51
|
Huang QY, Chen SR, Chen JM, Shi QY, Lin S. Therapeutic options for premature ovarian insufficiency: an updated review. Reprod Biol Endocrinol 2022; 20:28. [PMID: 35120535 PMCID: PMC8815154 DOI: 10.1186/s12958-022-00892-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a rare gynecological condition. This disease causes menstrual disturbances, infertility, and various health problems. Historically, hormone replacement therapy is the first-line treatment for this disorder. Women diagnosed with POI are left with limited therapeutic options. In order to remedy this situation, a new generation of therapeutic approaches, such as in vitro activation, mitochondrial activation technique, stem cell and exosomes therapy, biomaterials strategies, and platelet-rich plasma intra-ovarian infusion, is being developed. However, these emerging therapies are yet in the experimental stage and require precise design components to accelerate their conversion into clinical treatments. Thus, each medical practitioner bears responsibility for selecting suitable therapies for individual patients. In this article, we provide a timely analysis of the therapeutic strategies that are available for POI patients and discuss the prospects of POI therapy.
Collapse
Affiliation(s)
- Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shao-Rong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
52
|
The Key Role of Peroxisomes in Follicular Growth, Oocyte Maturation, Ovulation, and Steroid Biosynthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7982344. [PMID: 35154572 PMCID: PMC8831076 DOI: 10.1155/2022/7982344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
The absence of peroxisomes can cause disease in the human reproductive system, including the ovaries. The available peroxisomal gene-knockout female mouse models, which exhibit pathological changes in the ovary and reduced fertility, are listed in this review. Our review article provides the first systematic presentation of peroxisomal regulation and its possible functions in the ovary. Our immunofluorescence results reveal that peroxisomes are present in all cell types in the ovary; however, peroxisomes exhibit different numerical abundances and strong heterogeneity in their protein composition among distinct ovarian cell types. The peroxisomal compartment is strongly altered during follicular development and during oocyte maturation, which suggests that peroxisomes play protective roles in oocytes against oxidative stress and lipotoxicity during ovulation and in the survival of oocytes before conception. In addition, the peroxisomal compartment is involved in steroid synthesis, and peroxisomal dysfunction leads to disorder in the sexual hormone production process. However, an understanding of the cellular and molecular mechanisms underlying these physiological and pathological processes is lacking. To date, no effective treatment for peroxisome-related disease has been developed, and only supportive methods are available. Thus, further investigation is needed to resolve peroxisome deficiency in the ovary and eventually promote female fertility.
Collapse
|
53
|
Ramírez-Domínguez LB, Agarwal A, Roychoudhury S, Jiménez-Medina I, Moreno-Fernández S, Izquierdo-Martínez M, Kesari K, Flores-Leal A, Villar-Muñoz L, Maldonado-Rosas I. Interplay of Oxidants and Antioxidants in Mammalian Embryo Culture System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:243-258. [PMID: 36472826 DOI: 10.1007/978-3-031-12966-7_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One principal purpose of assisted reproductive technology (ART) is to produce viable and good quality embryos. However, a variety of environmental factors may induce epigenetic changes in the embryo. Moreover, laboratory conditions including the culture media may also affect embryo development. Therefore, media change is an important factor in maintaining proper oxidant/antioxidant balance during embryo culture. Alterations in the oxidant/antioxidant balance are related to various cellular responses such as an increase in the level of reactive oxygen species (ROS) and consequent lipid peroxidation (LPO), DNA damage, and apoptosis. The current study focuses on the role of external factors on embryo culture and the ability of antioxidants to enhance in vitro fertilization (IVF) outcomes. Indeed, an optimization of media culture by the addition of enzymatic and nonenzymatic antioxidants in animal models and human embryos in ART has been updated in this study, with an emphasis on comparing the available results and their possible reasons.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | - Kavindra Kesari
- Department of Applied Physics, Aalto University, Espoo, Finland
| | | | | | | |
Collapse
|
54
|
Effect of resveratrol on superovulation in mice. Biomed Pharmacother 2021; 146:112565. [PMID: 34959118 DOI: 10.1016/j.biopha.2021.112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022] Open
Abstract
Oocyte quality is one of the key factors affecting the outcome of ART. Therefore, how to improve oocyte quality has become an urgent problem in the field of ART. In this study we evaluated the effect of resveratrol (RSV), added during the process of superovulation, on embryonic development in mice. The results showed that the blastocyst rate was significantly higher in the RSV treated group than in the control group when oocytes were parthenogenetically activated in vitro (61.67 vs 41.51%, P = 0.032). In the naturally fertilized oocytes group, the rates of cleavage and blastocyst were significantly higher in the RSV treatment group than in the control group (74.47% vs 60.98%, P = 0.035; 96.19% vs 70.00%, P = 0.000, respectively). For the aged mice, the average number of oocytes, the rates of cleavage and blastocyst were also significantly higher in RSV treated groups than in the control group (19.47 ± 5.98 vs 10.30 ± 4.82, P = 0.028; 69.03 vs 50.75%, P = 0.014; 64.10% vs 44.12%, P = 0.049, respectively). Mitochondrial membrane potential and mtDNA copy number in oocytes were significantly increased after RSV treatment in both the young and aged populations. The expression of mitochondrial biogenesis related genes was significantly upregulated in cumulus cells of young and aged mice following RSV treatment. Our data suggest that supplementation of RSV during superovulation improves oocytes quality in young and aged mice, increases the number of oocytes retrieved from aged mice, and improves oocytes mitochondrial function.
Collapse
|
55
|
Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells. Protein Cell 2021; 12:947-964. [PMID: 34845589 PMCID: PMC8674391 DOI: 10.1007/s13238-021-00865-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.
Collapse
|
56
|
Bitter Taste Receptors Expression in Human Granulosa and Cumulus Cells: New Perspectives in Female Fertility. Cells 2021; 10:cells10113127. [PMID: 34831350 PMCID: PMC8619861 DOI: 10.3390/cells10113127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Bitter taste receptors (TAS2RS) expression is not restricted to the oral cavity and the presence of these receptors in the male reproductive system and sperm provides insights into their possible role in human reproduction. To elucidate the potential role of TAS2Rs in the female reproductive system, we investigated the expression and localization of bitter taste receptors and the components of signal transduction cascade involved in the pathway of taste receptors in somatic follicular cells obtained from women undergoing assisted reproductive techniques. We found that TAS2R genes are expressed in both cumulus (CCs) and granulosa (GCs) cells, with TAS2R14 being the most highly expressed bitter receptor subtype. Interestingly, a slight increase in the expression of TAS2R14 and TAS2R43 was shown in both GCs and CCs in young women (p < 0.05), while a negative correlation may be established between the number of oocytes collected at the pickup and the expression of TAS2R43. Regarding α-gustducin and α-transducin, two Gα subunits expressed in the taste buds on the tongue, we provide evidence for their expression in CCs and GCs, with α-gustducin showing two additional isoforms in GCs. Finally, we shed light on the possible downstream transduction pathway initiated by taste receptor activation in the female reproductive system. Our study, showing for the first time the expression of taste receptors in the somatic ovarian follicle cells, significantly extends the current knowledge of the biological role of TAS2Rs for human female fertility.
Collapse
|
57
|
Bernabò N, Di Berardino C, Capacchietti G, Peserico A, Buoncuore G, Tosi U, Crociati M, Monaci M, Barboni B. In Vitro Folliculogenesis in Mammalian Models: A Computational Biology Study. Front Mol Biosci 2021; 8:737912. [PMID: 34859047 PMCID: PMC8630647 DOI: 10.3389/fmolb.2021.737912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
In vitro folliculogenesis (ivF) has been proposed as an emerging technology to support follicle growth and oocyte development. It holds a great deal of attraction from preserving human fertility to improving animal reproductive biotechnology. Despite the mice model, where live offspring have been achieved,in medium-sized mammals, ivF has not been validated yet. Thus, the employment of a network theory approach has been proposed for interpreting the large amount of ivF information collected to date in different mammalian models in order to identify the controllers of the in vitro system. The WoS-derived data generated a scale-free network, easily navigable including 641 nodes and 2089 links. A limited number of controllers (7.2%) are responsible for network robustness by preserving it against random damage. The network nodes were stratified in a coherent biological manner on three layers: the input was composed of systemic hormones and somatic-oocyte paracrine factors; the intermediate one recognized mainly key signaling molecules such as PI3K, KL, JAK-STAT, SMAD4, and cAMP; and the output layer molecules were related to functional ivF endpoints such as the FSH receptor and steroidogenesis. Notably, the phenotypes of knock-out mice previously developed for hub.BN indirectly corroborate their biological relevance in early folliculogenesis. Finally, taking advantage of the STRING analysis approach, further controllers belonging to the metabolic axis backbone were identified, such as mTOR/FOXO, FOXO3/SIRT1, and VEGF, which have been poorly considered in ivF to date. Overall, this in silico study identifies new metabolic sensor molecules controlling ivF serving as a basis for designing innovative diagnostic and treatment methods to preserve female fertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | | | - Alessia Peserico
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Giorgia Buoncuore
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| |
Collapse
|
58
|
Zhu FY, Wang LL, Meng TG, Wang RL, Yang ZX, Cao Y, Zhu GY, Jin Z, Gao LL, Zeng WT, Wang ZB, Sun QY, Zhang D. Inhibiting bridge integrator 2 phosphorylation leads to improved oocyte quality, ovarian health and fertility in aging and after chemotherapy in mice. NATURE AGING 2021; 1:1010-1023. [PMID: 37118338 DOI: 10.1038/s43587-021-00133-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 10/04/2021] [Indexed: 04/30/2023]
Abstract
Female ovaries degenerate about 20 years earlier than testes leading to reduced primordial follicle reserve and a reduction in oocyte quality. Here we found that bridge integrator 2 (BIN2) is enriched in mouse ovaries and oocytes and that global knockout of this protein improves both female fertility and oocyte quality. Quantitative ovarian proteomics and phosphoproteomics showed that Bin2 knockout led to a decrease in phosphorylated ribosomal protein S6 (p-RPS6), a component of the mammalian target of rapamycin pathway and greatly increased nicotinamide nucleotide transhydrogenase (NNT), the free-radical detoxifier. Mechanistically, we find that phosphorylation of BIN2 at Thr423 and Ser424 leads to its translocation from the membrane to the cytoplasm, subsequent phosphorylation of RPS6 and inhibition of Nnt translation. We synthesized a BIN2-penetrating peptide (BPP) designed to inhibit BIN2 phosphorylation and found that a 3-week BPP treatment improved primordial follicle reserve and oocyte quality in aging and after chemotherapy-induced premature ovarian failure without discernible side effects.
Collapse
Affiliation(s)
- Feng-Yu Zhu
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Li-Li Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tie-Gang Meng
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ruo-Lei Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhi-Xia Yang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Cao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Gang-Yi Zhu
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhen Jin
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei-Lei Gao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wen-Tao Zeng
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Zhen-Bo Wang
- State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Dong Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
- Animal Core Facility, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
59
|
Nie Z, Zhang L, Chen W, Zhang Y, Wang W, Hua R, Zhang T, Zhao C, Gong M, Wu H. The protective effects of resveratrol pretreatment in cyclophosphamide-induced rat ovarian injury: an vivo study. Gynecol Endocrinol 2021; 37:914-919. [PMID: 33594937 DOI: 10.1080/09513590.2021.1885643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES To explore whether resveratrol (Res) pretreatment could exert a protective effect on cyclophosphamide (Cy) induced ovarian toxicity in a rat model. METHODS Twenty-four female 7-week old Sprague-Dawley rats were randomly divided into four groups: Con, administered with vehicle solutions; Cy, treated with Cy; Res + Cy, treated with Cy + Res combined; Res, treated with Res. After 21 d of treatments, the rats were euthanized and blood samples were collected to evaluate the levels of anti-Müllerian hormone (AMH). The Ovaries were processed for immunohistochemical and western blotting. RESULTS Cy-treat caused the decrease of body weights and ovarian weight. AMH was lower in Cy group, whereas AMH levels were similar among other groups. Histomorphology showed a large number of primordial follicles were activated in Cy groups, whereas the primordial follicles were inhibited in the Res and Res + Cy groups. The expressions of Sirt1, Foxo3a were up-regulated and p53, Caspase-3, and Bax were down-regulated in Res + Cy and Res groups (p < .05). CONCLUSIONS Res can prevent the primordial follicle activation and decrease apoptosis induced by Cy. Res may be an effective protection for ovarian function during chemotherapy, which means a new nonsurgical application for protection of ovarian reserve.
Collapse
Affiliation(s)
- Zhaoyan Nie
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
| | - Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
| | - Yanan Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
| | - Wei Wang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
| | - Rui Hua
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
| | - Tiantian Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
| | - Chunfang Zhao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
| | - Miao Gong
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, PR China
| | - Haifeng Wu
- Department of Medical Laboratory, Hebei Chest Hospital, Shijiazhuang, PR China
| |
Collapse
|
60
|
Llarena N, Hine C. Reproductive Longevity and Aging: Geroscience Approaches to Maintain Long-Term Ovarian Fitness. J Gerontol A Biol Sci Med Sci 2021; 76:1551-1560. [PMID: 32808646 PMCID: PMC8361335 DOI: 10.1093/gerona/glaa204] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 11/12/2022] Open
Abstract
Increases in delayed childbearing worldwide have elicited the need for a better understanding of the biological underpinnings and implications of age-related infertility. In women 35 years and older the incidences of infertility, aneuploidy, and birth defects dramatically increase. These outcomes are a result of age-related declines in both ovarian reserve and oocyte quality. In addition to waning reproductive function, the decline in estrogen secretion at menopause contributes to multisystem aging and the initiation of frailty. Both reproductive and hormonal ovarian function are limited by the primordial follicle pool, which is established in utero and declines irreversibly until menopause. Because ovarian function is dependent on the primordial follicle pool, an understanding of the mechanisms that regulate follicular growth and maintenance of the primordial follicle pool is critical for the development of interventions to prolong the reproductive life span. Multiple pathways related to aging and nutrient-sensing converge in the mammalian ovary to regulate quiescence or activation of primordial follicles. The PI3K/PTEN/AKT/FOXO3 and associated TSC/mTOR pathways are central to the regulation of the primordial follicle pool; however, aging-associated systems such as the insulin-like growth factor-1/growth hormone pathway, and transsulfuration/hydrogen sulfide pathways may also play a role. Additionally, sirtuins aid in maintaining developmental metabolic competence and chromosomal integrity of the oocyte. Here we review the pathways that regulate ovarian reserve and oocyte quality, and discuss geroscience interventions that leverage our understanding of these pathways to promote reproductive longevity.
Collapse
Affiliation(s)
- Natalia Llarena
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Ohio
- Reproductive Endocrinology and Infertility, Cleveland Clinic Women’s Health Institute, Ohio
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Ohio
| |
Collapse
|
61
|
Gerli S, Della Morte C, Ceccobelli M, Mariani M, Favilli A, Leonardi L, Lanti A, Iannitti RG, Fioretti B. Biological and clinical effects of a resveratrol-based multivitamin supplement on intracytoplasmic sperm injection cycles: a single-center, randomized controlled trial. J Matern Fetal Neonatal Med 2021; 35:7640-7648. [PMID: 34338114 DOI: 10.1080/14767058.2021.1958313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Resveratrol display's positive effects on follicle growth and development in preclinical studies while there is scantly information from clinical trials. The aim of this study was to evaluate the biological and clinical impact of a resveratrol-based multivitamin supplement on intracytoplasmatic sperm injection (ICSI) cycles. METHODS A randomized, single-center controlled trial conducted at the University Center of Assisted Reproductive Technologies involving 101 women infertile women undergoing ICSI cycles was conducted. A pretreatment with a daily resveratrol based nutraceutical was administered to the Study Group; Control Group received folic acid. The primary outcomes were the number of developed mature follicles (>16 mm), total oocytes and MII oocytes recovered, the fertilization rate and the number of cleavage embryos/blastocysts obtained. Secondary endpoints were the duration and dosage of gonadotropins, the number of embryos for transfer, implantation, biochemical, clinical pregnancy rates, live birth and miscarriage rates. RESULTS A significantly higher number of oocytes and MII oocytes were retrieved in the Study Group than in Control Group (p = .03 and p = .04, respectively). A higher fertilization rate (p = .004), more cleavage embryos/patient (p = .01), blastocytes/patients (p = .01) and cryopreserved embryos (p = .03) were obtained in the Study Group. No significant differences in biochemical or clinical pregnancy, live birth, and miscarriage rates were revealed, but a trend to a higher live birth rate was revealed in the Study Group. CONCLUSIONS A 3 months period of dietary supplementation with a resveratrol-based multivitamin nutraceutical leads to better biological effects on ICSI cycles. TRIAL REGISTRATION NUMBER ClinicalTrials.gov registration identifier: NCT04386499.
Collapse
Affiliation(s)
- Sandro Gerli
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Chiara Della Morte
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Margherita Ceccobelli
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Monica Mariani
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Lucio Leonardi
- Department of R&D, S&R Farmaceutici S.p.A Bastia Umbra, Perugia, Italy
| | - Alessandro Lanti
- Department of R&D, S&R Farmaceutici S.p.A Bastia Umbra, Perugia, Italy
| | | | - Bernard Fioretti
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy.,Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| |
Collapse
|
62
|
Resveratrol and Markers of Polycystic Ovary Syndrome: a Systematic Review of Animal and Clinical Studies. Reprod Sci 2021; 29:2477-2487. [PMID: 34312768 DOI: 10.1007/s43032-021-00653-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/03/2021] [Indexed: 10/20/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder affecting childbearing-age women, and is associated with reproductive and metabolic disturbances. The present study aimed to systematically review current animal studies and randomized placebo-controlled clinical trials (RCT) regarding the effects of resveratrol, a natural polyphenolic compound, on PCOS features. PubMed, Scopus, Web of Knowledge, and Google Scholar were comprehensively searched until December 2020. All original animal articles and RCTs evaluating the effects of resveratrol on PCOS were eligible for the review. Out of 289 initial records, eight animal studies and three RCTs met our inclusion criteria. Most of the included animal studies reported beneficial effects of resveratrol on the histomorphological features, sex hormones and gonadotropins, glycemic control, inflammation, and oxidative stress. Resveratrol also ameliorated ovarian volume, high-quality oocyte rate, high-quality embryo rate, androgens and gonadotropins concentrations, angiogenic factors levels, and endoplasmic reticulum stress in PCOS patients. Upregulation of sirtuin-1 was an examined mechanism proposed for some observed effects of resveratrol. The current literature is limited to conclude the beneficial effects of resveratrol on the management of PCOS. Although, according to the promising results of the animal studies and limited RCTs, resveratrol might be an effective phytochemical in PCOS control, especially regarding hormonal and reproductive abnormalities. More mechanistic studies and RCTs are warranted to obvious whether resveratrol can be prescribed in the clinical situation.
Collapse
|
63
|
Zhou DD, Luo M, Huang SY, Saimaiti A, Shang A, Gan RY, Li HB. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932218. [PMID: 34336123 PMCID: PMC8289612 DOI: 10.1155/2021/9932218] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
The aging of population has become an issue of great concern because of its rapid increase. Aging is an important risk factor of many chronic diseases. Resveratrol could be found in many foods, such as grapes, red wine, peanuts, and blueberries. Many studies reported that resveratrol possessed various bioactivities, such as antioxidant, anti-inflammatory, cardiovascular protection, anticancer, antidiabetes mellitus, antiobesity, neuroprotection, and antiaging effects. The antiaging mechanisms of resveratrol were mainly ameliorating oxidative stress, relieving inflammatory reaction, improving mitochondrial function, and regulating apoptosis. Resveratrol could be an effective and safe compound for the prevention and treatment of aging and age-related diseases. In this review, we summarize the effects of resveratrol on aging, life extension, and several age-related diseases, with special attention paid to the mechanisms of antiaging action.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
64
|
Timóteo-Ferreira F, Abreu D, Mendes S, Matos L, Rodrigues A, Almeida H, Silva E. Redox imbalance in age-related ovarian dysfunction and perspectives for its prevention. Ageing Res Rev 2021; 68:101345. [PMID: 33894395 DOI: 10.1016/j.arr.2021.101345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The age at which women have their first child is increasing. This change represents a major health problem to society because advanced maternal age is related with a decay in fertility and an increase in the incidence of a variety of pregnancy complications and offspring health issues. The ovary stands as the main contributor for female reproductive ageing because of the progressive age-related decrease in follicle number and oocyte quality. Loss of redox homeostasis and establishment of an ovarian oxidative microenvironment are seen as major underlying causes for such downfall and impairment of ovarian function. Thus, the use of antioxidants to preserve fertility became an important field of research. In this review, new insights on mechanisms underlying the establishment of oxidative stress and its repercussions on ovarian ageing are addressed, along with the current state of knowledge on antioxidant supplementation and its contribution for healthy ageing and extension of ovarian lifespan.
Collapse
|
65
|
Amevor FK, Cui Z, Du X, Ning Z, Shu G, Jin N, Deng X, Tian Y, Zhang Z, Kang X, Xu D, You G, Zhang Y, Li D, Wang Y, Zhu Q, Zhao X. Combination of Quercetin and Vitamin E Supplementation Promotes Yolk Precursor Synthesis and Follicle Development in Aging Breeder Hens via Liver-Blood-Ovary Signal Axis. Animals (Basel) 2021; 11:ani11071915. [PMID: 34203138 PMCID: PMC8300405 DOI: 10.3390/ani11071915] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This study evaluated the capacity of dietary quercetin, vitamin E and their combination to promote follicle development and attenuate organ inflammation by improving the antioxidant capacity of the liver–blood–ovary signal axis of aging broiler breeder hens. The results from this study showed that the combination of quercetin and vitamin E synergistically improved the chicken’s reproductive organ characteristics, and also showed protective effects on liver morphology and histology. Moreover, the antioxidant parameters, reproductive hormones and receptors, liver lipid synthesis, and the levels of mRNAs related to yolk precursor synthesis (very low density apolipoprotein-II and vitellogenin-II), lipid transport (microsomal triglyceride transport protein), lipogenesis (fatty acid synthase), and follicle developments were increased remarkably by the combination of quercetin and vitamin E. The results obtained in this study provide an important reference for the combination of quercetin and vitamin E as a functional feed additive for promoting the functions of the liver–blood–ovary axis, and also as a potential chemopreventive and chemotherapeutic agent for improving liver and ovary functions in chickens by acting as a hepatoprotective and oviprotective agent. This could facilitate the transport and exchange of synthetic substances (including hormones, yolk precursors, and other biochemical substances) among the liver–blood–ovary alliances to ensure the synchronous development and functional coordination between the liver and ovary in aging breeder hens. Abstract The fertility of female animals is negatively correlated with increasing chronological age. In aging broiler breeder hens, there is a decline in the functionality of the ovary and liver accompanied by hormonal or endocrine changes, a reduction in antioxidant capacity, and a decrease in folliculogenesis. Therefore, improving the reproductive function in aging breeder hens using dietary strategies is of great concern to the poultry breeder. This study evaluated the capacity of dietary quercetin (Q), vitamin E (VE), and their combination (Q + VE) to promote follicle development and attenuate organ inflammation by improving the antioxidant capacity of aging breeder hens. In this study, 400 broiler breeder hens (Tianfu broilers breeder hens, 435 days old) were allotted into four groups (100 birds each) with four replicates each (25 birds each). They were fed diets containing Q (0.4 g/kg), VE (0.2 g/kg), Q + VE (0.4 g/kg + 0.2 g/kg), and a basal diet for 10 weeks. The results showed that Q + VE improved the organ characteristics (p < 0.05), and also that Q + VE showed protective effects on the liver against injury, as well as increasing the antioxidant capacity of the liver, serum, and ovary (p < 0.05). Furthermore, liver lipid synthesis was increased remarkably, as indicated by the changes in triglyceride levels in hens fed Q + VE (p < 0.05). Levels of E2, FSH, and LH, their receptors, and mRNAs related to yolk precursor synthesis were increased by the Q + VE (p < 0.05). Therefore, the combination of quercetin and vitamin E synergistically promotes and regulates the transportation and exchange of synthetic substances among the liver–blood–ovary alliances to ensure the synchronous development and functional coordination between the liver and ovary in aging breeder hens.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (D.X.)
| | - Ningning Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Xincheng Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Dan Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (D.X.)
| | - Guishuang You
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
- Correspondence:
| |
Collapse
|
66
|
Sirotkin AV. Effects of resveratrol on female reproduction: A review. Phytother Res 2021; 35:5502-5513. [PMID: 34101259 DOI: 10.1002/ptr.7185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
The present review summarizes the current knowledge concerning physiological effects of resveratrol (RSV) with emphasis on the RSV action on female reproductive processes. The review outlines provenance, properties, mechanisms of action, physiological and therapeutic actions of RSV on female reproduction and other physiological processes, as well as areas of possible application of R. This review is based on the search for the related full papers indexed in Medline/Pubmed, Web of Science and SCOPUS databases between the year 2000 and 2021 according to the criteria of preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews and other related guidelines. The analysis of the available information suggests that RSV has a number of properties which enable its influence on various physiological processes including female reproduction at various regulatory levels via various extra- and intracellular signalling pathways. Despite some contradictions and limitations in the available data, they indicate applicability of both stimulatory and inhibitory effects of RSV for control and influence of various reproductive and non-reproductive processes and treatment of their disorders in phytotherapy, animal production, medicine, biotechnology and assisted reproduction. To establish the clinical efficacy of RSV, further high quality studies are needed.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Dept. Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| |
Collapse
|
67
|
Al-Zubaidi U, Adhikari D, Cinar O, Zhang QH, Yuen WS, Murphy MP, Rombauts L, Robker RL, Carroll J. Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Hum Reprod 2021; 36:771-784. [PMID: 33367783 DOI: 10.1093/humrep/deaa300] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Do mitochondria-targeted therapies reverse ageing- and oxidative stress-induced spindle defects in oocytes from mice and humans? SUMMARY ANSWER Exposure to MitoQ or BGP-15 during IVM protected against spindle and chromosomal defects in mouse oocytes exposed to oxidative stress or derived from reproductively aged mice whilst MitoQ promoted nuclear maturation and protected against chromosomal misalignments in human oocytes. WHAT IS KNOWN ALREADY Spindle and chromosomal abnormalities in oocytes are more prevalent with maternal aging, increasing the risk of aneuploidy, miscarriage and genetic disorders such as Down's syndrome. The origin of compromised oocyte function may be founded in mitochondrial dysfunction and increased reactive oxygen species (ROS). STUDY DESIGN, SIZE, DURATION Oocytes from young and old mice were treated with MitoQ and/or BGP-15 during IVM. To directly induce mitochondrial dysfunction, oocytes were treated with H2O2, and then treated the MitoQ and/or BGP-15. Immature human oocytes were cultured with or without MitoQ. Each experiment was repeated at least three times, and data were analyzed by unpaired-sample t-test or chi-square test. PARTICIPANTS/MATERIALS, SETTING, METHODS Immature germinal vesicle (GV) stage oocytes from 1-, 12- and 18-month-old mice were obtained from preovulatory ovarian follicles. Oocytes were treated with MitoQ and/or BGP-15 during IVM. GV-stage human oocytes were cultured with or without MitoQ. Mitochondrial membrane potential and mitochondrial ROS were measured by live-cell imaging. Meiotic spindle and chromosome alignments were visualized by immunofluorescent labeling of fixed oocytes and the 3-dimensional images were analyzed by Imaris. MAIN RESULTS AND THE ROLE OF CHANCE MitoQ or BGP-15 during IVM protects against spindle and chromosomal defects in oocytes exposed to oxidative stress and in oocytes from aged mice (P < 0.001). In human oocytes, the presence of MitoQ during IVM promoted nuclear maturation and had a similar positive effect in protecting against chromosomal misalignments (P < 0.001). LIMITATIONS, REASONS FOR CAUTION Our study identifies two excellent candidates that may help to improve fertility in older women. However, these potential therapies must be tested for efficacy in clinical IVM systems, and undergo thorough examination of resultant offspring in preclinical models before utilization. WIDER IMPLICATIONS OF THE FINDINGS Our results using in-vitro systems for oocyte maturation in both mouse and human provide proof of principle that mitochondrially targeted molecules such as MitoQ and BGP-15 may represent a novel therapeutic approach against maternal aging-related spindle and chromosomal abnormalities. STUDY FUNDING/COMPETING INTEREST(S) The project was financially supported by the National Health and Medical Research Council and Australian Research Council, Australia. U.A.-Z. was supported by the Iraqi Higher Education and Scientific Research Ministry PhD scholarship and O.C. was supported by TUBITAK-1059B191601275. M.P.M. consults for MitoQ Inc. and holds patents in mitochondria-targeted therapies. R.L.R. is an inventor on patents relating to the use of BGP-15 to improve gamete quality. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Usama Al-Zubaidi
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Applied Embryology Department, High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, AL-Nahrain University, Baghdad, Iraq
| | - Deepak Adhikari
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ozgur Cinar
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Qing-Hua Zhang
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Luk Rombauts
- Monash IVF, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Rebecca L Robker
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - John Carroll
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
68
|
Iervolino M, Lepore E, Forte G, Laganà AS, Buzzaccarini G, Unfer V. Natural Molecules in the Management of Polycystic Ovary Syndrome (PCOS): An Analytical Review. Nutrients 2021; 13:nu13051677. [PMID: 34063339 PMCID: PMC8156462 DOI: 10.3390/nu13051677] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogenous disorder characterized by chronic ovulation dysfunction and hyperandrogenism. It is considered the most common endocrinological disorder, affecting up to 25% of women of reproductive age, and associated with long-term metabolic abnormalities predisposing to cardiovascular risk, such as insulin resistance (IR), dyslipidemia, endothelial dysfunction, and systemic inflammation. PCOS is also characterized by elevated serum levels of luteinizing hormone (LH), causing a condition of hyperandrogenism and a consequent altered ratio between LH and the follicle stimulating hormone (FSH). Over the years, several different approaches have been proposed to alleviate PCOS symptoms. Supplementation with natural molecules such as inositols, resveratrol, flavonoids and flavones, vitamin C, vitamin E and vitamin D, and omega-3 fatty acids may contribute to overcoming PCOS pathological features, including the presence of immature oocyte, IR, hyperandrogenism, oxidative stress and inflammation. This review provides a comprehensive overview of the current knowledge about the efficacy of natural molecule supplementation in the management of PCOS.
Collapse
Affiliation(s)
- Matteo Iervolino
- R&D Department, Lo.Li. Pharma Srl, 00156 Rome, Italy; (M.I.); (E.L.); (G.F.)
| | - Elisa Lepore
- R&D Department, Lo.Li. Pharma Srl, 00156 Rome, Italy; (M.I.); (E.L.); (G.F.)
| | - Gianpiero Forte
- R&D Department, Lo.Li. Pharma Srl, 00156 Rome, Italy; (M.I.); (E.L.); (G.F.)
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 2100 Varese, Italy;
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00156 Rome, Italy
| | - Giovanni Buzzaccarini
- Unit of Gynecology and Obstetrics, Department of Women and Children’s Health, University of Padua, 35128 Padua, Italy;
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00156 Rome, Italy
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
69
|
Moreira-Pinto B, Costa L, Felgueira E, Fonseca BM, Rebelo I. Low Doses of Resveratrol Protect Human Granulosa Cells from Induced-Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040561. [PMID: 33916585 PMCID: PMC8065718 DOI: 10.3390/antiox10040561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Resveratrol is a phytoalexin present in plant-derived foods, including grape’s skin, cocoa, and peanuts. Evidence suggests that it has beneficial effects on human health because of its antioxidant properties. However, there is limited knowledge about the part played by resveratrol in ovarian function. In this paper, the influence of resveratrol on granulosa cells (GC) was evaluated. In addition to being the main estradiol producers, GC are in direct contact with the oocyte, playing a fundamental role in its growth and development. The cell line COV434 and human granulosa cells (hGC), obtained from women undergoing assisted reproductive technology (ART), were used. GC were treated with resveratrol (0.001–20 μM) at different times (24–72 h). Low concentrations of this compound suggest a protective role, as they tend to reduce ROS/RNS formation after inducement of stress. On the contrary, high concentrations of resveratrol affect GC viability and steroidogenic function. As it may act as a direct modulator of GC oxidative balance, this work may help to clarify the impact of resveratrol on GC and the usefulness of this antioxidant as adjunct to infertility treatments.
Collapse
Affiliation(s)
- Beatriz Moreira-Pinto
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
| | - Lia Costa
- Unidade de Medicina da Reprodução Dra, Ingeborg Chaves-Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal; (L.C.); (E.F.)
| | - Eduarda Felgueira
- Unidade de Medicina da Reprodução Dra, Ingeborg Chaves-Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal; (L.C.); (E.F.)
| | - Bruno M. Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
- Correspondence: ; Tel.: +351-220428557
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
| |
Collapse
|
70
|
Ziętek M, Barłowska K, Wijas B, Szablisty E, Atanasov AG, Modliński JA, Świergiel AH, Sampino S. Preconceptional Resveratrol Supplementation Partially Counteracts Age-Related Reproductive Complications in C57BL/6J Female Mice. Molecules 2021; 26:molecules26071934. [PMID: 33808281 PMCID: PMC8037093 DOI: 10.3390/molecules26071934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Aging is associated with a drastic decline in fertility/fecundity and with an increased risk of pregnancy complications. Resveratrol (RES), a natural polyphenolic compound, has shown anti-oxidant and anti-inflammatory activities in both human and animal models, thus representing a potential therapeutic and prophylactic anti-aging supplement. Here, we investigated whether preconceptional resveratrol supplementation improved reproductive outcomes in mid-aged (8-month-old) and old (12-month-old) C57BL/6J female mice. Female siblings were cohoused and assigned to either RES or vehicle supplementation to drinking water for 10 consecutive weeks. Subsequently, females were mated with non-supplemented males and their pregnancy outcomes were monitored. RES improved mating success in old, but not in mid-aged females, and prevented the occurrence of delivery complications in the latter. These results indicate that preconceptional RES supplementation could partially improve age-related reproductive complications, but it was not sufficient to restore fecundity in female mice at a very advanced age.
Collapse
Affiliation(s)
- Marta Ziętek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, ul. Rakowiecka 36, 02-532 Warsaw, Poland
| | - Katarzyna Barłowska
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
| | - Barbara Wijas
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
| | - Ewa Szablisty
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G Bonchev Str. bl. 23, 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Jacek A. Modliński
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
| | - Artur H. Świergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, ul. Rakowiecka 36, 02-532 Warsaw, Poland
- Correspondence: (A.H.Ś.); (S.S.); Tel.: +48-50-393-4080 (A.H.Ś.); +48-22-736-7038 (S.S.)
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
- Correspondence: (A.H.Ś.); (S.S.); Tel.: +48-50-393-4080 (A.H.Ś.); +48-22-736-7038 (S.S.)
| |
Collapse
|
71
|
Liu L, Wang H, Xu GL, Liu L. Tet1 Deficiency Leads to Premature Ovarian Failure. Front Cell Dev Biol 2021; 9:644135. [PMID: 33834024 PMCID: PMC8021788 DOI: 10.3389/fcell.2021.644135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Tet enzymes participate in DNA demethylation and play critical roles in stem cell pluripotency and differentiation. DNA methylation alters with age. We find that Tet1 deficiency reduces fertility and leads to accelerated reproductive failure with age. Noticeably, Tet1-deficient mice at young age exhibit dramatically reduced follicle reserve and the follicle reserve further decreases with age, phenomenon consistent with premature ovarian failure (POF) syndrome. Consequently, Tet1-deficient mice become infertile by reproductive middle age, while age matched wild-type mice still robustly reproduce. Moreover, by single cell transcriptome analysis of oocytes, Tet1 deficiency elevates organelle fission, associated with defects in ubiquitination and declined autophagy, and also upregulates signaling pathways for Alzheimer's diseases, but down-regulates X-chromosome linked genes, such as Fmr1, which is known to be implicated in POF. Additionally, Line1 is aberrantly upregulated and endogenous retroviruses also are altered in Tet1-deficient oocytes. These molecular changes are consistent with oocyte senescence and follicle atresia and depletion found in premature ovarian failure or insufficiency. Our data suggest that Tet1 enzyme plays roles in maintaining oocyte quality as well as oocyte number and follicle reserve and its deficiency can lead to POF.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Huasong Wang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Guo Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, China
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
72
|
He M, Zhang T, Yang Y, Wang C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front Cell Dev Biol 2021; 9:654028. [PMID: 33842483 PMCID: PMC8025927 DOI: 10.3389/fcell.2021.654028] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Meiosis is the basis of sexual reproduction. In female mammals, meiosis of oocytes starts before birth and sustains at the dictyate stage of meiotic prophase I before gonadotropins-induced ovulation happens. Once meiosis gets started, the oocytes undergo the leptotene, zygotene, and pachytene stages, and then arrest at the dictyate stage. During each estrus cycle in mammals, or menstrual cycle in humans, a small portion of oocytes within preovulatory follicles may resume meiosis. It is crucial for females to supply high quality mature oocytes for sustaining fertility, which is generally achieved by fine-tuning oocyte meiotic arrest and resumption progression. Anything that disturbs the process may result in failure of oogenesis and seriously affect both the fertility and the health of females. Therefore, uncovering the regulatory network of oocyte meiosis progression illuminates not only how the foundations of mammalian reproduction are laid, but how mis-regulation of these steps result in infertility. In order to provide an overview of the recently uncovered cellular and molecular mechanism during oocyte maturation, especially epigenetic modification, the progress of the regulatory network of oocyte meiosis progression including meiosis arrest and meiosis resumption induced by gonadotropins is summarized. Then, advances in the epigenetic aspects, such as histone acetylation, phosphorylation, methylation, glycosylation, ubiquitination, and SUMOylation related to the quality of oocyte maturation are reviewed.
Collapse
Affiliation(s)
- Meina He
- Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Tuo Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
73
|
Jiang Z, Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci 2021; 29:711-722. [PMID: 33712995 DOI: 10.1007/s43032-021-00523-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
As the vital organelles for cell energy metabolism, mitochondria are essential for oocyte maturation, fertilization, and embryo development. Abnormalities in quantity, quality, and function of mitochondria are closely related to poor fertility and disorders, such as decreased ovarian reserve (DOR), premature ovarian aging (POA), and ovarian aging, as well as maternal mitochondrial genetic disease caused by mitochondrial DNA (mtDNA) mutations or deletions. Mitochondria have begun to become a therapeutic target for infertility caused by factors such as poor oocyte quality, oocyte aging, and maternal mitochondrial genetic diseases. Mitochondrial replacement therapy (MRT) has attempted to use heterologous or autologous mitochondria to rebuild healthy state of oocyte by increasing the amount of mitochondria (e.g., partial ooplasm transfer, autologous mitochondrial transfer), or to stop the transmission of mtDNA diseases by replacing abnormal maternal mitochondria (e.g., pronuclei transfer, spindle transfer, polar body transfer). Among them, autologous mitochondrial transfer is the most promising therapeutic technology as of today which does not involve using a third party, but its clinical efficacy is controversial due to many factors such as the aging phenomenon of germ line cells, the authenticity of the existence of ovarian stem cells (OSC), and secondary damage caused by invasive surgery to patients with poor ovarian function. Therefore, the research of optimal autologous cell type that can be applied in autologous mitochondrial transfer is an area worthy of further exploration. Besides, the quality of germ cells can also be probably improved by the use of compounds that enhance mitochondrial activity (e.g., coenzyme Q10, resveratrol, melatonin), or by innovative gene editing technologies which have shown capability in reducing the risk of mtDNA diseases (e.g., CRISPR/Cas9, TALENTs). Though the current evidences from animal and clinical trials are not sufficient, and some solutions of technical problems are still needed, we believe this review will guide a new direction in the possible clinical applied mitochondrial-related therapeutic strategies in reproductive medicine.
Collapse
Affiliation(s)
- Zhixin Jiang
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Huan Shen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
74
|
Zhang Z, He C, Gao Y, Zhang L, Song Y, Zhu T, Zhu K, Lv D, Wang J, Tian X, Ma T, Ji P, Cui W, Liu G. α-ketoglutarate delays age-related fertility decline in mammals. Aging Cell 2021; 20:e13291. [PMID: 33450127 PMCID: PMC7884030 DOI: 10.1111/acel.13291] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α-ketoglutarate (α-KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α-KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α-KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α-KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down-regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α-KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Changjiu He
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Education Ministry of China College of Animal Science and Technology Huazhong Agricultural University Wuhan China
| | - Yu Gao
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- College of Animal Science and Technology Xinjiang Agricultural University Wulumuqi China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Yukun Song
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- College of Animal Science and Technology Xinjiang Agricultural University Wulumuqi China
| | - Tianqi Zhu
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Kuanfeng Zhu
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Xiuzhi Tian
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
| | - Teng Ma
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Wei Cui
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- Department of Surgery & Cancer Imperial College London London United Kingdom
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| |
Collapse
|
75
|
Yao LN, Zhang TF, Lin WQ, Jiang N, Cao HF, Li H, Qian JH. Value of serum and follicular fluid sirtuin (SIRT)1 and SIRT2 protein levels in predicting the outcome of assisted reproduction. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:343. [PMID: 33708970 PMCID: PMC7944261 DOI: 10.21037/atm-21-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background To explore whether serum and follicular fluid (FF), sirtuin 1 (SIRT1), and SIRT2 could predict the outcome of assisted reproduction. Methods All patients underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) for the first time in the Reproductive Medicine Center of the First Affiliated Hospital of Zhejiang University Medical College from March 2018 to December 2018. According to cumulative clinical pregnancy outcomes, the patients were divided into a pregnancy group and non-pregnancy group. We measured the serum levels of SIRT1, SIRT2, anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) from the second to the fifth day of menstruation, and the levels of SIRT1 and SIRT2 in serum and FF on the day of human chorionic gonadotropin (HCG) injection and oocyte retrieval. Results A total of 125 patients met the inclusion criteria. The pregnancy group comprised 56 cases and non-pregnancy group 69 cases. There were significant differences in basal level SIRT2 (bSIRT2), AMH, antral follicle count (AFC), number of oocytes obtained, number of mature eggs, number of fertilized eggs, number of excellent embryos, number of blastocyst formations, and number of transferred high-quality embryos between the two groups. The area under the curve (AUC) values of bSIRT2, AFC, AMH, and age were significantly different from those under the opportunity reference line (P<0.05). In the subsequent correlation analysis, FFSIRT2, and HCG day serum SIRT2 were negatively correlated with age (r=−0.35, r=−0.19), and positively correlated with AFC (r=0.2, r=0.02). Serum SIRT1 on HCG day was negatively correlated with the number of blastocysts and the number of frozen embryos (r=−0.18, r=−0.21). Levels of FF SIRT1 and FF SIRT2 were significantly lower than those in serum SIRT1 and SIRT2, and there was no significant difference in serum SIRT1 and SIRT2 before and after ovulation promotion. Conclusions The results suggest that bSIRT2 has significant statistical significance in predicting the cumulative number of pregnancies. When combined with AMH, AFC, and age, bSIRT2 can predict the cumulative pregnancy outcome. In addition, the level of serum SIRT1 and SIRT2 were not affected by ovulation promotion.
Collapse
Affiliation(s)
- Ling-Nv Yao
- Reproductive Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Fang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen-Qin Lin
- Reproductive Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Jiang
- Reproductive Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Feng Cao
- Reproductive Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- Surgical Department, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-Hua Qian
- Department of Gynaecology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
76
|
Heng D, Sheng X, Tian C, Li J, Liu L, Gou M, Liu L. Mtor inhibition by INK128 extends functions of the ovary reconstituted from germline stem cells in aging and premature aging mice. Aging Cell 2021; 20:e13304. [PMID: 33448083 PMCID: PMC7884035 DOI: 10.1111/acel.13304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation has been generally considered as promising therapeutics in preserving or recovering functions of lost, damaged, or aging tissues. Transplantation of primordial germ cells (PGCs) or oogonia stem cells (OSCs) can reconstitute ovarian functions that yet sustain for only short period of time, limiting potential application of stem cells in preservation of fertility and endocrine function. Here, we show that mTOR inhibition by INK128 extends the follicular and endocrine functions of the reconstituted ovaries in aging and premature aging mice following transplantation of PGCs/OSCs. Follicular development and endocrine functions of the reconstituted ovaries by transplanting PGCs into kidney capsule of the recipient mice were maintained by INK128 treatment for more than 12 weeks, in contrast to the controls for only about 4 weeks without receiving the mTOR inhibitors. Comparatively, rapamycin also can prolong the ovarian functions but for limited time. Furthermore, our data reveal that INK128 promotes mitochondrial function in addition to its known function in suppression of immune response and inflammation. Taken together, germline stem cell transplantation in combination with mTOR inhibition by INK128 improves and extends the reconstituted ovarian and endocrine functions in reproductive aging and premature aging mice.
Collapse
Affiliation(s)
- Dai Heng
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
- Animal Resources CenterNankai UniversityTianjinChina
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Jie Li
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Mo Gou
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
- Animal Resources CenterNankai UniversityTianjinChina
| |
Collapse
|
77
|
Qazi IH, Cao Y, Yang H, Angel C, Pan B, Zhou G, Han H. Impact of Dietary Selenium on Modulation of Expression of Several Non-Selenoprotein Genes Related to Key Ovarian Functions, Female Fertility, and Proteostasis: a Transcriptome-Based Analysis of the Aging Mice Ovaries. Biol Trace Elem Res 2021; 199:633-648. [PMID: 32430805 DOI: 10.1007/s12011-020-02192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
Abstract
Female reproductive (ovarian) aging is characterized by a marked decline in quantity and quality of follicles and oocytes, as well as alterations in the surrounding ovarian stroma. In our previous report, we have shown that dietary selenium (Se) insufficiency and supplementation differentially impacted the reproductive efficiency in aging mice; however, the precise understanding of such modulation is still incomplete. In the present study, we sought to determine the impact of low (mildly low level) and moderately high (medium level) Se diets on expression profile of non-selenoprotein genes in the ovaries of aging mice. For this purpose, the aged mice were divided in two groups and fed either a low Se (Se-L; 0.08 mg Se/kg) diet or a moderately high Se (Se-M; 0.33 mg Se/kg) diet. RNA-seq analysis revealed that a total of 168 genes were differentially expressed between the two groups. From these, 72 and 96 differentially expressed genes (DEGs) were found to be upregulated and downregulated, respectively. Gene Ontology (GO) and pathways enrichment (KEGG) analyses revealed that these DEGs were enriched in several key GO terms and biological pathways including PI3K-Akt signaling pathway, steroid hormone biosynthesis, signaling pathways regulating pluripotency of stem cells, Hippo signaling pathway, ovarian steroidogenesis, and Wnt signaling pathway. Further filtering of RNA-seq data revealed that several DEGs such as Star, Hsd3b6, Scd1, Bmp7, Aqp8, Gas1, Fzd1, and Wwc1 were implicated in key ovarian- and fertility-related functions. In addition, some of the DEGs were related to ER homeostasis and/or proteostasis. These results highlight that dietary low and moderately high (medium level) Se diets, in addition to modulation of selenoproteins, can also have an impact on expression of several non-selenoprotein genes in the ovaries of aging mice. To sum up, these findings add more value to our understanding of Se modulation of ovarian functions and female fertility and will pave a way for the focused mechanistic and functional studies in this domain.
Collapse
Affiliation(s)
- Izhar Hyder Qazi
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan
| | - Yutao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
78
|
Wu FSY, Weng SP, Shen MS, Ma PC, Wu PK, Lee NC. Suboptimal trophectoderm mitochondrial DNA level is associated with delayed blastocyst development. J Assist Reprod Genet 2021; 38:587-594. [PMID: 33471230 DOI: 10.1007/s10815-020-02045-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To provide a comprehensive analysis of mtDNA quantity in D5 and D6 blastocysts, as well as a further insight to the origin of delayed blastocyst development. METHODS A retrospective cohort analysis of 829 D5 and 472 D6 blastocysts from 460 patients who underwent in vitro fertilization (IVF) with next-generation sequencing (NGS)-based preimplantation genetic testing for aneuploidy (PGT-A). The quantity of trophectoderm mtDNA was extrapolated from the NGS data, followed by the analysis of mean mtDNA levels between D5 and D6 blastocysts of the same ploidy (aneuploid/euploid) and transfer outcomes (positive/negative clinical pregnancy). RESULTS D5 blastocysts had significantly higher euploidy rate and clinical pregnancy rate when compared with D6 blastocysts. The proportion of blastocysts derived from patients ≧ 40 years old were similar between the D5 and D6 cohorts. When blastocysts with identical ploidy were analyzed, the D5 cohorts all had significantly higher mean mtDNA levels than their D6 counterparts. Similarly, when embryo transfers with identical outcome were analyzed, the D5 cohorts also had significantly higher mean mtDNA levels than the D6 cohorts. Trophectoderm mtDNA level was independent of maternal age and blastocyst morphology grades. CONCLUSIONS Our data provided further evidence D5 blastocysts contained significantly greater mtDNA quantity than D6 blastocysts, and mtDNA quantity could be a key factor that affects the development rate of blastocysts. Furthermore, one must avoid using an arbitrary threshold when incorporating mtDNA quantity into the embryo selection criteria, as the observed value may have vastly different clinical implication when blastulation rate is also considered.
Collapse
Affiliation(s)
- Frank Shao-Ying Wu
- IHMED Fertility Center, Taipei City, Taiwan.,Taipei City Hospital, Heping-Fuyou Branch, Taipei City, Taiwan
| | | | | | | | - Po-Kuan Wu
- IHMED Fertility Center, Taipei City, Taiwan.,Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan. .,Department of Pediatrics, National Taiwan University College of Medicine, Taipei City, Taiwan.
| |
Collapse
|
79
|
Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol 2021; 11:617843. [PMID: 33569007 PMCID: PMC7869110 DOI: 10.3389/fphar.2020.617843] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ovarian system comprises vital organs in females and is of great significance for the maintenance of reproductive potential and endocrine stability. Although complex pathogenesis undoubtedly contributes to ovarian aging, increasing attention is being paid to the extensive influence of oxidative stress. However, the role of oxidative stress in ovarian aging is yet to be fully elucidated. Exploring oxidative stress-related processes might be a promising strategy against ovarian aging. In this review, compelling evidence is shown that oxidative stress plays a role in the etiology of ovarian aging and promotes the development of other ovarian aging-related etiologies, including telomere shortening, mitochondrial dysfunction, apoptosis, and inflammation. In addition, some natural antioxidants such as quercetin, resveratrol, and curcumin have a protective role in the ovaries through multiple mechanisms. These findings raise the prospect of oxidative stress modulator-natural antioxidants as therapeutic interventions for delaying ovarian aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Liu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyun Miao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Zhang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
80
|
Abstract
Mounting evidence suggests a role for mitochondrial dysfunction in the pathogenesis of many diseases, including type 2 diabetes, aging, and ovarian failure. Because of the central role of mitochondria in energy production, heme biosynthesis, calcium buffering, steroidogenesis, and apoptosis signaling within cells, understanding the molecular mechanisms behind mitochondrial dysregulation and its potential implications in disease is critical. This review will take a journey through the past and summarize what is known about mitochondrial dysfunction in various disorders, focusing on metabolic alterations and reproductive abnormalities. Evidence is presented from studies in different human populations, and rodents with genetic manipulations of pathways known to affect mitochondrial function.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, California
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California
| | - Consuelo Sauceda
- VA San Diego Healthcare System, San Diego, California
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, California
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
81
|
Zhan S, Huang J. Effects of Cigarette Smoking on Preimplantation Embryo Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:137-150. [PMID: 33523432 DOI: 10.1007/978-981-33-4187-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In this chapter, we first gave a brief introduction to the detriments of cigarette smoking, with an emphasis on its adverse effects on female reproductive health. Then, we outlined recent advances about the impacts of cigarette smoke on preimplantation embryo development. Additionally, toxicities of cadmium and benzo(a)pyrene (BaP) at this specific developmental window were also discussed, to illustrate the potential mechanisms involved in cigarette smoke-associated embryotoxicity. Finally, we provide an overview of the issues to be solved in the future research. Further studies about the molecular mechanism of cigarette smoking-associated female infertility may provide vital insights into developing new interventions for the women smokers and thus improving their reproductive outcomes.
Collapse
Affiliation(s)
- Shaoquan Zhan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
82
|
Liu MJ, Chen H, Li W, Chen XX, Wang CH, Sun QY, Heng XY. SRT1720 enhances maturity and quality of oocytes in aged mice. Anim Sci J 2021; 92:e13608. [PMID: 34405491 DOI: 10.1111/asj.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
This study aims to investigate the morphology and distribution of mitochondria, spindles, and chromosomes in oocytes of aged mice and examine the effects of SRT1720 on oocyte maturation. C57BL/6J mice were divided into young (4-8 weeks) and aged groups (48-52 weeks). In vitro maturation media contained (0.05, 0.1, and 1.0 μM) SRT1720 and 0.1-μM dimethyl sulfoxide (DMSO control). The rate of chromosome misalignment and spindle misorientation in oocytes of aged mice were significantly higher than that of young mice (P < 0.01). Fluorescence intensity of mitochondria from oocytes of aged mice was significantly lower than that of young mice (P < 0.01). SRT1720 at 0.1 μM significantly improved oocyte maturation, fertilization, and blastocyst formation in aged mice compared with young mice (P < 0.01). Additionally, immunofluorescence intensity of mitochondria, normal spindle morphology, and chromosome alignment were notably enhanced with SRT1720 when compared with the DSMO control group for metaphase II (MII)-stage oocytes matured in vitro (P < 0.01); 0.1-μM SRT1720 enhanced the expression level of SRIT1 in oocytes from aged mice. In summary, the aged mice oocytes showed increased nuclear and cytoplasmic defects, whereas SRT1720 enhanced oocyte maturation and quality. We concluded that 0.1-μM SRT1720 was an appropriate concentration for in vitro maturation media.
Collapse
Affiliation(s)
- Mei-Ju Liu
- Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Linyi, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Linyi, China
- School of Clinical Medicine, Shandong First Medical University, Tai'an, China
| | - Wen Li
- Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xin-Xia Chen
- School of Nursing, Shandong University, Jinan, China
| | - Chuan-Hong Wang
- Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Linyi, China
- School of Clinical Medicine, Shandong First Medical University, Tai'an, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xue-Yuan Heng
- Department of Neurological Surgery, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
83
|
Jia Z, Yang X, Liu K. Treatment of cattle oocytes with C-type natriuretic peptide before in vitro maturation enhances oocyte mitochondrial function. Anim Reprod Sci 2020; 225:106685. [PMID: 33388612 DOI: 10.1016/j.anireprosci.2020.106685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The present study was conducted to evaluate the effects in vitro on oocyte mitochondrial function of C-type natriuretic peptide (CNP) when treatments were imposed before in vitro maturation (IVM). Immature oocytes were either directly matured in vitro for 24 h (Control, no pre-IVM), or cultured in basic medium not supplemented or supplemented with CNP (100 nM) (Control pre-IVM and CNP pre-IVM, respectively) for 6 h, followed by IVM for 24 h. The results indicated treatment with CNP before IVM affected patterns of distribution of mitochondria, increased the mitochondrial content, membrane potential, and decreased the ROS content in cattle oocytes before and after IVM. Furthermore, treatment of immature cattle oocytes with CNP before IVM induced marked increases in the relative abundance of mRNA transcripts and proteins related to mitochondria development and antioxidative defense mechanisms. Treatment with CNP before oocyte IVM also resulted in an enhanced relative abundance of sirtuin-1 (SIRT1) mRNA transcript in cattle oocytes. Taken together, these results provide evidence that treatment of cattle oocytes with CNP before IVM improved mitochondrial function and antioxidant defense mechanisms in cattle oocytes. Findings in the present study provide insights into the potential mechanisms by which CNP has positive effects on oocyte cytoplasmic organelles, specifically mitochondria.
Collapse
Affiliation(s)
- Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, 028000, PR China.
| | - Xinyu Yang
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, 028000, PR China
| | - Kai Liu
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, 028000, PR China; Inner Mongolia Engineering Technology Research Center for the Beef Cattle Disease Prevention and Control, Tongliao, Inner Mongolia, 028000, PR China
| |
Collapse
|
84
|
Vazquez BN, Vaquero A, Schindler K. Sirtuins in female meiosis and in reproductive longevity. Mol Reprod Dev 2020; 87:1175-1187. [PMID: 33184962 PMCID: PMC7775317 DOI: 10.1002/mrd.23437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/01/2020] [Indexed: 01/03/2023]
Abstract
Transmission of genetic material through high-quality gametes to progeny requires accurate homologous chromosome recombination and segregation during meiosis. A failure to accomplish these processes can have major consequences in reproductive health, including infertility, and development disorders in offspring. Sirtuins, a family of NAD+ -dependent protein deacetylases and ADP-ribosyltransferases, play key roles in genome maintenance, metabolism, and aging. In recent years, Sirtuins have emerged as regulators of several reproductive processes and interventions aiming to target Sirtuin activity are of great interest in the reproductive biology field. Sirtuins are pivotal to protect germ cells against oxidative stress, a major determinant influencing ovarian aging and the quality of gametes. Sirtuins also safeguard the integrity of the genome through epigenetic programs required for regulating gene repression, DNA repair, and chromosome segregation, among others. Although these functions are relatively well characterized in many somatic tissues, how they contribute to reproductive functions is not well understood. This review summarizes our current knowledge on the role of Sirtuins in female reproductive systems and discusses the underlying molecular pathways. In addition, we highlight the importance of Sirtuins as antiaging factors in the ovary and summarize current preclinical efforts to identify treatments to extend female reproductive longevity.
Collapse
Affiliation(s)
- Berta N. Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Catalonia, Spain
- Department de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Catalonia, Spain
| | - Karen Schindler
- Human Genetics Institute of New Jersey (HGINJ), Department of Genetics, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| |
Collapse
|
85
|
Rodríguez-Varela C, Labarta E. Clinical Application of Antioxidants to Improve Human Oocyte Mitochondrial Function: A Review. Antioxidants (Basel) 2020; 9:antiox9121197. [PMID: 33260761 PMCID: PMC7761442 DOI: 10.3390/antiox9121197] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria produce adenosine triphosphate (ATP) while also generating high amounts of reactive oxygen species (ROS) derived from oxygen metabolism. ROS are small but highly reactive molecules that can be detrimental if unregulated. While normally functioning mitochondria produce molecules that counteract ROS production, an imbalance between the amount of ROS produced in the mitochondria and the capacity of the cell to counteract them leads to oxidative stress and ultimately to mitochondrial dysfunction. This dysfunction impairs cellular functions through reduced ATP output and/or increased oxidative stress. Mitochondrial dysfunction may also lead to poor oocyte quality and embryo development, ultimately affecting pregnancy outcomes. Improving mitochondrial function through antioxidant supplementation may enhance reproductive performance. Recent studies suggest that antioxidants may treat infertility by restoring mitochondrial function and promoting mitochondrial biogenesis. However, further randomized, controlled trials are needed to determine their clinical efficacy. In this review, we discuss the use of resveratrol, coenzyme-Q10, melatonin, folic acid, and several vitamins as antioxidant treatments to improve human oocyte and embryo quality, focusing on the mitochondria as their main hypothetical target. However, this mechanism of action has not yet been demonstrated in the human oocyte, which highlights the need for further studies in this field.
Collapse
Affiliation(s)
- Cristina Rodríguez-Varela
- IVI Foundation—IIS La Fe, Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain;
- Correspondence:
| | - Elena Labarta
- IVI Foundation—IIS La Fe, Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain;
- IVIRMA Valencia, Plaza de la Policía Local 3, 46015 Valencia, Spain
| |
Collapse
|
86
|
Zhang C, Shen J, Kong S, Zhang M, Zhang Q, Zhou J, Zhen X, Kang N, Jiang Y, Ding L, Sun H, Yan G. MicroRNA-181a promotes follicular granulosa cell apoptosis via sphingosine-1-phosphate receptor 1 expression downregulation†. Biol Reprod 2020; 101:975-985. [PMID: 31359035 DOI: 10.1093/biolre/ioz135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress induces granulosa cell (GC) apoptosis and subsequent follicular atresia. Since our previous studies indicate that microRNA-181a (miR-181a) expression is increased in GCs undergoing apoptosis, the present study was designed to define the relationship between exposure to oxidative stressors in GCs and changes in miR-181a expression and function. To achieve this, we employed an H2O2-induced in vitro model and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. We demonstrated that in vitro miR-181a overexpression promoted GC apoptosis in a dose-dependent manner; sphingosine-1-phosphate (S1P) significantly reversed both H2O2-induced and miR-181a-induced apoptosis in GCs. Moreover, we identified sphingosine-1-phosphate receptor 1 (S1PR1), a critical receptor of S1P, as a novel target of miR-181a in GCs. MicroRNA-181a induced GC apoptosis by repressing S1PR1 expression in vitro. Importantly, increased miR-181a expression and decreased S1PR1 expression were detected in the in vivo ovarian oxidative stress model by Western blot analysis and immunohistochemistry. Furthermore, we found similar expression patterns of miR-181a and S1PR1 in GCs from patients with premature ovarian insufficiency. In conclusion, our results suggest that miR-181a directly suppresses expression of S1PR1, which has critical roles in mediating oxidative stress-induced GC apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxue Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingtao Shen
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mei Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jidong Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Nannan Kang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.,State Key Laboratory of Pharmaceutical Biotechnology, Department of Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
87
|
Functional Oocytes Derived from Granulosa Cells. Cell Rep 2020; 29:4256-4267.e9. [PMID: 31875537 DOI: 10.1016/j.celrep.2019.11.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of genomically stable and functional oocytes has great potential for preserving fertility and restoring ovarian function. It remains elusive whether functional oocytes can be generated from adult female somatic cells through reprogramming to germline-competent pluripotent stem cells (gPSCs) by chemical treatment alone. Here, we show that somatic granulosa cells isolated from adult mouse ovaries can be robustly induced to generate gPSCs by a purely chemical approach, with additional Rock inhibition and critical reprogramming facilitated by crotonic sodium or acid. These gPSCs acquired high germline competency and could consistently be directed to differentiate into primordial-germ-cell-like cells and form functional oocytes that produce fertile mice. Moreover, gPSCs promoted by crotonylation and the derived germ cells exhibited longer telomeres and high genomic stability like PGCs in vivo, providing additional evidence supporting the safety and effectiveness of chemical induction, which is particularly important for germ cells in genetic inheritance.
Collapse
|
88
|
Bhardwaj JK, Panchal H, Saraf P. Ameliorating Effects of Natural Antioxidant Compounds on Female Infertility: a Review. Reprod Sci 2020; 28:1227-1256. [PMID: 32935256 DOI: 10.1007/s43032-020-00312-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
The prevalence of female infertility cases has been increasing at a frightening rate, affecting approximately 48 million women across the world. However, oxidative stress has been recognized as one of the main mediators of female infertility by causing various reproductive pathologies in females such as endometriosis, PCOS, preeclampsia, spontaneous abortion, and unexplained infertility. Nowadays, concerned women prefer dietary supplements with antioxidant properties over synthetic drugs as a natural way to lessen the oxidative stress and enhance their fertility. Therefore, the current review is an attempt to explore the efficacy of various natural antioxidant compounds including vitamins, carotenoids, and plant polyphenols and also of some medicinal plants in improving the fertility status of females. Our summarization of recent findings in the current article would pave the way toward the development of new possible antioxidant therapy to treat infertility in females. Natural antioxidant compounds found in fruits, vegetables, and other dietary sources, alone or in combination with other antioxidants, were found to be effective in ameliorating the oxidative stress-mediated infertility problems in both natural and assisted reproductive settings. Numerous medicinal plants showed promising results in averting the various reproductive disorders associated with female infertility, suggesting a plant-based herbal medicine to treat infertility. Although optimum levels of natural antioxidants have shown favorable results, however, their excessive intake may have adverse health impacts. Therefore, larger well-designed, dose-response studies in humans are further warranted to incorporate natural antioxidant compounds into the clinical management of female infertility.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
89
|
Wei H, Khawar MB, Tang W, Wang L, Wang L, Liu C, Jiang H, Li W. Sirt6 is required for spermatogenesis in mice. Aging (Albany NY) 2020; 12:17099-17113. [PMID: 32915773 PMCID: PMC7521524 DOI: 10.18632/aging.103641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
SIRT6, a nuclear protein, has been implicated in a number of essential cellular processes, such as the DNA damage response, metabolic homeostasis, inflammation, tumorigenesis and aging. However, the role of Sirt6 in the regulation of spermatogenesis is yet unknown. In the present study, we successfully generated Sirt6-/- mice on a C57BL6/ICR mixed background and found that some Sirt6-/- mice survived beyond eight weeks. We further revealed that spermatogenesis in Sirt6-/- mice was arrested at the elongated spermatid stage. Sirt6-/- male mice were completely infertile and had an increased number of apoptotic spermatids. To our surprise, deacetylation activities of SIRT6 on H3K9ac, H3K18ac and H3K56c were not required for spermatogenesis. Therefore, our findings establish a novel link between Sirt6 and male fertility, suggesting an essential role of Sirt6 in spermatogenesis.
Collapse
Affiliation(s)
- Huafang Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China,Department of Andrology, Peking University Third Hospital, Beijing 100191, China,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
90
|
Iljas JD, Wei Z, Homer HA. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. Aging Cell 2020; 19:e13204. [PMID: 32729989 PMCID: PMC7511857 DOI: 10.1111/acel.13204] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The NAD+‐dependent sirtuin deacetylase, Sirt1, regulates key transcription factors strongly implicated in ageing and lifespan. Due to potential confounding effects secondary to loss of Sirt1 function from the soma in existing whole‐animal mutants, the in vivo role of Sirt1 in oocytes (oocyte‐Sirt1) for female fertility remains unknown. We deleted Sirt1 specifically in growing oocytes and study how loss of oocyte‐Sirt1 affects a comprehensive range of female reproductive parameters including ovarian follicular reservoir, oocyte maturation, oocyte mitochondrial abundance, oxidative stress, fertilization, embryo development and fertility during ageing. Surprisingly, eliminating this key sirtuin from growing oocytes has no effect in young females. During a 10‐month‐long breeding trial, however, we find that 50% of females lacking oocyte‐Sirt1 become prematurely sterile between 9 and 11 months of age when 100% of wild‐type females remain fertile. This is not due to an accelerated age‐related decline in oocyte numbers in the absence of oocyte‐Sirt1 but to reduced oocyte developmental competence or quality. Compromised oocyte quality does not impact in vivo oocyte maturation or fertilization but leads to increased oxidative stress in preimplantation embryos that inhibits cleavage divisions. Our data suggest that defects emerge in aged females lacking oocyte‐Sirt1 due to concurrent age‐related changes such as reduced NAD+ and sirtuin expression levels, which compromise compensatory mechanisms that can cover for Sirt1 loss in younger oocytes. In contrast to evidence that increasing Sirt1 activity delays ageing, our data provide some of the only in vivo evidence that loss of Sirt1 induces premature ageing.
Collapse
Affiliation(s)
- Juvita D. Iljas
- The Christopher Chen Oocyte Biology Research Laboratory Centre for Clinical Research The University of Queensland Herston Qld Australia
| | - Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory Centre for Clinical Research The University of Queensland Herston Qld Australia
| | - Hayden A. Homer
- The Christopher Chen Oocyte Biology Research Laboratory Centre for Clinical Research The University of Queensland Herston Qld Australia
| |
Collapse
|
91
|
Effects of Supplementation with Natural Antioxidants on Oocytes and Preimplantation Embryos. Antioxidants (Basel) 2020; 9:antiox9070612. [PMID: 32664650 PMCID: PMC7402117 DOI: 10.3390/antiox9070612] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022] Open
Abstract
For most infertile couples, in vitro fertilization (IVF) represents the only chance to conceive. Given the limited success of IVF procedures, novel approaches are continuously tested with the aim of improving IVF outcomes. Growing attention is devoted today to the potential benefit of natural antioxidants in the optimization of infertility treatments. This review summarizes current data in this context, focusing on both experimental studies on oocytes/embryos and clinical trials on antioxidants supplementation. Based on information gained from experimental studies, antioxidant supplementation may have beneficial effects on IVF outcomes in terms of quality and cryotolerance of in vitro produced embryos, together with positive effects on in vitro maturation oocytes and on early embryonic development. Unfortunately, from the clinical side, there is a paucity of evidence favoring the protective qualities of antioxidants. Among the antioxidants considered, coenzyme Q10 may be regarded as one of the most promising for its positive role in rescuing the oxidative stress-induced damages, but further data are needed. It is concluded that further trials are necessary to characterize the potential clinical value of antioxidants in IVF treatments.
Collapse
|
92
|
Park MJ, Han SE, Kim HJ, Heo JD, Choi HJ, Ha KT, Yang SW, Lee KS, Kim SC, Kim CW, Joo BS. Paeonia lactiflora improves ovarian function and oocyte quality in aged female mice. Anim Reprod 2020; 17:e20200013. [PMID: 32714461 PMCID: PMC7375873 DOI: 10.1590/1984-3143-ar2020-0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Although ovarian aging is a key cause of decreased ovarian function and oocyte quality, it remains a problem in infertility treatment. Therefore, this study is aimed to investigate whether Paeonia lactiflora (PL), a herb improves ovarian function and oocyte quality using aged female mice. C57BL/6 female mice aged 8 months were treated orally every day with PL of 26.5 mg/kg (n=7) and 53 mg/kg (n=7) of body weight for 4 weeks using an oral zoned needle. The control group (n=7) was treated with normal saline. Ovaries and serum were collected for the H&E stain and the evaluation of reactive oxygen species (ROS) levels, respectively. In the second experiment, female mice were orally administered with PL (26.5 mg/kg: n=12, 53 mg/kg: n=12, control: n=12) and then superovulated with PMSG and hCG, and mated with male mice. Zygotes were retrieved and cultured for 4 days. Ovaries were provided for examination of expressions of genes associated with angiogenesis (VEGF and visfatin), anti-aging (Sirt1 and Sirt2), and follicular development (c-Kit, BMP-15, and GDF-9). PL significantly increased numbers of surviving follicles (primordial, primary, secondary, and antral), numbers of zygotes retrieved, embryo development rate, and ovarian expression of VEGF, visfatin, c-Kit, BMP-15, and GDF-9 at both doses. However, ovarian expression of Sirt1 and Sirt2 was increased at 53.0 mg/kg of PL. ROS levels were not affected by PL. These results suggest that PL may possess beneficial effects regarding ovarian function and oocyte quality, possibly by activation of ovarian angiogenesis and follicular development.
Collapse
Affiliation(s)
- Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Repuplic of Korea
| | - Si-Eun Han
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Repuplic of Korea
| | - Hyeon Jeong Kim
- The Korea Institute for Public Sperm Bank, Busan, Repuplic of Korea
| | - Jeong Doo Heo
- Korea Institute of Toxicology, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Hee-Jung Choi
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Ki-Tae Ha
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Sun Woo Yang
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea, Republic of Korea
| | - Kyu Sup Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Repuplic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Repuplic of Korea
| | - Chang Woon Kim
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea, Republic of Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Repuplic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| |
Collapse
|
93
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
94
|
Jozkowiak M, Hutchings G, Jankowski M, Kulcenty K, Mozdziak P, Kempisty B, Spaczynski RZ, Piotrowska-Kempisty H. The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs-A Review Based on Cellular and Molecular Knowledge. Cells 2020; 9:E1418. [PMID: 32517362 PMCID: PMC7349183 DOI: 10.3390/cells9061418] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian Granulosa Cells (GCs) are known to proliferate in the developing follicle and undergo several biochemical processes during folliculogenesis. They represent a multipotent cell population that has been differentiated to neuronal cells, chondrocytes, and osteoblasts in vitro. However, progression and maturation of GCs are accompanied by a reduction in their stemness. In the developing follicle, GCs communicate with the oocyte bidirectionally via gap junctions. Together with neighboring theca cells, they play a crucial role in steroidogenesis, particularly the production of estradiol, as well as progesterone following luteinization. Many signaling pathways are known to be important throughout the follicle development, leading either towards luteinization and release of the oocyte, or follicular atresia and apoptosis. These signaling pathways include cAMP, PI3K, SMAD, Hedgehog (HH), Hippo and Notch, which act together in a complex manner to control the maturation of GCs through regulation of key genes, from the primordial follicle to the luteal phase. Small molecules such as resveratrol, a phytoalexin found in grapes, peanuts and other dietary constituents, may be able to activate/inhibit these signaling pathways and thereby control physiological properties of GCs. This article reviews the current knowledge about granulosa stem cells, the signaling pathways driving their development and maturation, as well as biological activities of resveratrol and its properties as a pro-differentiation agent.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Katarzyna Kulcenty
- Radiology Lab, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Campus Box 7608, Raleigh, NC 27695-7608, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 60200 Brno, Czech Republic
| | - Robert Z. Spaczynski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Polna 33 St., PL-60-535 Poznan, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| |
Collapse
|
95
|
Li M, Wu X, An P, Dang H, Liu Y, Liu R. Effects of resveratrol on autophagy and the expression of inflammasomes in a placental trophoblast oxidative stress model. Life Sci 2020; 256:117890. [PMID: 32497634 DOI: 10.1016/j.lfs.2020.117890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We aim to investigate whether there is activation of NLRP1 and autophagy in trophoblast oxidative stress model. Resveratrol was taken to clarify its role in oxidative damage of placental trophoblasts. METHODS H2O2 was added to HTR-8/SVneo cell for 3 h, then the ROS level and apoptosis panel was performed. The levels of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 were detected. Resveratrol was added after 8 h, the ROS level and apoptosis rate were detected, the expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 were detected. RESULTS 300 μmol/L H2O2 for 3 h is the optimum combination in establishing the oxidative stress injury model (P < 0.01). LDH, ROS and MDA level was increased, the activity of SOD, CAT were declined (P < 0.01). Apoptosis rate increased (P < 0.01). The expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 protein was higher (P < .01). Resveratrol (50 μmol/L) treatment for 8 h could improve the changes caused by H2O2, increase the survival rate of cells (P < 0.01), reduce the release of LDH, decrease the level of MDA, increase the level of SOD and CAT (P < 0.01). The expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 protein decreased (P < 0.01). CONCLUSION Trophoblast oxidative damage model can be established under 300 μmol/L H2O2 for 3 h, the expression of NLRP1and autophagy after H2O2 treatment were detected. Resveratrol reduces apoptotic cells, thus ensuring the normal biological functions of trophoblasts. CAPSULE H2O2-induced oxidative stress damage model in HTR-8/SVneo cells can be successfully established under 300 μmol/L H2O2 for 3 h, resveratrol alleviates of H2O2-induced damage by its antioxidant and autophagy regulation function.
Collapse
Affiliation(s)
- Meihe Li
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, China
| | - Peng An
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yanqiao Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Runxia Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
96
|
Ge J, Li C, Li C, Huang Z, Zeng J, Han L, Wang Q. SIRT6 participates in the quality control of aged oocytes via modulating telomere function. Aging (Albany NY) 2020; 11:1965-1976. [PMID: 30926765 PMCID: PMC6503879 DOI: 10.18632/aging.101885] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
It has been well recognized that oocyte quality declines in aging animals. However, to date, the underlying mechanism remains to be explored. In the present study, we report that oocytes and embryos from aged mice (42-45 weeks old) display the reduced expression of SIRT6 protein, accompanying with telomere shortening and DNA lesions. Moreover, we demonstrate that specific depletion of SIRT6 in oocytes induces dysfunctional telomeres and apoptosis of the resultant early embryos, leading to the developmental delay and cytoplasmic fragmentation. Importantly, we further find that overexpression of SIRT6 in aged oocytes promotes the telomere elongation in 2-cell embryos and lowers the incidence of apoptotic blastomeres. In summary, our data indicate a role for SIRT6 in modulating telomere function during oocyte maturation and embryonic development, and discover that SIRT6 reduction is an important point connecting maternal aging and quality control of oocyte/embryos.
Collapse
Affiliation(s)
- Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Congyang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chunling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenyue Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Zeng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
97
|
Zhu JL, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Sci 2020; 255:117830. [PMID: 32450172 DOI: 10.1016/j.lfs.2020.117830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
Advanced glycation end products (AGEs) are heterogeneous products of the non-enzymatic interaction between proteins and reducing sugars. Numerous studies have shown that AGEs are associated with senescence, diabetes, vascular disease, aging and kidney disease. Infertility has been affected approximately 10 to15% of couples of reproductive ages. AGEs accumulation has been shown to play a crucial role in pathogenesis of infertility-related diseases. The present review provides the generation process, mechanism and pathological significance of AGEs and the novel treatment targeting AGEs for infertility.
Collapse
Affiliation(s)
- Jing-Ling Zhu
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China; Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ya-Qin Cai
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang-Lian Long
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China
| | - Zhuo Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China.
| | - Zhong-Cheng Mo
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
98
|
Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol 2020; 11:433. [PMID: 32508671 PMCID: PMC7248223 DOI: 10.3389/fphys.2020.00433] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and inflammation are two critical pathological processes of cerebral ischemia-reperfusion injury. Myeloperoxidase (MPO) is a critical inflammatory enzyme and therapeutic target triggering both oxidative stress and neuroinflammation in the pathological process of cerebral ischemia-reperfusion injury. MPO is presented in infiltrated neutrophils, activated microglial cells, neurons, and astrocytes in the ischemic brain. Activation of MPO can catalyze the reaction of chloride and H2O2 to produce HOCl. MPO also mediates oxidative stress by promoting the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), modulating the polarization and inflammation-related signaling pathways in microglia and neutrophils. MPO can be a therapeutic target for attenuating oxidative damage and neuroinflammation in ischemic stroke. Targeting MPO with inhibitors or gene deficiency significantly reduced brain infarction and improved neurological outcomes. This article discusses the important roles of MPO in mediating oxidative stress and neuroinflammation during cerebral ischemia-reperfusion injury and reviews the current understanding of the underlying mechanisms. Furthermore, we summarize the active compounds from medicinal herbs with potential as MPO inhibitors for anti-oxidative stress and anti-inflammation to attenuate cerebral ischemia-reperfusion injury, and as adjunct therapeutic agents for extending the window of thrombolytic treatment. We highlight that targeting MPO could be a promising strategy for alleviating ischemic brain injury, which merits further translational study.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
99
|
Martin JH, Aitken RJ, Bromfield EG, Nixon B. DNA damage and repair in the female germline: contributions to ART. Hum Reprod Update 2020; 25:180-201. [PMID: 30541031 DOI: 10.1093/humupd/dmy040] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/27/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA integrity and stability are critical determinants of cell viability. This is especially true in the female germline, wherein DNA integrity underpins successful conception, embryonic development, pregnancy and the production of healthy offspring. However, DNA is not inert; rather, it is subject to assault from various environment factors resulting in chemical modification and/or strand breakage. If structural alterations result and are left unrepaired, they have the potential to cause mutations and propagate disease. In this regard, reduced genetic integrity of the female germline ranks among the leading causes of subfertility in humans. With an estimated 10% of couples in developed countries taking recourse to ART to achieve pregnancy, the need for ongoing research into the capacity of the oocyte to detect DNA damage and thereafter initiate cell cycle arrest, apoptosis or DNA repair is increasingly more pressing. OBJECTIVE AND RATIONALE This review documents our current knowledge of the quality control mechanisms utilised by the female germline to prevent and remediate DNA damage during their development from primordial follicles through to the formation of preimplantation embryos. SEARCH METHODS The PubMed database was searched using the keywords: primordial follicle, primary follicle, secondary follicle, tertiary follicle, germinal vesical, MI, MII oocyte, zygote, preimplantation embryo, DNA repair, double-strand break and DNA damage. These keywords were combined with other phrases relevant to the topic. Literature was restricted to peer-reviewed original articles in the English language (published 1979-2018) and references within these articles were also searched. OUTCOMES In this review, we explore the quality control mechanisms utilised by the female germline to prevent, detect and remediate DNA damage. We follow the trajectory of development from the primordial follicle stage through to the preimplantation embryo, highlighting findings likely to have important implications for fertility management, age-related subfertility and premature ovarian failure. In addition, we survey the latest discoveries regarding DNA repair within the metaphase II (MII) oocyte and implicate maternal stores of endogenous DNA repair proteins and mRNA transcripts as a primary means by which they defend their genomic integrity. The collective evidence reviewed herein demonstrates that the MII oocyte can engage in the activation of major DNA damage repair pathway(s), therefore encouraging a reappraisal of the long-held paradigm that oocytes are largely refractory to DNA repair upon reaching this late stage of their development. It is also demonstrated that the zygote can exploit a number of protective strategies to mitigate the risk and/or effect the repair, of DNA damage sustained to either parental germline; affirming that DNA protection is largely a maternally driven trait but that some aspects of repair may rely on a collaborative effort between the male and female germlines. WIDER IMPLICATIONS The present review highlights the vulnerability of the oocyte to DNA damage and presents a number of opportunities for research to bolster the stringency of the oocyte's endogenous defences, with implications extending to improved diagnostics and novel therapeutic applications to alleviate the burden of infertility.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| |
Collapse
|
100
|
Tilly JL, Woods DC. The obligate need for accuracy in reporting preclinical studies relevant to clinical trials: autologous germline mitochondrial supplementation for assisted human reproduction as a case study. Ther Adv Reprod Health 2020; 14:2633494120917350. [PMID: 32518919 PMCID: PMC7254586 DOI: 10.1177/2633494120917350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 11/15/2022] Open
Abstract
A now large body of work has solidified the central role that mitochondria play in oocyte development, fertilization, and embryogenesis. From these studies, a new technology termed autologous germline mitochondrial energy transfer was developed for improving pregnancy success rates in assisted reproduction. Unlike prior clinical studies that relied on the use of donor, or nonautologous, mitochondria for microinjection into eggs of women with a history of repeated in vitro fertilization failure to enhance pregnancy success, autologous germline mitochondrial energy transfer uses autologous mitochondria collected from oogonial stem cells of the same woman undergoing the fertility treatment. Initial trials of autologous germline mitochondrial energy transfer during - in vitro fertilization at three different sites with a total of 104 patients indicated a benefit of the procedure for improving pregnancy success rates, with the birth of children conceived through the inclusion of autologous germline mitochondrial energy transfer during in vitro fertilization. However, a fourth clinical study, consisting of 57 patients, failed to show a benefit of autologous germline mitochondrial energy transfer-in vitro fertilization versus in vitro fertilization alone for improving cumulative live birth rates. Complicating this area of work further, a recent mouse study, which claimed to test the long-term safety of autologous mitochondrial supplementation during in vitro fertilization, raised concerns over the use of the procedure for reproduction. However, autologous mitochondria were not actually used for preclinical testing in this mouse study. The unwarranted fears that this new study's erroneous conclusions could cause in women who have become pregnant through the use of autologous germline mitochondrial energy transfer during-in vitro fertilization highlight the critical need for accurate reporting of preclinical work that has immediate bearing on human clinical studies.
Collapse
Affiliation(s)
- Jonathan L Tilly
- Laboratory for Aging and Infertility Research (LAIR), Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Dori C Woods
- Laboratory for Aging and Infertility Research (LAIR), Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|