51
|
Peitsaro N, Polianskyte Z, Tuimala J, Pörn-Ares I, Liobikas J, Speer O, Lindholm D, Thompson J, Eriksson O. Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy. BMC Evol Biol 2008; 8:26. [PMID: 18226203 PMCID: PMC2266909 DOI: 10.1186/1471-2148-8-26] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial penicillin-binding proteins and beta-lactamases (PBP-betaLs) constitute a large family of serine proteases that perform essential functions in the synthesis and maintenance of peptidoglycan. Intriguingly, genes encoding PBP-betaL homologs occur in many metazoan genomes including humans. The emerging role of LACTB, a mammalian mitochondrial PBP-betaL homolog, in metabolic signaling prompted us to investigate the evolutionary history of metazoan PBP-betaL proteins. RESULTS Metazoan PBP-betaL homologs including LACTB share unique structural features with bacterial class B low molecular weight penicillin-binding proteins. The amino acid residues necessary for enzymatic activity in bacterial PBP-betaL proteins, including the catalytic serine residue, are conserved in all metazoan homologs. Phylogenetic analysis indicated that metazoan PBP-betaL homologs comprise four alloparalogus protein lineages that derive from alpha-proteobacteria. CONCLUSION While most components of the peptidoglycan synthesis machinery were dumped by early eukaryotes, a few PBP-betaL proteins were conserved and are found in metazoans including humans. Metazoan PBP-betaL homologs are active-site-serine enzymes that probably have distinct functions in the metabolic circuitry. We hypothesize that PBP-betaL proteins in the early eukaryotic cell enabled the degradation of peptidoglycan from ingested bacteria, thereby maximizing the yield of nutrients and streamlining the cell for effective phagocytotic feeding.
Collapse
Affiliation(s)
- Nina Peitsaro
- Research Program of Molecular Neurology, Biomedicum Helsinki, P.O. Box 63, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
The failure of current regimens to treat the gastric pathogen Helicobacter pylori is a growing problem. Responsible for gastritis and peptic ulcer disease, and designated as a Class 1 carcinogen, its presence in up to 90% of the population of the developing world makes its treatment a primary concern. The use of genomic, proteomic and transcriptomic data to determine essential gene products as targets for novel therapeutic agents is of key interest in this research. This review describes how such data can be obtained, evaluated and eventually used as a basis for the development of both vaccine and novel anti-helicobacter agents. It indicates both past successes and possible new avenues to exploit the increased availability of such data, whilst also examining the limitations of such approaches.
Collapse
Affiliation(s)
- Michael F Loughlin
- Institute of Infection, Immunity and Inflammation, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
53
|
|
54
|
Mustafi D, Hofer JE, Huang W, Palzkill T, Makinen MW. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2004; 60:1279-1289. [PMID: 15134725 DOI: 10.1016/j.saa.2003.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 07/13/2003] [Accepted: 10/16/2003] [Indexed: 05/24/2023]
Abstract
The chromophoric spin-label substrate 6-N-[3-(2,2,5,5-tetramethyl-1-oxypyrrolin-3-yl)-propen-2-oyl]penicillanic acid (SLPPEN) was synthesized by acylation of 6-aminopenicillanic acid with the acid chloride of 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl)-2-propenoic acid and characterized by physical methods. By application of angle-selected electron nuclear double resonance (ENDOR), we have determined the molecular structure of SLPPEN in solution. SLPPEN exhibited UV absorption properties that allowed accurate monitoring of the kinetics of its enzyme-catalyzed hydrolysis. The maximum value of the (substrate-product) difference extinction coefficient was 2824 M(-1) cm(-1) at 275 nm compared to 670 M(-1) cm(-1) at 232 nm for SLPEN [J. Am. Chem. Soc. 117 (1995) 6739]. For SLPPEN, the steady-state kinetic parameters kcat and kcat/KM, determined under initial velocity conditions, were 637 +/- 36 s(-1) and 13.8 +/- 1.4 x 10(6) M(-1) s(-1), respectively, for hydrolysis catalyzed by TEM-1 beta-lactamase of E. coli, and 0.5 +/- 0.04 s(-1) and 3.9 +/- 0.4 x 10(4) M(-1) s(-1) for hydrolysis catalyzed by the beta-lactamase of Enterobacter cloacae P99. We have also observed "burst kinetics" for the hydrolysis of SLPPEN with P99 beta-lactamase, indicative of formation of an acylenzyme reaction intermediate. In DMSO:H2O (30:70, v:v) cryosolvent mixtures buffered to pH* 7.0, the half-life of the acylenzyme intermediate formed with the P99 enzyme at -5 degrees C was > or = 3 min, suitable for optical characterization. The observation of burst kinetics in the hydrolysis of SLPPEN catalyzed by P99 beta-lactamase suggests that this chromophoric spin-labeled substrate is differentially sensitive to active site interactions underlying the cephalosporinase and penicillinase reactivity of this class C enzyme.
Collapse
Affiliation(s)
- Devkumar Mustafi
- Department of Biochemistry and Molecular Biology, Cummings Life Science Center, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
55
|
Pinho MG, Errington J. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol Microbiol 2004; 50:871-81. [PMID: 14617148 DOI: 10.1046/j.1365-2958.2003.03719.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed several new fluorescent staining procedures that enabled us to study the synthesis of cell wall material in the spherical Gram-positive bacterium Staphylococcus aureus. The results obtained support previous proposals that these cells synthesize new wall material specifically at cell division sites, in the form of a flat circular plate that is subsequently cleaved and remodelled to produce the new hemispherical poles of the daughter cells. We have shown that formation of the septal peptidoglycan is dependent on the key cell division protein FtsZ, which recruits penicillin-binding protein (PBP) 2. Unexpectedly, in FtsZ-depleted cells, the cell wall synthetic machinery becomes dispersed and new wall material is made in dispersed patches over the entire surface of the cells, which increase in volume by up to eightfold before lysing. The results have implications for understanding the nature of S. aureus morphogenesis and for inhibitors of cell division proteins as drug targets.
Collapse
Affiliation(s)
- Mariana G Pinho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
56
|
References. Antibiotics (Basel) 2003. [DOI: 10.1128/9781555817886.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
57
|
Peimbert M, Segovia L. Evolutionary engineering of a beta-Lactamase activity on a D-Ala D-Ala transpeptidase fold. Protein Eng Des Sel 2003; 16:27-35. [PMID: 12646690 DOI: 10.1093/proeng/gzg008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The beta-Lactamase hydrolytic activity has arisen several times from DD-transpeptidases. We have been able to replicate the evolutionary process of beta-Lactamase activity emergence on a PBP2X DD-transpeptidase. Some of the most interesting changes, like modifying the catalytic properties of an enzyme, may require several mutations in concert; therefore it is essential to explore efficiently sequence space by generating the right diversity. We designed a biased combinatorial library in which biochemical and structural information were incorporated by site directed mutagenesis on relevant residues and then subjected to random mutagenesis to allow for mutations in unforeseen positions. We isolated mutants from this library conferring 10-fold higher cefotaxime resistance levels than the background wild-type through mutations exclusively in the coding sequence. We demonstrate that only three substitutions in the DD-transpeptidase active site, two produced by the directed and one by the random mutagenesis, are sufficient to acquire this activity. The purified product of one mutant (MutE) had a 10(5)-fold increase in cefotaxime deacylation rate allowing it to hydrolyze beta-Lactams yet it has apparently conserved DD-peptidase activity. This work is the first to show a possible evolutionary intermediate between a beta-Lactamase and a DD-transpeptidase necessary for the development of antibiotic resistance.
Collapse
Affiliation(s)
- Mariana Peimbert
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62250 México.
| | | |
Collapse
|
58
|
Massova I, Kollman PA. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step. J Comput Chem 2002; 23:1559-76. [PMID: 12395425 DOI: 10.1002/jcc.10129] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The acylation step of the catalytic mechanism of beta-lactamases and penicillin-binding proteins (PBPs) has been studied with various approaches. The methods applied range from molecular dynamics (MD) simulations to multiple titration calculations using the Poisson-Boltzmann approach to quantum mechanical (QM) methods. The mechanism of class A beta-lactamases was investigated in the greatest detail. Most approaches support the critical role of Glu-166 and hydrolytic water in the acylation step of the enzymatic catalysis in class A beta-lactamases. The details of the catalytic mechanism have been revealed by the QM approach, which clearly pointed out the critical role of Glu-166 acting as a general base in the acylation step with preferred substrates. Lys-73 shuffles a proton abstracted by Glu-166 O(epsilon ) to the beta-lactam nitrogen through Ser-130 hydroxyl. This proton is transferred from O(gamma) of the catalytic Ser-70 through the bridging hydrolytic water to Glu-166 O(epsilon ). Then the hydrogen is simultaneously passed through S(N)2 inversion mechanism at Lys-73 N(zeta) to Ser-130 O(gamma), which loses its proton to the beta-lactam nitrogen. The protonation of beta-lactam nitrogen proceeds with an immediate ring opening and collapse of the first tetrahedral species into an acyl-enzyme intermediate. However, the studies that considered the effect of solvation lower the barrier for the pathway, which utilizes Lys-73 as a general base, thus creating a possibility of multiple mechanisms for the acylation step in the class A beta-lactamases. These findings help explain the exceptional efficiency of these enzymes. They emphasize an important role of Glu-166, Lys-73, and Ser-130 for enzymatic catalysis and shed light on details of the acylation step of class A beta-lactamase mechanism. The acylation step for class C beta-lactamases and six classes of PBPs were also considered with continuum solvent models and MD simulations.
Collapse
Affiliation(s)
- Irina Massova
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143-0446, USA.
| | | |
Collapse
|
59
|
Stefanova ME, Davies C, Nicholas RA, Gutheil WG. pH, inhibitor, and substrate specificity studies on Escherichia coli penicillin-binding protein 5. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:292-300. [PMID: 12044907 DOI: 10.1016/s0167-4838(02)00311-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The recent structural determination of Escherichia coli penicillin-binding protein 5 (PBP 5) provides the opportunity for detailed structure-function studies of this enzyme. PBP 5 was investigated in terms of its stability, linear reaction kinetics, acyl-donor substrate specificity, inhibition by a number of active site-directed reagents, and pH profile. PBP 5 demonstrated linear reaction kinetics for up to several hours. Dilution of PBP 5 generally resulted in substantial loss of activity, unless BSA or a BSA derivative was added to the diluting buffer. PBP 5 did not demonstrate a significant preference against a simple set of five alpha- and epsilon-substituted L-Lys-D-Ala-D-Ala derivatives, suggesting that PBP 5 lacks specificity for the cross-linked state of cell wall substrates. Among a number of active site-directed reagents, only some thiol-directed reagents gave substantial inhibition. Notably, serine-directed reagents, organic phosphates, and simple boronic acids were ineffective as inhibitors. PBP 5 was stable over the pH range 4.6-12.3, and the k(cat)/K(m) vs. pH profile for activity against Ac(2)-L-Lys-D-Ala-D-Ala was bell-shaped, with pK(a)s at 8.2 and 11.1. This is the first complete pH profile, including both acidic and basic limbs, for a PBP-catalyzed DD-carboxypeptidase (CPase) reaction. Based on its structure, similarity to Class A beta-lactamases, and results from mutagenesis studies, the acidic and basic limbs of the pH profile of PBP 5 are assigned to Lys-47 and Lys-213, respectively. This assignment supports a role for Lys-47 as the general base for acylation and deacylation reactions.
Collapse
Affiliation(s)
- Miglena E Stefanova
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
60
|
Grail BM, Payne JW. Conformational analysis of bacterial cell wall peptides indicates how particular conformations have influenced the evolution of penicillin-binding proteins, beta-lactam antibiotics and antibiotic resistance mechanisms. J Mol Recognit 2002; 15:113-25. [PMID: 12203837 DOI: 10.1002/jmr.566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our aim was to use a conformational analysis technique developed for peptides to identify structural relationships between bacterial cell wall peptides and beta-lactam antibiotics that might help to explain their different actions as substrates and inhibitors of penicillin binding proteins (PBPs). The conformational forms of the model cell wall peptide Ac-L-Lys(Ac)-D-Ala-D-Ala are described by just a few backbone torsion combinations: three C-terminal carboxylate regions, with Tor8 (psi(i+1)) ranges of D3 region (50 degrees to 70 degrees ), D6 region (140 degrees to 170 degrees ) and D9 region (-50 degrees to -70 degrees ) are combined with either of two Tor6 (phi(i))-Tor4 (psi(i)) combinations, C4 region (-50 degrees to -80 degrees ) with B8 region (-40 degrees to -70 degrees ) or C11 region (30 degrees to 50 degrees ) with B2 region (30 degrees to 70 degrees ). From these results, and comparisons with conformational analyses of various beta-lactams and Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that molecular recognition of cell wall peptide substrates by PBPs requires conformers with backbone torsion angles of D3C4B8. beta-Lactam antibiotics are constrained compounds with fewer conformational forms; these match well the backbone torsions of cell wall peptides at D3C4, allowing their recognition and acylation by PBPs, whereas their unique Tor4 produces differently orientated CO and N atoms that appear to prevent subsequent deacylation, leading to their action as suicide substrates. The results are also related to the selective pressures involved in evolution of beta-lactamases from PBPs. From analysis of conformers of Ac-L-Lys(Ac)-D-Ala-D-Ala and the vancomycin-resistant analogue Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that vancomycin may recognise D6C11B2 conformers, giving it complementary substrate specificity to PBPs. This approach could have applications in the rational design of antibiotics targeted against PBPs and their substrates.
Collapse
Affiliation(s)
- Barry M Grail
- School of Biological Sciences, University of Wales Bangor, Bangor, Gwynedd LL57 2UW, UK
| | | |
Collapse
|
61
|
Enroth H, Engstrand L. An update on Helicobacter pylori microbiology and infection for the new millennium. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2002; 33:163-74. [PMID: 11303804 DOI: 10.1080/00365540151060725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The finding of the bacterium Helicobacter pylori in patients with symptomatic gastric diseases was a breakthrough for both treatment of peptic ulcer disease and studies of other infectious diseases. Helicobacter pylori infection is rare among the young, indicating that improved childhood living conditions have halted the transmission of the bacterium within families, with a parallel decrease in symptomatic gastroduodenal diseases. Extensive strain variation in H. pylori has been demonstrated at both the genomic and the protein level, and the interstrain variation is higher than in any other bacterium studied so far. Pathogenic markers in H. pylori and host genetics are both of importance for disease outcome. Genotypic or phenotypic markers of H. pylori strains may be used to discriminate patients who should undergo eradication therapy from those who might not benefit from it. Possible positive effects of the infection are still under investigation, and several hypotheses regarding the etiology of diseases in different parts of the stomach have been proposed. To be able to separate the disease-causing infections from the silent infections is a real challenge for the new millennium, and one of the most important issues for therapy and prevention, in the research field of H. pylori.
Collapse
Affiliation(s)
- H Enroth
- Department of Medical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
62
|
Goodall JJ, Booth VK, Ashcroft AE, Wharton CW. Hydrogen-Bonding in 2-Aminobenzoyl-α-chymotrypsin Formed by Acylation of the Enzyme with Isatoic Anhydride: IR and Mass Spectroscopic Studies. Chembiochem 2002; 3:68-75. [PMID: 17590956 DOI: 10.1002/1439-7633(20020104)3:1<68::aid-cbic68>3.0.co;2-d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The acyl-enzyme formed upon acylation of alpha-chymotrypsin with isatoic anhydride has been characterised by infrared spectroscopy. Acylation at pH 7 to yield the 2-aminobenzoyl-enzyme is rapid (k = 5.57x 10(-2)s(-1)), while deacylation is much slower (k =3.7 x 10(-5)10(-2) (s-). The [1C=O]-labelled form of isatoic anhydride has been synthesised, to allow construction of [72C=O]- minus [13C=O]difference spectra; these highlight the carbonyl absorbance of the ligand and eliminate spectral effects that arise from protein perturbation. The ester carbonyl band of the acyl-enzyme absorbs at a wavenumber of 1695cm(-1) and has been shown by deconvolution analysis to represent a single, well-defined conformation. Model studies of ethyl 2-aminobenzoate in a range of solvents show that its carbonyl group is in a hexane-like environment (that is, very nonpolar). It is proposed that the low wavenumber of the carbonyl absorbance arises from the presence of an internal hydrogen bond between the 2-amino group and the ester carbonyl oxygen; this leads to polarisation of the carbonyl group both in the enzyme and in nonpolar solvents. However, in view of the slow deacylation, it is clear that the acyl group is in a nonproductive conformation, with no interaction with the oxyanion hole, and that deacylation occurs from this form or from a minor, invisible form. The infrared data have been supported by kinetic electrospray mass spectroscopic measurements, which demonstrate that the acyl-enzyme is that previously anticipated, and by molecular modelling of 2-aminobenzoyl-alpha-chymotrypsin. It is concluded from pH-dependence measurements that general base catalysis by the 2-amino group is not involved in deacylation.
Collapse
Affiliation(s)
- Jonathan J Goodall
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
63
|
Lawung R, Danielsson B, Prachayasittikul V, Bülow L. Calorimetric analysis of cephalosporins using an immobilized TEM-1 beta-lactamase on Ni2+ chelating sepharose fast flow. Anal Biochem 2001; 296:57-62. [PMID: 11520032 DOI: 10.1006/abio.2001.5226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two beta-lactamases, penicillinase type I from Bacillus cereus and TEM-1 beta-lactamase from Haemophilus ducreyi, were immobilized on a Chelating Sepharose Fast Flow column loaded with Ni2+ in an active form. Flow-injection analysis of beta-lactams was performed by using an enzyme column reactor fitted into the enzyme thermistor. With both enzymes it was possible to monitor both penicillins and cephalosporins. Moreover, Michaelis constants of the TEM-1 beta-lactamase were markedly increased upon immobilization for all substrates, especially carbenicillin, cephaloridine, and cefoperazone.
Collapse
Affiliation(s)
- R Lawung
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
64
|
Jenks PJ, Ferrero RL, Tankovic J, Thiberge JM, Labigne A. Evaluation of nitrofurantoin combination therapy of metronidazole-sensitive and -resistant Helicobacter pylori infections in mice. Antimicrob Agents Chemother 2000; 44:2623-9. [PMID: 10991835 PMCID: PMC90126 DOI: 10.1128/aac.44.10.2623-2629.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The main objectives of this study were to determine whether the nitroreductase enzyme encoded by the rdxA gene of Helicobacter pylori was responsible for reductive activation of nitrofurantoin and whether a triple-therapy regimen with nitrofurantoin was able to eradicate metronidazole-sensitive and -resistant H. pylori infections from mice. The susceptibilities to nitrofurantoin of parent and isogenic rdxA mutant strains (three pairs), as well as a series of matched metronidazole-sensitive and -resistant strains isolated from mice (30) and patients (20), were assessed by agar dilution determination of the MIC. Groups of mice colonized with the metronidazole-sensitive H. pylori SS1 strain or a metronidazole-resistant rdxA SS1 mutant were treated with either metronidazole or nitrofurantoin as part of a triple-therapy regimen. One month after the completion of treatment the mice were sacrificed and their stomachs were cultured for H. pylori. The nitrofurantoin MICs for all strains tested were between 0.5 and 4.0 microg/ml. There was no significant difference between the susceptibility to nitrofurantoin of the parental strains and those of respective rdxA mutants or between those of matched metronidazole-sensitive and -resistant H. pylori isolates. The regimen with metronidazole eradicated infection from all eight SS1-infected mice and from one of eight mice inoculated with the rdxA mutant (P < or =0.001). The regimen with nitrofurantoin failed to eradicate infection from any of the six SS1-infected mice (P < or =0.001) and cleared infection from one of seven mice inoculated with the rdxA mutant. These results demonstrate that, despite the good in vitro activity of nitrofurantoin against H. pylori and the lack of cross-resistance between metronidazole and nitrofurantoin, eradication regimens involving nitrofurantoin are unable to eradicate either metronidazole-sensitive or -resistant H. pylori infections from mice.
Collapse
Affiliation(s)
- P J Jenks
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
65
|
|
66
|
Owen RJ, Slater ER, Gibson J, Lorenz E, Tompkins DS. Effect of clarithromycin and omeprazole therapy on the diversity and stability of genotypes of Helicobacter pylori from duodenal ulcer patients. Microb Drug Resist 2000; 5:141-6. [PMID: 10432275 DOI: 10.1089/mdr.1999.5.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The genotypes of multiple isolates of Helicobacter pylori from 17 duodenal ulcer patients in the United Kingdom were compared to determine reasons for treatment failure. Isolates were from antrum and corpus biopsies taken before and after dual therapy with clarithromycin and omeprazole. All isolates were tested for antibiotic resistance and characterised by a novel scheme combining polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the ureA + ureB and 23S rRNA genes, vacA signal and midregion genotypes, and PCR detection of cagA. Combined genotypes of paired pre- and post-treatment isolates from 8 patients showed an infection with a single strain of H. pylori that had acquired resistance to clarithromycin. In 4 other patients, acquisition of clarithromycin resistance was associated with the presence of different strain types of H. pylori. The remaining 5 patients had clarithromycin-sensitive isolates. Overall, H. pylori from different patients had diverse genotypes, yet most (70%) were colonized by the same predominant and stable strain in both the antrum and corpus. There was no link between the emergence of in vitro clarithromycin resistance and a particular strain genotype for these UK isolates. It was concluded that colonization with a clarithromycin-resistant H. pylori was due to selection of a resistant strain or clonal variant within the infecting population. Present genomic markers had low predictive value for emergence of resistance.
Collapse
Affiliation(s)
- R J Owen
- Helicobacter Reference Unit, Laboratory of Enteric Pathogens, Central Public Health Laboratory, London, UK
| | | | | | | | | |
Collapse
|
67
|
Payne DJ, Du W, Bateson JH. beta-Lactamase epidemiology and the utility of established and novel beta-lactamase inhibitors. Expert Opin Investig Drugs 2000; 9:247-61. [PMID: 11060675 DOI: 10.1517/13543784.9.2.247] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
beta-Lactamase inhibitor:beta-lactam combinations remain one of the most successful strategies for the treatment of bacterial infections. Over the last 20 years the number and diversity of serine and metallo active site beta-lactamases has increased dramatically. This review highlights some of the new additions to the beta-lactamase arena and discusses how the commercially available beta-lactamase inhibitors are keeping pace with the changing epidemiology of beta-lactamases. In addition, we survey the progress with the design of novel inhibitors of serine and metallo-beta-lactamases. Focus is given to the recent advances in the design of metallo-beta-lactamase inhibitors as these enzymes pose a serious emerging threat to the use of all beta-lactam based therapies.
Collapse
Affiliation(s)
- D J Payne
- Anti-infectives Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, Collegeville, PA 19426-0989, USA
| | | | | |
Collapse
|
68
|
Abstract
The delivery of antimicrobial drugs to Helicobacter pylori within the stomach is poorly understood. The gastric environment represents a unique pharmacokinetic compartment, into which drug can be delivered directly following oral administration, or indirectly following intestinal absorption and transfer from the blood into the stomach across the gastric mucosa. Several methods have been used to study drug disposition across the gastric mucosa, including endoscopic biopsy studies, nasogastric intubation studies and animal models. Direct, or topical, delivery is limited by luminal drug degradation, drug formulation and the permeability of the mucus layer. Indirect, or systemic, delivery is limited by factors affecting the concentration gradient across the gastric mucosa and the permeability of the mucosa. These factors include intragastric pH, plasma protein binding, drug lipophilicity, the presence of active transport mechanisms, drugs that damage the gastric mucosa and inflammation secondary to H. pylori infection. Little is known about the last of these, and further research in this area should help in the rational approach to development of treatments against H. pylori.
Collapse
Affiliation(s)
- A F Goddard
- Division of Gastroenterology, University Hospital, Nottingham, UK
| |
Collapse
|
69
|
Bush K, Mobashery S. How β-Lactamases Have Driven Pharmaceutical Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998. [DOI: 10.1007/978-1-4615-4897-3_5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|