51
|
Dirlikov E, Major CG, Medina NA, Lugo-Robles R, Matos D, Muñoz-Jordan JL, Colon-Sanchez C, Garcia M, Olivero-Segarra M, Malave G, Rodríguez-Vega GM, Thomas DL, Waterman SH, Sejvar JJ, Luciano CA, Sharp TM, Rivera-García B. Clinical Features of Guillain-Barré Syndrome With vs Without Zika Virus Infection, Puerto Rico, 2016. JAMA Neurol 2018; 75:1089-1097. [PMID: 29799940 PMCID: PMC6143122 DOI: 10.1001/jamaneurol.2018.1058] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Importance The pathophysiologic mechanisms of Guillain-Barré syndrome (GBS) associated with Zika virus (ZIKV) infection may be indicated by differences in clinical features. Objective To identify specific clinical features of GBS associated with ZIKV infection. Design, Setting, and Participants During the ZIKV epidemic in Puerto Rico, prospective and retrospective strategies were used to identify patients with GBS who had neurologic illness onset in 2016 and were hospitalized at all 57 nonspecialized hospitals and 2 rehabilitation centers in Puerto Rico. Guillain-Barré syndrome diagnosis was confirmed via medical record review using the Brighton Collaboration criteria. Specimens (serum, urine, cerebrospinal fluid, and saliva) from patients with GBS were tested for evidence of ZIKV infection by real-time reverse transcriptase-polymerase chain reaction; serum and cerebrospinal fluid were also tested by IgM enzyme-linked immunosorbent assay. In this analysis of public health surveillance data, a total of 123 confirmed GBS cases were identified, of which 107 had specimens submitted for testing; there were 71 patients with and 36 patients without evidence of ZIKV infection. Follow-up telephone interviews with patients were conducted 6 months after neurologic illness onset; 60 patients with and 27 patients without evidence of ZIKV infection participated. Main Outcomes and Measures Acute and long-term clinical characteristics of GBS associated with ZIKV infection. Results Of 123 patients with confirmed GBS, the median age was 54 years (age range, 4-88 years), and 68 patients (55.3%) were male. The following clinical features were more frequent among patients with GBS and evidence of ZIKV infection compared with patients with GBS without evidence of ZIKV infection: facial weakness (44 [62.0%] vs 10 [27.8%]; P < .001), dysphagia (38 [53.5%] vs 9 [25.0%]; P = .005), shortness of breath (33 [46.5%] vs 9 [25.0%]; P = .03), facial paresthesia (13 [18.3%] vs 1 [2.8%]; P = .03), elevated levels of protein in cerebrospinal fluid (49 [94.2%] vs 23 [71.9%]; P = .008), admission to the intensive care unit (47 [66.2%] vs 16 [44.4%]; P = .03), and required mechanical ventilation (22 [31.0%] vs 4 [11.1%]; P = .02). Six months after neurologic illness onset, patients with GBS and evidence of ZIKV infection more frequently reported having excessive or inadequate tearing (30 [53.6%] vs 6 [26.1%]; P = .03), difficulty drinking from a cup (10 [17.9%] vs 0; P = .03), and self-reported substantial pain (15 [27.3%] vs 1 [4.3%]; P = .03). Conclusions and Relevance In this study, GBS associated with ZIKV infection was found to have higher morbidity during the acute phase and more frequent cranial neuropathy during acute neuropathy and 6 months afterward. Results indicate GBS pathophysiologic mechanisms that may be more common after ZIKV infection.
Collapse
Affiliation(s)
- Emilio Dirlikov
- Office of Epidemiology and Research, Puerto Rico Department of Health, San Juan
- Epidemic Intelligence Service, Division of Scientific Education and Professional Development, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Chelsea G. Major
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
- Office for State, Tribal, Local, and Territorial Support, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Nicole A. Medina
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Roberta Lugo-Robles
- Office of Epidemiology and Research, Puerto Rico Department of Health, San Juan
| | - Desiree Matos
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jorge L. Muñoz-Jordan
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Candimar Colon-Sanchez
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Myriam Garcia
- Biological and Chemical Emergencies Laboratory, Office of Public Health Preparedness and Response, Puerto Rico Department of Health, San Juan
- Public Health Laboratory, Puerto Rico Department of Health, San Juan
| | - Marangely Olivero-Segarra
- Biological and Chemical Emergencies Laboratory, Office of Public Health Preparedness and Response, Puerto Rico Department of Health, San Juan
- Public Health Laboratory, Puerto Rico Department of Health, San Juan
| | - Graciela Malave
- Biological and Chemical Emergencies Laboratory, Office of Public Health Preparedness and Response, Puerto Rico Department of Health, San Juan
- Public Health Laboratory, Puerto Rico Department of Health, San Juan
| | | | - Dana L. Thomas
- Division of State and Local Readiness, Office of Public Health Preparedness and Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
- Commissioned Corps of the US Public Health Service, Rockville, Maryland
| | - Stephen H. Waterman
- Office of Epidemiology and Research, Puerto Rico Department of Health, San Juan
- Commissioned Corps of the US Public Health Service, Rockville, Maryland
| | - James J. Sejvar
- Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Carlos A. Luciano
- Neurology Section, University of Puerto Rico School of Medicine, San Juan
| | - Tyler M. Sharp
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
- Commissioned Corps of the US Public Health Service, Rockville, Maryland
| | | |
Collapse
|
52
|
Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain. Cell Host Microbe 2018; 24:57-68.e3. [PMID: 29934091 DOI: 10.1016/j.chom.2018.05.022] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022]
Abstract
The emerging arthropod-borne flavivirus Zika virus (ZIKV) is associated with neurological complications. Innate immunity is essential for the control of virus infection, but the innate immune mechanisms that impact viral infection of neurons remain poorly defined. Using the genetically tractable Drosophila system, we show that ZIKV infection of the adult fly brain leads to NF-kB-dependent inflammatory signaling, which serves to limit infection. ZIKV-dependent NF-kB activation induces the expression of Drosophila stimulator of interferon genes (dSTING) in the brain. dSTING protects against ZIKV by inducing autophagy in the brain. Loss of autophagy leads to increased ZIKV infection of the brain and death of the infected fly, while pharmacological activation of autophagy is protective. These data suggest an essential role for an inflammation-dependent STING pathway in the control of neuronal infection and a conserved role for STING in antimicrobial autophagy, which may represent an ancestral function for this essential innate immune sensor.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth Gordesky-Gold
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Leney-Greene
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan L Weinbren
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Tudor
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
53
|
Aguilar C, Husain S, Lortholary O. Recent advances in understanding and managing infectious diseases in solid organ transplant recipients. F1000Res 2018; 7:F1000 Faculty Rev-661. [PMID: 29899970 PMCID: PMC5968357 DOI: 10.12688/f1000research.14262.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Undergoing solid organ transplantation (SOT) exposes the recipient to various infectious risks, including possible transmission of pathogen by the transplanted organ, post-surgical infections, reactivation of latent pathogens, or novel infections. Recent advances: In the last few years, the emergence of Zika virus has raised concerns in the transplant community. Few cases have been described in SOT patients, and these were associated mainly with moderate disease and favorable outcome; the notable exception is a recent case of fatal meningo-encephalopathy in a heart transplant recipient. Because of the advances in treating hepatitis C, several teams recently started to use organs from hepatitis C-positive donors. The worldwide increasing incidence of multidrug-resistant pathogens, as well as the increasing incidence of Clostridioidesdifficile infection, is of particular concern in SOT patients. In the field of mycology, the main recent therapeutic advance is the availability of isavuconazole for the treatment of invasive aspergillosis and mucormycosis. This drug has the advantage of minimal interaction with calcineurin inhibitors. Regarding the viral reactivations occurring after transplant, cytomegalovirus (CMV) infection is still a significant issue in SOT patients. The management of resistant CMV remains particularly difficult. The approval of letermovir, albeit in bone marrow transplantation, and the therapeutic trial of maribavir bring a ray of hope. Another advancement in management of post-transplant infections is the development of in vitro tests evaluating pathogen-specific immune response, such as immunodiagnostics for CMV and, more recently, tests for monitoring immunity against BK virus. Conclusion: The increasing number of organ transplantations, the use of newer immunosuppressive drugs, and high-risk donors continue to define the landscape of transplant infectious diseases in the current era.
Collapse
Affiliation(s)
- Claire Aguilar
- Division of Infectious Diseases, Multi-Organ Transplant Program, Department of Medicine, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Program, Department of Medicine, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Olivier Lortholary
- Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Paris Descartes University, IHU Imagine, Paris, France
| |
Collapse
|
54
|
Hygino da Cruz LC, Nascimento OJM, Lopes FPPL, da Silva IRF. Neuroimaging Findings of Zika Virus-Associated Neurologic Complications in Adults. AJNR Am J Neuroradiol 2018; 39:1967-1974. [PMID: 29773562 DOI: 10.3174/ajnr.a5649] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
When the first suspected cases of neurologic disorders associated with the Zika virus were noticed in Brazil in late 2015, several studies had been conducted to understand the pathophysiology of the disease and its associated complications. In addition to its well-established association with microcephaly in neonates, the Zika virus infection has also been suggested to trigger other severe neurologic complications in adults, such as Guillain-Barré syndrome, radiculomyelitis, and meningoencephalitis. Hence, the Zika virus should be deemed a global threat that can cause devastating neurologic complications among individuals in all age ranges. The aim of this review was to further describe neuroimaging findings of Zika virus infection and associated neurologic complications found in adults.
Collapse
Affiliation(s)
- L C Hygino da Cruz
- From the Department of Radiology (L.C.H.C., F.P.P.L.L.), Clínica de Diagnóstico por Imagem, Rio de Janeiro, Brazil .,Alta Excelência Diagnóstica (L.C.H.C.), Rio de Janeiro, Brazil.,Radiology Department (L.C.H.C.), Americas Medical City, Rio de Janeiro, Brazil
| | - O J M Nascimento
- Neurology Department (O.J.M.N.), Universidade Federal Fluminense, Niteroi, Brazil
| | - F P P L Lopes
- From the Department of Radiology (L.C.H.C., F.P.P.L.L.), Clínica de Diagnóstico por Imagem, Rio de Janeiro, Brazil
| | - I R F da Silva
- Department of Neurological Sciences (I.R.F.d.S.), Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
55
|
Alimonti JB, Ribecco-Lutkiewicz M, Sodja C, Jezierski A, Stanimirovic DB, Liu Q, Haqqani AS, Conlan W, Bani-Yaghoub M. Zika virus crosses an in vitro human blood brain barrier model. Fluids Barriers CNS 2018; 15:15. [PMID: 29759080 PMCID: PMC5952854 DOI: 10.1186/s12987-018-0100-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a flavivirus that is highly neurotropic causing congenital abnormalities and neurological damage to the central nervous systems (CNS). In this study, we used a human induced pluripotent stem cell (iPSC)-derived blood brain barrier (BBB) model to demonstrate that ZIKV can infect brain endothelial cells (i-BECs) without compromising the BBB barrier integrity or permeability. Although no disruption to the BBB was observed post-infection, ZIKV particles were released on the abluminal side of the BBB model and infected underlying iPSC-derived neural progenitor cells (i-NPs). AXL, a putative ZIKV cellular entry receptor, was also highly expressed in ZIKV-susceptible i-BEC and i-NPs. This iPSC-derived BBB model can help elucidate the mechanism by which ZIKV can infect BECs, cross the BBB and gain access to the CNS.
Collapse
Affiliation(s)
- Judie B. Alimonti
- Human Health Therapeutics Research Center, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON Canada
| | - Maria Ribecco-Lutkiewicz
- Human Health Therapeutics Research Center, National Research Council of Canada, Bldg M54-1200 Montreal Rd., Ottawa, ON K1A 0R6 Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Center, National Research Council of Canada, Bldg M54-1200 Montreal Rd., Ottawa, ON K1A 0R6 Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Center, National Research Council of Canada, Bldg M54-1200 Montreal Rd., Ottawa, ON K1A 0R6 Canada
| | - Danica B. Stanimirovic
- Human Health Therapeutics Research Center, National Research Council of Canada, Bldg M54-1200 Montreal Rd., Ottawa, ON K1A 0R6 Canada
| | - Qing Liu
- Human Health Therapeutics Research Center, National Research Council of Canada, Bldg M54-1200 Montreal Rd., Ottawa, ON K1A 0R6 Canada
| | - Arsalan S. Haqqani
- Human Health Therapeutics Research Center, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON Canada
| | - Wayne Conlan
- Human Health Therapeutics Research Center, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON Canada
| | - Mahmud Bani-Yaghoub
- Human Health Therapeutics Research Center, National Research Council of Canada, Bldg M54-1200 Montreal Rd., Ottawa, ON K1A 0R6 Canada
| |
Collapse
|