51
|
Koenigs A, Stahl J, Averhoff B, Göttig S, Wichelhaus TA, Wallich R, Zipfel PF, Kraiczy P. CipA of Acinetobacter baumannii Is a Novel Plasminogen Binding and Complement Inhibitory Protein. J Infect Dis 2015; 213:1388-99. [PMID: 26681776 DOI: 10.1093/infdis/jiv601] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is an emerging opportunistic pathogen, responsible for up to 10% of gram-negative, nosocomial infections. The global increase of multidrug-resistant and pan-resistant Acinetobacter isolates presents clinicians with formidable challenges. To establish a persistent infection,A. baumannii must overcome the detrimental effects of complement as the first line of defense against invading microorganisms. However, the immune evasion principles underlying serum resistance inA. baumannii remain elusive. Here, we identified a novel plasminogen-binding protein, termed CipA. Bound plasminogen, upon conversion to active plasmin, degraded fibrinogen and complement C3b and contributed to serum resistance. Furthermore, CipA directly inhibited the alternative pathway of complement in vitro, irrespective of its ability to bind plasminogen. A CipA-deficient mutant was efficiently killed by human serum and showed a defect in the penetration of endothelial monolayers, demonstrating that CipA is a novel multifunctional protein that contributes to the pathogenesis ofA. baumannii.
Collapse
Affiliation(s)
- Arno Koenigs
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt
| | - Julia Stahl
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt
| | - Beate Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt
| | | | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology Friedrich Schiller University, Jena, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt
| |
Collapse
|
52
|
Cryopreservation of virulent Acinetobacter baumannii to reduce variability of in vivo studies. BMC Microbiol 2015; 15:252. [PMID: 26526621 PMCID: PMC4630970 DOI: 10.1186/s12866-015-0580-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/22/2015] [Indexed: 11/23/2022] Open
Abstract
Background Microbiological assays require accurate and reproducible preparation of bacterial inocula. Inocula prepared on different days by different individuals can vary significantly from experiment to experiment. This variance is particularly problematic for Gram-negative bacterial infections, for which threshold effects can result in marked variations in host outcome with minor differences in inocula. Results We compared the accuracy of traditional methods versus using frozen stocks for preparing Acinetobacter baumannii inocula for infection in mice. Standard inoculum preparation resulted in substantial variability, both with respect to the actual inocula achieved compared to the targeted inocula, and with respect to the in vivo outcome resulting from similar inocula. Cryopreservation of the bacteria resulted in no significant decrement in growth of the bacteria. Furthermore, preparation of multiple infectious inocula from a frozen stock significantly improved the accuracy of the achieved inocula, and resulted in more reproducible in vivo outcomes from infection. Frozen stocks reduced inter-experiment variability associated with inoculum preparation, displayed no significant loss of growth capacity, and maintained virulence, increasing the reliability of infection. Conclusions Frozen stocks require considerably less time to prepare and enhance reproducibility of in vivo experimental results when infecting with A. baumannii.
Collapse
|
53
|
Grguric-Smith LM, Lee HH, Gandhi JA, Brennan MB, DeLeon-Rodriguez CM, Coelho C, Han G, Martinez LR. Neutropenia exacerbates infection by Acinetobacter baumannii clinical isolates in a murine wound model. Front Microbiol 2015; 6:1134. [PMID: 26528277 PMCID: PMC4607880 DOI: 10.3389/fmicb.2015.01134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/02/2015] [Indexed: 01/21/2023] Open
Abstract
The Gram negative coccobacillus Acinetobacter baumannii has become an increasingly prevalent cause of hospital-acquired infections in recent years. The majority of clinical A. baumannii isolates display high-level resistance to antimicrobials, which severely compromises our capacity to care for patients with A. baumannii disease. Neutrophils are of major importance in the host defense against microbial infections. However, the contribution of these cells of innate immunity in host resistance to cutaneous A. baumannii infection has not been directly investigated. Hence, we hypothesized that depletion of neutrophils increases severity of bacterial disease in an experimental A. baumannii murine wound model. In this study, the Ly-6G-specific monoclonal antibody (mAb), 1A8, was used to generate neutropenic mice and the pathogenesis of several A. baumannii clinical isolates on wounded cutaneous tissue was investigated. We demonstrated that neutrophil depletion enhances bacterial burden using colony forming unit determinations. Also, mAb 1A8 reduces global measurements of wound healing in A. baumannii-infected animals. Interestingly, histological analysis of cutaneous tissue excised from A. baumannii-infected animals treated with mAb 1A8 displays enhanced collagen deposition. Furthermore, neutropenia and A. baumannii infection alter pro-inflammatory cytokine release leading to severe microbial disease. Our findings provide a better understanding of the impact of these innate immune cells in controlling A. baumannii skin infections.
Collapse
Affiliation(s)
| | - Hiu H Lee
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA ; Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| | - Jay A Gandhi
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Melissa B Brennan
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | | | - Carolina Coelho
- Centre for Molecular & Cellular Biology of Inflammation, Kings College London, UK
| | - George Han
- Montefiore Medical Center, Division of Dermatology, Department of Medicine Bronx, NY, USA
| | - Luis R Martinez
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| |
Collapse
|
54
|
Badmasti F, Ajdary S, Bouzari S, Fooladi AAI, Shahcheraghi F, Siadat SD. Immunological evaluation of OMV(PagL)+Bap(1-487aa) and AbOmpA(8-346aa)+Bap(1-487aa) as vaccine candidates against Acinetobacter baumannii sepsis infection. Mol Immunol 2015; 67:552-8. [PMID: 26277277 DOI: 10.1016/j.molimm.2015.07.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022]
Abstract
Acinetobacter baumannii is an important nosocomial pathogen that causes a high morbidity and mortality rate in infected patients with sepsis form. The surface exposed virulence proteins and serum resistance factors helping to dissemination of this bacterium to bloodstream are the most promising vaccine candidates against this microorganism. In this project we immunologically evaluated OMV(PagL)+Bap(1-487aa) and AbOmpA (8-346aa)+Bap(1-487aa) as combination forms as well as Bap(1-487aa), AbOmpA(8-346aa) and OMV(PagL) singly, with addition of alum adjuvant as vaccine candidates. The titers of total IgG, IgG1 and IgG2c as well as concentration of IL-4 and IFN-γ and survival rates were measured in a C57BL/6 murine model with disseminated sepsis. The ratio of IgG1/IgG2c and profile of IL-4/IFN-γ in OMV (PagL)+Bap (1-487aa) formulation shows the humoral and cellular immune responses have been induced robustly and have created a full protection against A. baumannii ATCC 19606 and MDR AB-44 strains. We found that the two combination vaccine candidates were protective and induced both Th1 and Th2 responses.
Collapse
Affiliation(s)
- Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran,Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
55
|
An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:219. [PMID: 25944081 PMCID: PMC4446947 DOI: 10.1186/s13054-015-0926-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/15/2015] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Pseudomonas aeruginosa nosocomial pneumonia (Pa-NP) is associated with considerable morbidity, prolonged hospitalization, increased costs, and mortality. METHODS We conducted a retrospective cohort study of adult patients with Pa-NP to determine 1) risk factors for multidrug-resistant (MDR) strains and 2) whether MDR increases the risk for hospital death. Twelve hospitals in 5 countries (United States, n = 3; France, n = 2; Germany, n = 2; Italy, n = 2; and Spain, n = 3) participated. We compared characteristics of patients who had MDR strains to those who did not and derived regression models to identify predictors of MDR and hospital mortality. RESULTS Of 740 patients with Pa-NP, 226 patients (30.5%) were infected with MDR strains. In multivariable analyses, independent predictors of multidrug-resistance included decreasing age (adjusted odds ratio [AOR] 0.91, 95% confidence interval [CI] 0.96-0.98), diabetes mellitus (AOR 1.90, 95% CI 1.21-3.00) and ICU admission (AOR 1.73, 95% CI 1.06-2.81). Multidrug-resistance, heart failure, increasing age, mechanical ventilation, and bacteremia were independently associated with in-hospital mortality in the Cox Proportional Hazards Model analysis. CONCLUSIONS Among patients with Pa-NP the presence of infection with a MDR strain is associated with increased in-hospital mortality. Identification of patients at risk of MDR Pa-NP could facilitate appropriate empiric antibiotic decisions that in turn could lead to improved hospital survival.
Collapse
|
56
|
Paterson DL, Harris PNA. Editorial Commentary: The New Acinetobacter Equation: Hypervirulence Plus Antibiotic Resistance Equals Big Trouble: Table 1. Clin Infect Dis 2015; 61:155-6. [DOI: 10.1093/cid/civ227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
|
57
|
Jones CL, Clancy M, Honnold C, Singh S, Snesrud E, Onmus-Leone F, McGann P, Ong AC, Kwak Y, Waterman P, Zurawski DV, Clifford RJ, Lesho E. Fatal Outbreak of an Emerging Clone of Extensively Drug-ResistantAcinetobacter baumanniiWith Enhanced Virulence. Clin Infect Dis 2015; 61:145-54. [DOI: 10.1093/cid/civ225] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/28/2014] [Indexed: 01/17/2023] Open
|
58
|
Geisinger E, Isberg RR. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog 2015; 11:e1004691. [PMID: 25679516 PMCID: PMC4334535 DOI: 10.1371/journal.ppat.1004691] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/21/2015] [Indexed: 12/04/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen of increasing importance due to its propensity for intractable multidrug-resistant infections in hospitals. All clinical isolates examined contain a conserved gene cluster, the K locus, which determines the production of complex polysaccharides, including an exopolysaccharide capsule known to protect against killing by host serum and to increase virulence in animal models of infection. Whether the polysaccharides determined by the K locus contribute to intrinsic defenses against antibiotics is unknown. We demonstrate here that mutants deficient in the exopolysaccharide capsule have lowered intrinsic resistance to peptide antibiotics, while a mutation affecting sugar precursors involved in both capsule and lipopolysaccharide synthesis sensitizes the bacterium to multiple antibiotic classes. We observed that, when grown in the presence of certain antibiotics below their MIC, including the translation inhibitors chloramphenicol and erythromycin, A. baumannii increases production of the K locus exopolysaccharide. Hyperproduction of capsular exopolysaccharide is reversible and non-mutational, and occurs concomitantly with increased resistance to the inducing antibiotic that is independent of the presence of the K locus. Strikingly, antibiotic-enhanced capsular exopolysaccharide production confers increased resistance to killing by host complement and increases virulence in a mouse model of systemic infection. Finally, we show that augmented capsule production upon antibiotic exposure is facilitated by transcriptional increases in K locus gene expression that are dependent on a two-component regulatory system, bfmRS. These studies reveal that the synthesis of capsule, a major pathogenicity determinant, is regulated in response to antibiotic stress. Our data are consistent with a model in which gene expression changes triggered by ineffectual antibiotic treatment cause A. baumannii to transition between states of low and high virulence potential, which may contribute to the opportunistic nature of the pathogen. Acinetobacter baumannii has gained notoriety as a cause of hospital-acquired infections that are difficult to treat due to extensive antibiotic resistance. While the microorganism rarely causes disease in the community, it commonly infects patients receiving antibiotics. The factors intrinsic to the bacterium that enable growth in the presence of antibiotics are not well characterized. Furthermore, the consequences of subinhibitory antibiotic concentrations on A. baumannii disease are unknown. Here we examined the K locus, a bacterial disease determinant responsible for the production of protective surface polysaccharides, and asked whether this determinant also contributes to antibiotic resistance. We found that K locus polysaccharides facilitate resistance to multiple antibiotics, and, unexpectedly, that the bacterium responds to certain antibiotics at subinhibitory concentrations by increasing production of capsule, the principal K locus polysaccharide. This augmented production of capsule, which is mediated by upregulation of K locus gene expression, increased the ability of the bacterium to overcome attack by the complement system, an important anti-pathogen host defense, and result in lethal disease during experimental bloodstream infection in mice. Our studies indicate that A. baumannii increases its disease-causing potential in the setting of inadequate antibiotic treatment, which may promote the development of opportunistic infections.
Collapse
Affiliation(s)
- Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
59
|
Patel G, Perez F, Hujer AM, Rudin SD, Augustine JJ, Jacobs GH, Jacobs MR, Bonomo RA. Fulminant endocarditis and disseminated infection caused by carbapenem-resistant Acinetobacter baumannii in a renal-pancreas transplant recipient. Transpl Infect Dis 2015; 17:289-96. [PMID: 25661804 DOI: 10.1111/tid.12351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/13/2014] [Accepted: 12/11/2014] [Indexed: 01/23/2023]
Abstract
Acinetobacter baumannii is an important cause of healthcare-associated infections, and is particularly problematic among patients who undergo organ transplantation. We describe a case of fulminant sepsis caused by carbapenem-resistant A. baumannii harboring the blaOXA-23 carbapenemase gene and belonging to international clone II. This isolate led to the death of a patient 6 days after simultaneous kidney-pancreas transplantation. Autopsy findings revealed acute mitral valve endocarditis, myocarditis, splenic and renal emboli, peritonitis, and pneumonia. This case highlights the severe nature of certain A. baumannii infections and the vulnerability of transplanted patients to the increasingly intractable "high-risk" clones of multidrug-resistant organisms.
Collapse
Affiliation(s)
- G Patel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|