51
|
Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet 2014; 5:279. [PMID: 25250042 PMCID: PMC4155875 DOI: 10.3389/fgene.2014.00279] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
Collapse
Affiliation(s)
- Adanna G Alexander
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| | - Vanessa Marfil
- Department of Biology, City College of New York New York, NY, USA
| | - Chris Li
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| |
Collapse
|
52
|
Genetic, structural, and molecular insights into the function of ras of complex proteins domains. ACTA ACUST UNITED AC 2014; 21:809-18. [PMID: 24981771 PMCID: PMC4104024 DOI: 10.1016/j.chembiol.2014.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson’s disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.
Collapse
|
53
|
Esteves AR, Swerdlow RH, Cardoso SM. LRRK2, a puzzling protein: insights into Parkinson's disease pathogenesis. Exp Neurol 2014; 261:206-16. [PMID: 24907399 DOI: 10.1016/j.expneurol.2014.05.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/26/2014] [Indexed: 01/10/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large, ubiquitous protein of unknown function. Mutations in the gene encoding LRRK2 have been linked to familial and sporadic Parkinson's disease (PD) cases. The LRRK2 protein is a single polypeptide that displays GTPase and kinase activity. Kinase and GTPase domains are involved in different cellular signaling pathways. Despite several experimental studies associating LRRK2 protein with various intracellular membranes and vesicular structures such as endosomal/lysosomal compartments, the mitochondrial outer membrane, lipid rafts, microtubule-associated vesicles, the golgi complex, and the endoplasmic reticulum its broader physiologic function(s) remain unidentified. Additionally, the cellular distribution of LRRK2 may indicate its role in several different pathways, such as the ubiquitin-proteasome system, the autophagic-lysosomal pathway, intracellular trafficking, and mitochondrial dysfunction. This review discusses potential mechanisms through which LRRK2 may mediate neurodegeneration and cause PD.
Collapse
Affiliation(s)
- A Raquel Esteves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sandra M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
54
|
Vancraenenbroeck R, De Raeymaecker J, Lobbestael E, Gao F, De Maeyer M, Voet A, Baekelandt V, Taymans JM. In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2. Front Mol Neurosci 2014; 7:51. [PMID: 24917786 PMCID: PMC4042160 DOI: 10.3389/fnmol.2014.00051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/14/2014] [Indexed: 01/23/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a complex, multidomain protein which is considered a valuable target for potential disease-modifying therapeutic strategies for Parkinson's disease (PD). In mammalian cells and brain, LRRK2 is phosphorylated and treatment of cells with inhibitors of LRRK2 kinase activity can induce LRRK2 dephosphorylation at a cluster of serines including Ser910/935/955/973. It has been suggested that phosphorylation levels at these sites reflect LRRK2 kinase activity, however kinase-dead variants of LRRK2 or kinase activating variants do not display altered Ser935 phosphorylation levels compared to wild type. Furthermore, Ser910/935/955/973 are not autophosphorylation sites, therefore, it is unclear if inhibitor induced dephosphorylation depends on the activity of compounds on LRRK2 or on yet to be identified upstream kinases. Here we used a panel of 160 ATP competitive and cell permeable kinase inhibitors directed against all branches of the kinome and tested their activity on LRRK2 in vitro using a peptide-substrate-based kinase assay. In neuronal SH-SY5Y cells overexpressing LRRK2 we used compound-induced dephosphorylation of Ser935 as readout. In silico docking of selected compounds was performed using a modeled LRRK2 kinase structure. Receiver operating characteristic plots demonstrated that the obtained docking scores to the LRRK2 ATP binding site correlated with in vitro and cellular compound activity. We also found that in vitro potency showed a high degree of correlation to cellular compound induced LRRK2 dephosphorylation activity across multiple compound classes. Therefore, acute LRRK2 dephosphorylation at Ser935 in inhibitor treated cells involves a strong component of inhibitor activity on LRRK2 itself, without excluding a role for upstream kinases. Understanding the regulation of LRRK2 phosphorylation by kinase inhibitors aids our understanding of LRRK2 signaling and may lead to development of new classes of LRRK2 kinase inhibitors.
Collapse
Affiliation(s)
- Renée Vancraenenbroeck
- Laboratory for Biomolecular Modelling, Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven Leuven, Belgium
| | - Joren De Raeymaecker
- Laboratory for Biomolecular Modelling, Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven Leuven, Belgium
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Fangye Gao
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Marc De Maeyer
- Laboratory for Biomolecular Modelling, Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven Leuven, Belgium
| | - Arnout Voet
- Laboratory for Biomolecular Modelling, Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven Leuven, Belgium ; Zhang Initiative Research Unit, Riken Saitama, Japan
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Jean-Marc Taymans
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven Leuven, Belgium
| |
Collapse
|
55
|
Gilsbach BK, Kortholt A. Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation. Front Mol Neurosci 2014; 7:32. [PMID: 24847205 PMCID: PMC4017136 DOI: 10.3389/fnmol.2014.00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022] Open
Abstract
Human leucine rich repeat kinase 2 (LRRK2) belongs to the Roco family of proteins, which are characterized by the presence of a Ras-like G-domain (Roc), a C-terminal of Roc domain (COR), and a kinase domain. Mutations in LRRK2 have been found to be thus far the most frequent cause of late-onset Parkinson’s disease (PD). Several of the pathogenic mutations in LRRK2 result in decreased GTPase activity and enhanced kinase activity, suggesting a possible PD-related gain of abnormal function. Important progress in the structural understanding of LRRK2 has come from our work with related Roco proteins from lower organisms. Atomic structures of Roco proteins from prokaryotes revealed that Roco proteins belong to the GAD class of molecular switches (G proteins activated by nucleotide dependent dimerization). As in LRRK2, PD-analogous mutations in Roco proteins from bacteria decrease the GTPase reaction. Studies with Roco proteins from the model organism Dictyostelium discoideum revealed that PD mutants have different effects and most importantly they explained the G2019S-related increased LRRK2 kinase activity. Furthermore, the structure of Dictyostelium Roco4 kinase in complex with the LRRK2 inhibitor H1152 showed that Roco4 and other Roco family proteins can be important for the optimization of the current, and identification of new, LRRK2 kinase inhibitors. In this review we highlight the recent progress in structural and biochemical characterization of Roco proteins and discuss its implication for the understanding of the complex regulatory mechanism of LRRK2.
Collapse
Affiliation(s)
- Bernd K Gilsbach
- Department of Cell Biochemistry, University of Groningen Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen Groningen, Netherlands
| |
Collapse
|
56
|
Chai C, Lim KL. Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics 2014; 14:486-501. [PMID: 24532982 PMCID: PMC3924245 DOI: 10.2174/1389202914666131210195808] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 09/09/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022] Open
Abstract
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant
genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has
shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively;
these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with
oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide
association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein
and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered
variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of
GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions
in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial
and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless,
the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.
Collapse
Affiliation(s)
- Chou Chai
- Duke-NUS Graduate Medical School, Singapore
| | - Kah-Leong Lim
- Duke-NUS Graduate Medical School, Singapore ; Department of Physiology, National University of Singapore, Singapore ; Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
| |
Collapse
|
57
|
TTT-3002 is a novel FLT3 tyrosine kinase inhibitor with activity against FLT3-associated leukemias in vitro and in vivo. Blood 2014; 123:1525-34. [PMID: 24408321 DOI: 10.1182/blood-2013-08-523035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
More than 35% of acute myeloid leukemia (AML) patients harbor a constitutively activating mutation in FMS-like tyrosine kinase-3 (FLT3). The most common type, internal tandem duplication (ITD), confers poor prognosis. We report for the first time on TTT-3002, a tyrosine kinase inhibitor (TKI) that is one of the most potent FLT3 inhibitors discovered to date. Studies using human FLT3/ITD mutant leukemia cell lines revealed the half maximal inhibitory concentration (IC50) for inhibiting FLT3 autophosphorylation is from 100 to 250 pM. The proliferation IC50 for TTT-3002 in these same cells was from 490 to 920 pM. TTT-3002 also showed potent activity when tested against the most frequently occurring FLT3-activating point mutation, FLT3/D835Y, against which many current TKIs are ineffective. These findings were validated in vivo by using mouse models of FLT3-associated AML. Survival and tumor burden of mice in several FLT3/ITD transplantation models is significantly improved by administration of TTT-3002 via oral dosing. Finally, we demonstrated that TTT-3002 is cytotoxic to leukemic blasts isolated from FLT3/ITD-expressing AML patients, while displaying minimal toxicity to normal hematopoietic stem/progenitor cells from healthy blood and bone marrow donors. Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI in the treatment of FLT3-mutant AML.
Collapse
|
58
|
Chakraborty S, Bornhorst J, Nguyen TT, Aschner M. Oxidative stress mechanisms underlying Parkinson's disease-associated neurodegeneration in C. elegans. Int J Mol Sci 2013; 14:23103-28. [PMID: 24284401 PMCID: PMC3856108 DOI: 10.3390/ijms141123103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is thought to play a significant role in the development and progression of neurodegenerative diseases. Although it is currently considered a hallmark of such processes, the interweaving of a multitude of signaling cascades hinders complete understanding of the direct role of oxidative stress in neurodegeneration. In addition to its extensive use as an aging model, some researchers have turned to the invertebrate model Caenorhabditis elegans (C. elegans) in order to further investigate molecular mediators that either exacerbate or protect against reactive oxygen species (ROS)-mediated neurodegeneration. Due to their fully characterized genome and short life cycle, rapid generation of C. elegans genetic models can be useful to study upstream markers of oxidative stress within interconnected signaling pathways. This report will focus on the roles of C. elegans homologs for the oxidative stress-associated transcription factor Nrf2, as well as the autosomal recessive, early-onset Parkinson’s disease (PD)-associated proteins Parkin, DJ-1, and PINK1, in neurodegenerative processes.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
| | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
| | - Thuy T. Nguyen
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-2317
| |
Collapse
|
59
|
Luerman GC, Nguyen C, Samaroo H, Loos P, Xi H, Hurtado-Lorenzo A, Needle E, Stephen Noell G, Galatsis P, Dunlop J, Geoghegan KF, Hirst WD. Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 2013; 128:561-76. [PMID: 24117733 DOI: 10.1111/jnc.12483] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 12/11/2022]
Abstract
Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation-dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH-SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2-IN-1 treatment) using stable isotope labeling of amino acids in culture combined with phosphopeptide enrichment and LC-MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2-IN-1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro-inflammatory responses and neurite morphology, among other pathways. In follow-up experiments, LRRK2-IN-1 inhibited lipopolysaccharide-induced tumor necrosis factor alpha (TNFα) and C-X-C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2-IN-1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2-IN-1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.
Collapse
Affiliation(s)
- Gregory C Luerman
- Pfizer Global Research & Development, Neuroscience Research Unit, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Dzamko N, Halliday GM. Unlocking the secrets of LRRK2 function with selective kinase inhibitors. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LRRK2 is currently considered to be a potential therapeutic target for the treatment of Parkinson’s disease. A number of pathological mutations, the majority of which lie in the dual catalytic domains of LRRK2, segregate with Parkinson’s disease in an autosomal-dominant fashion. The most common mutation, G2019S, results in an increase in the kinase activity of LRRK2 and much work has, therefore, gone into the development of potent and specific inhibitors of LRRK2 kinase activity. A number of LRRK2 kinase inhibitors have now been employed in the search for the physiological function of LRRK2 and the targets of LRRK2 kinase activity.
Collapse
Affiliation(s)
- Nicolas Dzamko
- The School of Medical Sciences, University of New South Wales, Randwick, Australia
- Neuroscience Research Australia, Randwick, Australia.
| | - Glenda M Halliday
- Neuroscience Research Australia, Randwick, Australia
- The School of Medical Sciences, University of New South Wales, Randwick, Australia
| |
Collapse
|
61
|
Abstract
In 2004 it was first shown that mutations in LRRK2 can cause Parkinson's disease. This initial discovery was quickly followed by the observation that a single particular mutation is a relatively common cause of Parkinson's disease across varied populations. Further genetic investigation has revealed a variety of genetic ties to Parkinson's disease across this gene. These include common alleles with quite broad effects on risk, likely through both alterations at the protein sequence level, and in the context of expression. A great deal of functional characterization of LRRK2 and disease-causing mutations in this protein has occurred over the last 9 years, and considerable progress has been made. Particular attention has been paid to the kinase activity of LRRK2 as a therapeutic target, and while it is no means certain that this is viable target it is likely that this hypothesis will be tested in clinical trials sooner rather than later. We believe that the future goals for LRRK2 research are, while challenging, relatively clear and that the next 10 years of research promises to be perhaps more exciting than the last.
Collapse
Affiliation(s)
- Coro Paisán-Ruiz
- Department of Neurology, Psychiatry, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY, USA
- Friedman Brain and Mindich Child Health and Development Institutes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY, USA
| | - Patrick A. Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London, UK
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|