric acid secretory transporter, ABCG2, and the identification of a common causal ABCG2 variant, Q141K, for hyperuricemia and gout.
Collapse
Affiliation(s)
- Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
57
|
Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 2015; 14:543-60. [PMID: 26111766 DOI: 10.1038/nrd4626] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carrier (SLC) transporters - a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes - have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.
Collapse
Affiliation(s)
- Lawrence Lin
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Science Centre, London, Ontario N6A 5A5, Canada
| | - Kathleen M Giacomini
- 1] Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA. [2] Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
58
|
Lam NN, Garg AX, Segev DL, Schnitzler MA, Xiao H, Axelrod D, Brennan DC, Kasiske BL, Tuttle-Newhall JE, Lentine KL. Gout after living kidney donation: correlations with demographic traits and renal complications. Am J Nephrol 2015; 41:231-40. [PMID: 25896309 DOI: 10.1159/000381291] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/24/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND The demographic and clinical correlates of gout after living kidney donation are not well described. METHODS Using a unique database that integrates national registry identifiers of U.S. living kidney donors (1987-2007) with billing claims from a private health insurer (2000-2007), we identified post-donation gout based on medical diagnosis codes or pharmacy fills for gout therapies. The frequencies and demographic correlates of gout after donation were estimated by Cox regression with left- and right-censoring. We also compared the rates of renal diagnoses among donors with and without gout, matched in the ratio 1:3 by age, sex, and race. RESULTS The study sample of 4,650 donors included 13.1% African Americans. By seven years, African Americans were almost twice as likely to develop gout as Caucasian donors (4.4 vs. 2.4%; adjusted hazard ratio, aHR, 1.8; 95% confidence interval (CI) 1.0-3.2). Post-donation gout risk also increased with older age at donation (aHR per year 1.05) and was higher in men (aHR 2.80). Gout rates were similar in donors and age- and sex-matched general non-donors (rate ratio 0.86; 95% CI 0.66-1.13). Compared to matched donors without gout, donors with gout had more frequent renal diagnoses, reaching significance for acute kidney failure (rate ratio 12.5; 95% CI 1.5-107.0), chronic kidney disease (rate ratio 5.0; 95% CI 2.1-11.7), and other disorders of the kidney (rate ratio 2.2; 95% CI 1.2-4.2). CONCLUSION Donor subgroups at increased risk of gout include African Americans, older donors, and men. Donors with gout have a higher burden of renal complications after demographic adjustment.
Collapse
Affiliation(s)
- Ngan N Lam
- Division of Nephrology, Western University, London, Ont., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
The genome as pharmacopeia: Association of genetic dose with phenotypic response. Biochem Pharmacol 2015; 94:229-40. [DOI: 10.1016/j.bcp.2015.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
|
60
|
Affiliation(s)
- Asim K. Mandal
- Renal Divisions, Brigham and Women's Hospital and VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts 02115;
| | - David B. Mount
- Renal Divisions, Brigham and Women's Hospital and VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
61
|
Matsuo H, Yamamoto K, Nakaoka H, Nakayama A, Sakiyama M, Chiba T, Takahashi A, Nakamura T, Nakashima H, Takada Y, Danjoh I, Shimizu S, Abe J, Kawamura Y, Terashige S, Ogata H, Tatsukawa S, Yin G, Okada R, Morita E, Naito M, Tokumasu A, Onoue H, Iwaya K, Ito T, Takada T, Inoue K, Kato Y, Nakamura Y, Sakurai Y, Suzuki H, Kanai Y, Hosoya T, Hamajima N, Inoue I, Kubo M, Ichida K, Ooyama H, Shimizu T, Shinomiya N. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis 2015; 75:652-9. [PMID: 25646370 PMCID: PMC4819613 DOI: 10.1136/annrheumdis-2014-206191] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/06/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gout, caused by hyperuricaemia, is a multifactorial disease. Although genome-wide association studies (GWASs) of gout have been reported, they included self-reported gout cases in which clinical information was insufficient. Therefore, the relationship between genetic variation and clinical subtypes of gout remains unclear. Here, we first performed a GWAS of clinically defined gout cases only. METHODS A GWAS was conducted with 945 patients with clinically defined gout and 1213 controls in a Japanese male population, followed by replication study of 1048 clinically defined cases and 1334 controls. RESULTS Five gout susceptibility loci were identified at the genome-wide significance level (p<5.0×10(-8)), which contained well-known urate transporter genes (ABCG2 and SLC2A9) and additional genes: rs1260326 (p=1.9×10(-12); OR=1.36) of GCKR (a gene for glucose and lipid metabolism), rs2188380 (p=1.6×10(-23); OR=1.75) of MYL2-CUX2 (genes associated with cholesterol and diabetes mellitus) and rs4073582 (p=6.4×10(-9); OR=1.66) of CNIH-2 (a gene for regulation of glutamate signalling). The latter two are identified as novel gout loci. Furthermore, among the identified single-nucleotide polymorphisms (SNPs), we demonstrated that the SNPs of ABCG2 and SLC2A9 were differentially associated with types of gout and clinical parameters underlying specific subtypes (renal underexcretion type and renal overload type). The effect of the risk allele of each SNP on clinical parameters showed significant linear relationships with the ratio of the case-control ORs for two distinct types of gout (r=0.96 [p=4.8×10(-4)] for urate clearance and r=0.96 [p=5.0×10(-4)] for urinary urate excretion). CONCLUSIONS Our findings provide clues to better understand the pathogenesis of gout and will be useful for development of companion diagnostics.
Collapse
Affiliation(s)
- Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan Medical Group, Headquarters, Iwo-to Air Base Group, Japan Air Self-Defense Force, Tokyo, Japan
| | - Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan Department of Dermatology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshinori Chiba
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Takahiro Nakamura
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan Laboratory for Mathematics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yuzo Takada
- The Central Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Inaho Danjoh
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Junko Abe
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Sho Terashige
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiraku Ogata
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seishiro Tatsukawa
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Guang Yin
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan Department of Nutritional Sciences, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Emi Morita
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | - Hiroyuki Onoue
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keiichi Iwaya
- Department of Pathology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshimitsu Ito
- Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yutaka Sakurai
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuo Hosoya
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Kimiyoshi Ichida
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | | | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
62
|
Laston SL, Voruganti VS, Haack K, Shah VO, Bobelu A, Bobelu J, Ghahate D, Harford AM, Paine SS, Tentori F, Cole SA, MacCluer JW, Comuzzie AG, Zager PG. Genetics of kidney disease and related cardiometabolic phenotypes in Zuni Indians: the Zuni Kidney Project. Front Genet 2015; 6:6. [PMID: 25688259 PMCID: PMC4311707 DOI: 10.3389/fgene.2015.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
Abstract
The objective of this study is to identify genetic factors associated with chronic kidney disease (CKD) and related cardiometabolic phenotypes among participants of the Genetics of Kidney Disease in Zuni Indians study. The study was conducted as a community-based participatory research project in the Zuni Indians, a small endogamous tribe in rural New Mexico. We recruited 998 members from 28 extended multigenerational families, ascertained through probands with CKD who had at least one sibling with CKD. We used the Illumina Infinium Human1M-Duo version 3.0 BeadChips to type 1.1 million single nucleotide polymorphisms (SNPs). Prevalence estimates for CKD, hyperuricemia, diabetes, and hypertension were 24%, 30%, 17% and 34%, respectively. We found a significant (p < 1.58 × 10-7) association for a SNP in a novel gene for serum creatinine (PTPLAD2). We replicated significant associations for genes with serum uric acid (SLC2A9), triglyceride levels (APOA1, BUD13, ZNF259), and total cholesterol (PVRL2). We found novel suggestive associations (p < 1.58 × 10-6) for SNPs in genes with systolic (OLFML2B), and diastolic blood pressure (NFIA). We identified a series of genes associated with CKD and related cardiometabolic phenotypes among Zuni Indians, a population with a high prevalence of kidney disease. Illuminating genetic variations that modulate the risk for these disorders may ultimately provide a basis for novel preventive strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Sandra L Laston
- South Texas Diabetes and Obesity Institute, Regional Academic Health Center, University of Texas at San Antonio Harlingen, TX, USA
| | - V Saroja Voruganti
- Department of Nutrition, University of North Carolina at Chapel Hill Kannapolis, NC, USA ; University of North Carolina Nutrition Research Institute, University of North Carolina at Chapel Hill Kannapolis, NC, USA
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Vallabh O Shah
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Arlene Bobelu
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Jeanette Bobelu
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Donica Ghahate
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Antonia M Harford
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | | | | | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Jean W MacCluer
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA ; Southwest National Primate Research Center San Antonio, TX, USA
| | - Philip G Zager
- Dialysis Clinic, Inc., Albuquerque, NM USA ; Department of Medicine, Division of Nephrology, University of New Mexico School of Medicine Albuquerque, NM, USA
| |
Collapse
|
63
|
Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population. PLoS One 2015; 10:e0116714. [PMID: 25617895 PMCID: PMC4305305 DOI: 10.1371/journal.pone.0116714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/13/2014] [Indexed: 01/11/2023] Open
Abstract
Background Elevated serum uric acid concentration is an independent risk factor and predictor of type 2 diabetes (T2D). Whether the uric acid-associated genes have an impact on T2D remains unclear. We aimed to investigate the effects of the uric acid-associated genes on the risk of T2D as well as glucose metabolism and insulin secretion. Method We recruited 2,199 normal glucose tolerance subjects from the Shanghai Diabetes Study I and II and 2,999 T2D patients from the inpatient database of Shanghai Diabetes Institute. Fifteen single nucleotide polymorphisms (SNPs) mapped in or near 11 loci (PDZK1, GCKR, LRP2, SLC2A9, ABCG2, LRRC16A, SLC17A1, SLC17A3, SLC22A11, SLC22A12 and SF1) were genotyped and serum biochemical parameters related to uric acid and T2D were determined. Results SF1 rs606458 showed strong association to T2D in both males and females (p = 0.034 and 0.0008). In the males, LRRC16A was associated with 2-h insulin and insulin secretion (p = 0.009 and 0.009). SLC22A11 was correlated with HOMA-B and insulin secretion (p = 0.048 and 0.029). SLC2A9 rs3775948 was associated with 2-h glucose (p = 0.043). In the females, LRP2 rs2544390 and rs1333049 showed correlations with fasting insulin, HOMA-IR and insulin secretion (p = 0.028, 0.033 and 0.052 and p = 0.034, 0.047 and 0.038, respectively). SLC2A9 rs11722228 was correlated with 2-h glucose, 2-h insulin and insulin secretion (p = 0.024, 0.049 and 0.049, respectively). Conclusions Our results indicated that the uric acid-associated genes have an impact on the risk of T2D, glucose metabolism and insulin secretion in a Chinese population.
Collapse
|
64
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95:83-123. [PMID: 25540139 PMCID: PMC4281586 DOI: 10.1152/physrev.00025.2013] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Gleb Martovetsky
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Sun-Young Ahn
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Erin Richard
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Vibha Bhatnagar
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Wu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
65
|
Abstract
Potential drug-drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug-metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
66
|
Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics 2014; 18:40-51. [PMID: 25427668 DOI: 10.1159/000367962] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023] Open
Abstract
Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions.
Collapse
|
67
|
Flynn TJ, Phipps-Green A, Hollis-Moffatt JE, Merriman ME, Topless R, Montgomery G, Chapman B, Stamp LK, Dalbeth N, Merriman TR. Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects. Arthritis Res Ther 2014; 15:R220. [PMID: 24360580 PMCID: PMC3978909 DOI: 10.1186/ar4417] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/12/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION There is inconsistent association between urate transporters SLC22A11 (organic anion transporter 4 (OAT4)) and SLC22A12 (urate transporter 1 (URAT1)) and risk of gout. New Zealand (NZ) Māori and Pacific Island people have higher serum urate and more severe gout than European people. The aim of this study was to test genetic variation across the SLC22A11/SLC22A12 locus for association with risk of gout in NZ sample sets. METHODS A total of 12 single nucleotide polymorphism (SNP) variants in four haplotype blocks were genotyped using TaqMan® and Sequenom MassArray in 1003 gout cases and 1156 controls. All cases had gout according to the 1977 American Rheumatism Association criteria. Association analysis of single markers and haplotypes was performed using PLINK and Stata. RESULTS A haplotype block 1 SNP (rs17299124) (upstream of SLC22A11) was associated with gout in less admixed Polynesian sample sets, but not European Caucasian (odds ratio; OR = 3.38, P = 6.1 × 10-4; OR = 0.91, P = 0.40, respectively) sample sets. A protective block 1 haplotype caused the rs17299124 association (OR = 0.28, P = 6.0 × 10-4). Within haplotype block 2 (SLC22A11) we could not replicate previous reports of association of rs2078267 with gout in European Caucasian (OR = 0.98, P = 0.82) sample sets, however this SNP was associated with gout in Polynesian (OR = 1.51, P = 0.022) sample sets. Within haplotype block 3 (including SLC22A12) analysis of haplotypes revealed a haplotype with trans-ancestral protective effects (OR = 0.80, P = 0.004), and a second haplotype conferring protection in less admixed Polynesian sample sets (OR = 0.63, P = 0.028) but risk in European Caucasian samples (OR = 1.33, P = 0.039). CONCLUSIONS Our analysis provides evidence for multiple ancestral-specific effects across the SLC22A11/SLC22A12 locus that presumably influence the activity of OAT4 and URAT1 and risk of gout. Further fine mapping of the association signal is needed using trans-ancestral re-sequence data.
Collapse
|
68
|
Serum uric acid levels are associated with polymorphisms in the SLC2A9, SF1, and GCKR genes in a Chinese population. Acta Pharmacol Sin 2014; 35:1421-7. [PMID: 25283508 DOI: 10.1038/aps.2014.87] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/31/2014] [Indexed: 01/21/2023] Open
Abstract
AIM Genome-wide association studies have identified several novel loci associated with serum uric acid concentrations in individuals of European descent. In the current study, we aimed to evaluate the associations between these loci and serum uric acid concentrations in a Chinese population. METHODS Fourteen single nucleotide polymorphisms (SNPs) mapped in or near 11 loci (PDZK1, GCKR, LRP2, SLC2A9, ABCG2, LRRC16A, SLC17A1, SLC17A3, SLC22A11, SLC22A12 and SF1) were genotyped in 2329 Chinese subjects in Shanghai. Serum biochemical parameters including uric acid concentrations were determined. All the variants were analyzed for gender differences since uric acid metabolism differed between genders. RESULTS In males after adjustments for age and BMI, GCKR rs780094, SLC2A9 rs11722228 and SF1 rs606458 were associated with the uric acid concentrations, which were statistically significant (P=0.016, 0.001 and 0.03, respectively), whereas SLC2A9 rs3775948 was marginally associated with the uric acid concentrations (P=0.071). In females, SLC22A12 rs506338 was also marginally associated with the uric acid concentrations (P=0.057). The meta-analysis for combined data from both males and females revealed that rs3775948 and rs606458 were associated with the uric acid concentrations (P=0.036 and 0.043, respectively). Furthermore, the gender significantly affected the association of rs11722228 with serum uric acid levels (P=0.012). CONCLUSION The SLC2A9 rs11722228, SF1 rs606458 and GCKR rs780094 variants modulate uric acid concentrations in Chinese males, while SF1 rs606458 and SLC2A9 rs3775948 are associated with the uric acid concentrations in both Chinese males and females.
Collapse
|
69
|
Abstract
Gout is a common inflammatory arthritis triggered by the crystallization of uric acid within the joints. Gout affects millions worldwide and has an increasing prevalence. Recent research has been carried out to better qualify and quantify the risk factors predisposing individuals to gout. These can largely be broken into nonmodifiable risk factors, such as gender, age, race, and genetics, and modifiable risk factors, such as diet and lifestyle. Increasing knowledge of factors predisposing certain individuals to gout could potentially lead to improved preventive practices. This review summarizes the nonmodifiable and modifiable risk factors associated with development of gout.
Collapse
Affiliation(s)
- Lindsey A MacFarlane
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Seoyoung C Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital, 1620 Tremont Street, Suite 3030, Boston, MA 02120, USA; Division of Rheumatology, Allergy and Immunology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
70
|
Hurba O, Mancikova A, Krylov V, Pavlikova M, Pavelka K, Stibůrková B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS One 2014; 9:e107902. [PMID: 25268603 PMCID: PMC4182324 DOI: 10.1371/journal.pone.0107902] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/18/2014] [Indexed: 11/24/2022] Open
Abstract
Objective Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. Methods The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. Results We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. Conclusion Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.
Collapse
Affiliation(s)
- Olha Hurba
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Mancikova
- Charles University in Prague, Faculty of Science, Department of Cell Biology, Prague, Czech Republic
| | - Vladimir Krylov
- Charles University in Prague, Faculty of Science, Department of Cell Biology, Prague, Czech Republic
| | - Marketa Pavlikova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | | | - Blanka Stibůrková
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
- Institute of Rheumatology, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
71
|
Abstract
PURPOSE African Americans have a substantially higher prevalence of risk factors for gout than Caucasians. The aim of the present study was to compare the risk for incident gout among African Americans and Caucasians. METHODS Incidence rates of physician-diagnosed gout among 11,559 Caucasian men and 931 African American men aged 35 to 57 years and at high cardiovascular risk, observed for 7 years as a part of the Multiple Risk Factor Intervention Trial, were analyzed. Cox regression models were used to account for potential confounding by age, body mass index, diuretic use, hypertension and diabetes status, aspirin and alcohol consumption, and kidney disease. RESULTS At baseline, after accounting for risk factors, African Americans had a 14% lower prevalence of hyperuricemia than Caucasians. Incidence of gout increased with increasing prevalence of risk factors in both Caucasians and African Americans. Ethnic disparities in incidence rates were most apparent among those without other risk factors for gout. In separate Cox regression models, after accounting for risk factors, African American ethnicity was associated with a hazard ratio of 0.78 (95% confidence interval [CI], 0.66-0.93) for physician-diagnosed gout and 0.88 (95% CI, 0.85-0.90) for incident hyperuricemia. Significant interactions were observed; the association was the strongest (hazard ratio 0.47; 0.37-0.60). These associations were unaffected by addition of serum urate as a covariate or by using alternate case definitions for gout. CONCLUSIONS After accounting for the higher prevalence of risk factors, African American ethnicity is associated with a significantly lower risk for gout and hyperuricemia compared with Caucasian ethnicity.
Collapse
Affiliation(s)
- Eswar Krishnan
- Department of Medicine, Stanford University School of Medicine, Palo Alto, Calif.
| |
Collapse
|
72
|
Scharpf RB, Mireles L, Yang Q, Köttgen A, Ruczinski I, Susztak K, Halper-Stromberg E, Tin A, Cristiano S, Chakravarti A, Boerwinkle E, Fox CS, Coresh J, Linda Kao WH. Copy number polymorphisms near SLC2A9 are associated with serum uric acid concentrations. BMC Genet 2014; 15:81. [PMID: 25007794 PMCID: PMC4118309 DOI: 10.1186/1471-2156-15-81] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric acid levels is unknown. Results We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9 on chromosome 4p16.1 are associated with uric acid (χ2df2=3545, p=3.19×10-23). Effect sizes, expressed as the percentage change in uric acid per deleted copy, are most pronounced among women (3.974.935.87 [ 2.55097.5 denoting percentiles], p=4.57×10-23) and independent of previously reported SNPs in SLC2A9 as assessed by SNP and CNP regression models and the phasing SNP and CNP haplotypes (χ2df2=3190,p=7.23×10-08). Our finding is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable to ARIC in direction and magnitude (1.414.707.88, p=5.46×10-03). Conclusions This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large population-based studies where technical sources of variation are substantial.
Collapse
Affiliation(s)
- Robert B Scharpf
- 550 N, Broadway, Suite 1101, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
Abstract
PURPOSE OF REVIEW Recent advances in genome technology have provided us with a list of molecules affecting urate handling in humans, many of which are unlikely to be identified through traditional physiological approach alone. Although this article is focused on urate, this can be viewed as a successful model of genomics-physiology collaboration. RECENT FINDINGS URATv1/GLUT9 (SLC2A9) is shown to play a critical role in urate reabsorption at the proximal tubule, probably more prominent than its partner URAT1 (SLC22A12). The major site of action of ABCG2 (ABCG2), an influential urate secretion transporter, has been shown to be the intestine rather than the kidney proximal tubule. Accordingly, hypofunction of ABCG2 leads to increased fractional excretion of urate, a finding traditionally interpreted as overproduction hyperuricemia. Some SLC17 family members secrete urate in the kidney or intestine. OAT2 (SLC22A7) may take up urate from blood to the proximal tubular cell. In addition, how a common single-nucleotide polymorphisms in ABCG2 affects its function has been elucidated. SUMMARY A finer grained picture of urate handling in the human body is now emerging, which will help choosing novel targets for urate-lowering therapy.
Collapse
|
75
|
Voruganti VS, Kent JW, Debnath S, Cole SA, Haack K, Göring HHH, Carless MA, Curran JE, Johnson MP, Almasy L, Dyer TD, Maccluer JW, Moses EK, Abboud HE, Mahaney MC, Blangero J, Comuzzie AG. Genome-wide association analysis confirms and extends the association of SLC2A9 with serum uric acid levels to Mexican Americans. Front Genet 2013; 4:279. [PMID: 24379826 PMCID: PMC3863993 DOI: 10.3389/fgene.2013.00279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/23/2013] [Indexed: 12/18/2022] Open
Abstract
Increased serum uric acid (SUA) is a risk factor for gout and renal and cardiovascular disease (CVD). The purpose of this study was to identify genetic factors that affect the variation in SUA in 632 Mexican Americans participants of the San Antonio Family Heart Study (SAFHS). A genome-wide association (GWA) analysis was performed using the Illumina Human Hap 550K single nucleotide polymorphism (SNP) microarray. We used a linear regression-based association test under an additive model of allelic effect, while accounting for non-independence among family members via a kinship variance component. All analyses were performed in the software package SOLAR. SNPs rs6832439, rs13131257, and rs737267 in solute carrier protein 2 family, member 9 (SLC2A9) were associated with SUA at genome-wide significance (p < 1.3 × 10−7). The minor alleles of these SNPs had frequencies of 36.2, 36.2, and 38.2%, respectively, and were associated with decreasing SUA levels. All of these SNPs were located in introns 3–7 of SLC2A9, the location of the previously reported associations in European populations. When analyzed for association with cardiovascular-renal disease risk factors, conditional on SLC2A9 SNPs strongly associated with SUA, significant associations were found for SLC2A9 SNPs with BMI, body weight, and waist circumference (p < 1.4 × 10−3) and suggestive associations with albumin-creatinine ratio and total antioxidant status (TAS). The SLC2A9 gene encodes an urate transporter that has considerable influence on variation in SUA. In addition to the primary association locus, suggestive evidence (p < 1.9 × 10−6) for joint linkage/association (JLA) was found at a previously-reported urate quantitative trait locus (Logarithm of odds score = 3.6) on 3p26.3. In summary, our GWAS extends and confirms the association of SLC2A9 with SUA for the first time in a Mexican American cohort and also shows for the first time its association with cardiovascular-renal disease risk factors.
Collapse
Affiliation(s)
- Venkata Saroja Voruganti
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA ; Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill Kannapolis, NC, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Subrata Debnath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Harald H H Göring
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Matthew P Johnson
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Thomas D Dyer
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Jean W Maccluer
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Eric K Moses
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA ; Centre for Genetic Origins of Health and Disease, University of Western Australia Perth, WA, Australia
| | - Hanna E Abboud
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Michael C Mahaney
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| |
Collapse
|
76
|
Lu X, Li X, Zhao Y, Zheng Z, Guan S, Chan P. Contemporary epidemiology of gout and hyperuricemia in community elderly in Beijing. Int J Rheum Dis 2013; 17:400-7. [PMID: 24118986 DOI: 10.1111/1756-185x.12156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolan Lu
- Department of Rheumatology; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
- Department of Geriatrics; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Xiaoxia Li
- Department of Rheumatology; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Yi Zhao
- Department of Rheumatology; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Zheng Zheng
- Department of Geriatrics; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Shaochen Guan
- Department of Geriatrics; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Piu Chan
- Department of Geriatrics; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| |
Collapse
|
77
|
George RL, Keenan RT. Genetics of hyperuricemia and gout: implications for the present and future. Curr Rheumatol Rep 2013; 15:309. [PMID: 23307580 DOI: 10.1007/s11926-012-0309-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gout is the most common inflammatory arthropathy and occurs in the setting of elevated serum urate levels. Gout is also known to be associated with multiple comorbidities including cardiovascular disease and the metabolic syndrome. Recent advances in research have increased our understanding and improved our knowledge of the pathophysiology of gout. Genome-wide association studies have permitted the identification of several new and common genetic factors that contribute to hyperuricemia and gout. Most of these are involved with the renal urate transport system (the uric acid transportasome), generally considered the most influential regulator of serum urate homeostasis. Thus far, SCL22A12, SCL2A9, and GLUT9 have been found to have the greatest variation and most influence on serum urate levels. However, genetics are only a part of the explanation in the development of hyperuricemia and gout. As results have been mixed, the role of known urate influential genes in gout's associated comorbidities remains unclear. Regardless, GWAS findings have expanded our understanding of the pathophysiology of hyperuricemia and gout, and will likely play a role in the development of future therapies and treatment of this ancient disease.
Collapse
Affiliation(s)
- Ronald L George
- Division of Rheumatology and Immunology, Duke University School of Medicine, DUMC, NC 27710, USA
| | | |
Collapse
|
78
|
Novel allelic variants and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: biochemical, genetics and functional analysis. Eur J Hum Genet 2013; 21:1067-73. [PMID: 23386035 DOI: 10.1038/ejhg.2013.3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/14/2012] [Accepted: 01/02/2013] [Indexed: 12/31/2022] Open
Abstract
Renal hypouricemia (RHUC) is a heterogeneous inherited disorder characterized by impaired tubular uric acid (UA) transport with severe complications, such as acute kidney injury (AKI). Type 1 is caused by a loss-of-function mutation in the SLC22A12 gene (URAT1), type 2 in the SLC2A9 gene (GLUT9). This article describes three Czech families with RHUC type 1. The serum UA in the probands was 0.9, 1.1 and 0.5 mg/dl and expressed as an increase in the fractional excretion of UA (48, 43 and 39%). The sequencing analysis of SLC22A12 revealed three novel variants: p.G366R, p.T467M and a deletion p.L415_G417del. A detailed metabolic investigation in proband C for progressive visual failure supported suspicion of neuronal ceroid lipofuscinosis type 7 conditioned by the mutation in the MFSD8 gene. Functional studies showed significantly decreased urate uptake and a mis-localized URAT1 signal in p.G366R, p.L415_G417del and p.T467M. Furthermore, colocalization studies showed accumulation of URAT1 protein in the endoplasmic reticulum. The findings suggest that loss-of-function mutations cause RHUC via loss of UA absorption partly by protein misfolding. However, they do not necessarily lead to AKI and a possible genotype-phenotype correlation was not proposed. Furthermore, results confirm an uneven geographical and ethnic distribution of SLC22A12 variants; the p.L415_G417del mutation predominates in the Roma ethnic group in the Czech Republic.
Collapse
|
79
|
Takeuchi F, Yamamoto K, Isono M, Katsuya T, Akiyama K, Ohnaka K, Rakugi H, Yamori Y, Ogihara T, Takayanagi R, Kato N. Genetic impact on uric acid concentration and hyperuricemia in the Japanese population. J Atheroscler Thromb 2012; 20:351-67. [PMID: 23238572 DOI: 10.5551/jat.15727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Using general Japanese populations, we performed a replication study of genetic loci previously identified in European-descent populations as being associated with uric acid and gout. The relative contribution of non-genetic and genetic factors to the variances in serum uric acid concentration was then evaluated. METHODS Seven single nucleotide polymorphisms (SNPs) were genotyped from 7 candidate loci robustly confirmed in Europeans. Genotyping was performed in up to 17,226 individuals, from which 237 hyperuricemia cases and 3,218 controls were chosen for a case-control study. For 6 SNPs showing a replication of uric acid association in 17,076 general population samples, we further tested the associations with other metabolic traits (n≤5,745) and with type 2 diabetes (931 cases and 1404 controls) and coronary artery disease (806 cases and 1337 controls). RESULTS Significant uric acid associations (one-tailed p<0.05) were replicated for 6 loci in Japanese. The strongest association was detected at SLC22A12 rs505802 for uric acid (p=2.4×10(-50)) and ABCG2 rs2231142 for hyperuricemia (p3.6×10(-10)). The combined genetic effect could explain some proportion of inter-individual variation in uric acid (R(2)=0.03) and was more or less comparable to the effect of well-recognized risk factors -BMI (R(2)=0.04) and alcohol intake (R(2)=0.01). The tested SNPs were not significantly associated with cardiovascular risk traits except for GCKR rs780094. CONCLUSION Our results confirm that 6 common uric acid variant loci are reproducible in Japanese. Further investigation is warranted to efficiently use the knowledge about genetic factors in combination with modifiable risk factors when we decide an individual's treatment strategy for hyperuricemia.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Takagi S, Omae R, Makanga JO, Kawahara T, Inazu T. Simple and rapid detection method for the mutations in SLC22A12 that cause hypouricemia by allele-specific real-time polymerase chain reaction. Clin Chim Acta 2012; 415:330-3. [PMID: 23148994 DOI: 10.1016/j.cca.2012.10.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hypouricemia is a disorder that serum urate level is less than 2.0 mg/dl, and relatively common in the Japanese population, where the main genetic cause of hypouricemia is W258X and R90H mutations in human urate trasnsporter 1(SLC22A12). Small scale screening has relied on time-consuming traditional ways like polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Therefore, it is beneficial that we have an easy and rapid detection method for these mutations. METHODS In this report, we established a touchdown allele-specific real-time polymerase chain reaction (ASPCR) assay for detecting W258X and R90H mutations in SLC22A12, respectively. RESULTS Quantifiable discrimination was successfully achieved by ∆Ct value. Furthermore, we conducted W258X and R90H screening against 120 control genome sets, whereby frequency was 2.92% for W258X, and not detected for R90H, respectively. CONCLUSIONS The two mutations, W258X and R90H in SLC22A12 were successfully genotyped by an easy and rapid ASPCR assay.
Collapse
Affiliation(s)
- Shota Takagi
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | |
Collapse
|
81
|
Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis 2012; 19:358-71. [PMID: 23089270 PMCID: PMC3619397 DOI: 10.1053/j.ackd.2012.07.009] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/17/2012] [Indexed: 02/07/2023]
Abstract
In addition to its role as a metabolic waste product, uric acid has been proposed to be an important molecule with multiple functions in human physiologic and pathophysiologic processes and may be linked to human diseases beyond nephrolithiasis and gout. Uric acid homeostasis is determined by the balance between production, intestinal secretion, and renal excretion. The kidney is an important regulator of circulating uric acid levels by reabsorbing about 90% of filtered urate and being responsible for 60% to 70% of total body uric acid excretion. Defective renal handling of urate is a frequent pathophysiologic factor underpinning hyperuricemia and gout. Despite tremendous advances over the past decade, the molecular mechanisms of renal urate transport are still incompletely understood. Many transport proteins are candidate participants in urate handling, with URAT1 and GLUT9 being the best characterized to date. Understanding these transporters is increasingly important for the practicing clinician as new research unveils their physiologic characteristics, importance in drug action, and genetic association with uric acid levels in human populations. The future may see the introduction of new drugs that act specifically on individual renal urate transporters for the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Ion Alexandru Bobulescu
- Departments of Internal Medicine and Physiology and the Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA.
| | | |
Collapse
|
82
|
Abstract
Gout is a common and very painful inflammatory arthritis caused by hyperuricaemia. This review provides an update on the genetics of hyperuricaemia and gout, including findings from genome-wide association studies. Most of the genes that associated with serum uric acid levels or gout are involved in the renal urate-transport system. For example, the urate transporter genes SLC2A9, ABCG2 and SLC22A12 modulate serum uric acid levels and gout risk. The net balance between renal urate absorption and secretion is a major determinant of serum uric acid concentration and loss-of-function mutations in SLC2A9 and SLC22A12 cause hereditary hypouricaemia due to reduced urate absorption and unopposed urate secretion. However, the variance in serum uric acid explained by genetic variants is small and their clinical utility for gout risk prediction seems limited because serum uric acid levels effectively predict gout risk. Urate-associated genes and genetically determined serum uric acid levels were largely unassociated with cardiovascular-metabolic outcomes, challenging the hypothesis of a causal role of serum uric acid in the development of cardiovascular disease. Strong pharmacogenetic associations between HLA-B*5801 alleles and severe allopurinol-hypersensitivity reactions were shown in Asian and European populations. Genetic testing for HLA-B*5801 alleles could be used to predict these potentially fatal adverse effects.
Collapse
|
83
|
Emami Riedmaier A, Nies AT, Schaeffeler E, Schwab M. Organic Anion Transporters and Their Implications in Pharmacotherapy. Pharmacol Rev 2012; 64:421-49. [DOI: 10.1124/pr.111.004614] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
84
|
Sakurai H. Transporter-centric view of urate metabolism: From genome-wide association study to pathophysiology. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
85
|
Tasic V, Hynes AM, Kitamura K, Cheong HI, Lozanovski VJ, Gucev Z, Jutabha P, Anzai N, Sayer JA. Clinical and functional characterization of URAT1 variants. PLoS One 2011; 6:e28641. [PMID: 22194875 PMCID: PMC3241677 DOI: 10.1371/journal.pone.0028641] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/11/2011] [Indexed: 12/27/2022] Open
Abstract
Idiopathic renal hypouricaemia is an inherited form of hypouricaemia, associated with abnormal renal handling of uric acid. There is excessive urinary wasting of uric acid resulting in hypouricaemia. Patients may be asymptomatic, but the persistent urinary abnormalities may manifest as renal stone disease, and hypouricaemia may manifest as exercise induced acute kidney injury. Here we have identified Macedonian and British patients with hypouricaemia, who presented with a variety of renal symptoms and signs including renal stone disease, hematuria, pyelonephritis and nephrocalcinosis. We have identified heterozygous missense mutations in SLC22A12 encoding the urate transporter protein URAT1 and correlate these genetic findings with functional characterization. Urate handling was determined using uptake experiments in HEK293 cells. This data highlights the importance of the URAT1 renal urate transporter in determining serum urate concentrations and the clinical phenotypes, including nephrolithiasis, that should prompt the clinician to suspect an inherited form of renal hypouricaemia.
Collapse
Affiliation(s)
- Velibor Tasic
- Medical School, University Children's Hospital, Skopje, Macedonia
| | - Ann Marie Hynes
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Kenichiro Kitamura
- Department of Nephrology, Kumamoto University Graduate School of Life Sciences, Kumamoto, Japan
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | | | - Zoran Gucev
- Medical School, University Children's Hospital, Skopje, Macedonia
| | - Promsuk Jutabha
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - John A. Sayer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|